
Konrad Siek

Distributed Pessimistic Transactional
Memory: Algorithms and Properties

Doctoral Dissertation

Submitted to the Council
of the Faculty of Computing Science
of Poznań University of Technology

Advisor: Paweł T. Wojciechowski, Ph. D., Dr. Habil.

Poznań · 2016

Konrad Siek

Rozproszona Pesymistyczna Pamięć
Transakcyjna: Algorytmy i Własności

Rozprawa doktorska

Przedłożono Radzie
Wydziału Informatyki
Politechniki Poznańskiej

Promotor: dr hab. inż. Paweł T. Wojciechowski

Poznań · 2016

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Computing Science.

Konrad Siek
Distributed Systems Research Group
Faculty of Computing Science
Institute of Computing Science
Poznań University of Technology
konrad.siek@cs.put.edu.pl

Typeset by the author in LATEX.

Copyright c© 2016 by Konrad Siek

This dissertation and associated materials can be downloaded from:
http://www.cs.put.poznan.pl/ksiek/research

Institute of Computing Science
Poznań University of Technology
Piotrowo 2, 60–965 Poznań, Poland
http://www.cs.put.poznan.pl

The research presented in this dissertation was partially funded from National Science Centre funds
granted by decision No. DEC-2012/06/M/ST6/00463, from National Science Centre funds granted by
decision No. DEC-2012/07/B/ST6/01230, and from the Polish Ministry of Science and Higher Education
grant no. POIG.01.03.01-00-008/08.

The use in this dissertation of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Acknowledgements

I would like to thank,

My parents and family, Danuta and Marek Siek, Nataniel Siek, and Honorata Tatarska,

My advisor, Dr. Paweł T. Wojciechowski,

Prof. Jerzy Brzeziński and all the members of the Distributed Systems Research Group,

My long-graduated friends, Magdalena Deckert, Bartosz Alchimowicz, and Mirosław
Ochodek,

The many past and present inhabitants of rooms 2.7.2, 2.7.5, and 2.7.8, Jan Kończak,
Wojciech Wojciechowicz, Marcin Szajek, Andrzej Stroiński, Dariusz Dwornikowski,
Marcin Bazydło, Piotr Zierhoffer, Mateusz Hołenko, Maciej Piernik, Dariusz Brzeziński,
Sylwia Kopczyńska, Michał Maćkowiak, Tadeusz Kobus, Maciej Kokociński, Paweł
Kobyliński, Kalina Jasinska, Krzysztof Ciomek, Mansureh Aghabeig, Małgorzata
Trzcielińska, Krystyna Napierała, Konrad Szałkowski, Szymon Francuzik, and Adrian
Jaroszewicz,

My older colleagues with whom I shared research interests, Mariusz Mamoński, Piotr
Kryger, and Wojciech Mruczkiewicz,

And all of the undergraduate students with whom I had the pleasure to work,

For their support and for putting up with me.

Abstract

In a world dominated by multicore processors and distributed applications, concurrent
programming is becoming the norm rather than the exception. However, concurrent pro-
gramming is also notoriously difficult, because concurrent processes, whether running
on independent cores or network nodes, require synchronization. However, a correct and
effective application of the existing low-level synchronization mechanisms like locks, bar-
riers, and semaphores, requires skill and careful analysis of the interdependencies among
all the processes in the system. Worse still, an incorrect application will lead to catas-
trophic problems like deadlocks, livelocks, race conditions, or priority inversion.

Hence distributed and multicore computing needs abstractions. Transactional Mem-
ory (TM) is an approach aiming to simplify concurrent programming by automating
synchronization while maintaining efficiency. This is accomplished by providing the pro-
grammer with the transaction abstraction. When using TM the programmer need not
understand the underlying concurrency control mechanisms, only the guarantees it pro-
vides, as expressed by liveness, progress, and safety properties. TM’s extension into dis-
tributed systems is called Distributed Transactional Memory (DTM).

Both TM and DTM usually employ the optimistic concurrency control approach,
which relies on transactions aborting and restarting if conflicts occur. This is a fairly
universal approach which only requires that transactions clean up after their own execu-
tions. However, in practice, some aborted transactions can have effects that simply cannot
be cleaned up: the effects of system calls, network communication, locking, or I/O oper-
ations. Such irrevocable operations are particularly likely to occur in distributed systems
where transactions tend to be more complex.

In such cases the pessimistic approach is a more appropriate solution. Pessimistic
transactions do not abort on conflict, but defer operations so that conflicts never ma-
terialize. Since pessimistic TM need not abort, the problem of irrevocable operations
is solved. However, in existing research pessimistic TM was shown to be less efficient
than its optimistic counterpart. In this dissertation we aim to show that pessimistic TM
can be equally as performant as optimistic TM while solving optimistic TM’s problems
with irrevocable operations. We do this by employing the early release mechanism, which
allows conflicting transactions to nevertheless commit correctly.

If a TM transaction reads a stale value it may and execute an unanticipated danger-
ous operation, like dividing by zero, accessing an illegal memory address, or entering an
infinite loop. Thus, TM safety properties must restrict or eliminate the ability of trans-
actions to view inconsistent state. To that end, opacity, the TM property commonly used

for TM systems, includes the condition that transactions not read values written by other
live (not completed) transactions alongside serializability and real-time order conditions.
However, if reading from live transactions is not allowed, then opacity precludes early
release, regardless of whether dangerous effects actually occur. Thus, TM with early
release requires more nuanced safety properties, that limit inconsistent views but nev-
ertheless provide strong guarantees. Hence, we formally analyze the existing TM safety
poperties as well as database consistency conditions to determine whether they allow
early release and what other guarantees they provide. We also introduce last-use opac-
ity and strong last-use opacity, two strong TM safety properties that enforce practical
correctness guarantees and apply to TM with early release.

We also analyze existing pessimistic and distributed TM systems, and TM systems
that employ early release. The analysis allows us to select a DTM concurrency control
algorithm called SVA, which we extend to eliminate requirements for central coordination,
and to lift it to a more general system model, producing the SVA+R algorithm and
its variants. We then use these extended algorithms as a basis for new highly parallel
pessimistic DTM concurrency control algorithms: OptSVA+R and OptSVA-CF+R (and
their variants). We show through formal analysis that these algorithms allow more parallel
schedules than their predecessors. We also introduce new proof techniques that allow us
to demonstrate that SVA executes as if it were opaque, and that SVA+R, OptSVA+R,
and OptSVA-CF+R satisfy last-use opacity. Finally, we implement the new algorithms
and show experimentally that OptSVA-CF+R outperforms a state-of-the-art optimistic
DTM, but does so without aborting transactions.

We also introduce a precompiler that improves the practicality of the described imple-
mentations by deriving the information required a priori by some of the TM algorithms
from the source code of transactions, so that the information does not need to be provided
by the programmer.

In aggregate, the results presented in this dissertation show that it is possible to pro-
pose a pessimistic TM concurrency control algorithm for distributed transactional mem-
ory, whose implementation achieves high performance, applies practically within general
system models, provides strong liveness and progress guarantees, as well as strong cor-
rectness guarantees (encapsulated within new safety properties), and guarantees correct
execution for irrevocable operations.

Contents

List of Publications 1

Table of Symbols 3

1 Introduction 7

2 Preliminaries 15
2.1 Basic Definitions . 15

2.1.1 Processes . 15
2.1.2 Objects and Variables . 16
2.1.3 Transactions . 16
2.1.4 Sequential Specification . 17
2.1.5 Histories . 18
2.1.6 Transaction Legality . 21
2.1.7 Safety Properties . 21
2.1.8 Early Release . 21
2.1.9 Locks . 22
2.1.10 Buffers . 23
2.1.11 Approach to Concurrency Control 24
2.1.12 Strong Progressiveness . 24

2.2 Transaction Diagrams . 24

3 Existing Properties 27
3.1 Analysis Parameters . 27
3.2 Properties . 29

3.2.1 Serializability . 29
3.2.2 Commitment Order Preservation 30
3.2.3 Recoverability . 31
3.2.4 Cascadelessness . 32
3.2.5 Strictness . 32
3.2.6 Opacity . 33
3.2.7 Markability . 34
3.2.8 Rigorousness . 34
3.2.9 Transactional Memory Specification 35
3.2.10 Virtual World Consistency . 36

Contents

3.2.11 Live Opacity . 38
3.2.12 Elastic Opacity . 40

3.3 Summary . 43

4 Existing Algorithms 45
4.1 Distributed Pessimistic TM . 45

4.1.1 Two-Phase Locking Algorithms . 45
4.1.2 Versioning Algorithms . 51

4.2 Distributed Optimistic TM . 56
4.2.1 Distributed Transactional Locking II 56
4.2.2 Transaction Forwarding Algorithm 59

4.3 Non-distributed Pessimistic TM . 62
4.3.1 Matveev and Shavit’s Pessimistic TM 63
4.3.2 Pessimistic Lock Elision . 66
4.3.3 SemanticTM . 68

4.4 Optimistic TM with Early Release . 69
4.4.1 Dependence Aware TM . 69

4.5 Summary . 71

5 New Properties 75
5.1 Last-use Opacity . 75

5.1.1 Intuition . 76
5.1.2 Definition . 77
5.1.3 Examples . 79
5.1.4 Guarantees . 83
5.1.5 Inconsistent Views . 85
5.1.6 Strength . 86

5.2 Strong Last-use Opacity . 87
5.2.1 Intuition . 87
5.2.2 Definition . 87
5.2.3 Examples . 88
5.2.4 Guarantees . 89
5.2.5 Strength . 89

5.3 Summary . 90

6 New Algorithms 91
6.1 Distributed Version Acquisition . 92
6.2 Versioning Algorithms in the Arbitrary Abort Model 94

6.2.1 Basic Versioning Algorithm with Rollback 95
6.2.2 Supremum Versioning Algorithm with Rollback 96

6.3 Optimized Supremum Versioning Algorithm 101
6.3.1 Read-only Variables . 102
6.3.2 Delayed Synchronization on First Write 106
6.3.3 Early Release on Last Write . 107
6.3.4 Summary . 107
6.3.5 Interleaving Comparison . 109
6.3.6 Properties . 118
6.3.7 Reluctant Transactions . 118
6.3.8 Commit-only Model . 120

6.4 OptSVA in Control Flow Distributed TM 121
6.4.1 Heterogeneous Objects . 121
6.4.2 Buffering . 122

Contents

6.4.3 Asynchronous Buffering . 123
6.4.4 Consequences of Model Generalization 125
6.4.5 Summary . 127
6.4.6 Properties . 130
6.4.7 Reluctant Transactions . 130
6.4.8 Commit-only Model . 131

6.5 Summary . 131

7 Safety 135
7.1 Opacity of SVA . 135

7.1.1 History Decomposition . 136
7.1.2 SVA Opacity Through Decomposition 142

7.2 Last-use Opacity of SVA+R . 142
7.2.1 Observations . 143
7.2.2 Last-use Opacity . 143

7.3 Last-use Opacity of OptSVA+R . 145
7.3.1 Events . 145
7.3.2 Trace Harmony . 146
7.3.3 Last-use Opacity through Trace Harmony 150
7.3.4 OptSVA+R Trace Harmony . 150

7.4 Last-use Opacity of OptSVA-CF+R . 161

8 Implementation and Evaluation 163
8.1 Atomic RMI . 163

8.1.1 Overview . 163
8.1.2 Evaluation . 171
8.1.3 Discussion . 177

8.2 Atomic RMI 2 . 177
8.2.1 Overview . 178
8.2.2 Evaluation . 180
8.2.3 Discussion . 185

9 Precompiler 187
9.1 Static Analysis . 187

9.1.1 Translation to Jimple . 187
9.1.2 Value Analysis . 188
9.1.3 Regions . 191
9.1.4 Call Count Analysis . 192

9.2 Implementation . 193
9.2.1 Upper Bound Analysis . 194
9.2.2 Code Generation . 195

9.3 Discussion . 195
9.4 Related Work . 196

10 Conclusions 199

Streszczenie 203

Bibliography 235

A Proofs 243

B Algorithms 265

List of Publications

Journal Papers
K. Siek and P. T. Wojciechowski. Proving opacity of transactional memory with
early release. Foundations of Computing and Decision Sciences, Volume 40, Issue 4.
December 2015.
K. Siek and P. T. Wojciechowski. Atomic RMI: A Distributed Transactional Mem-
ory Framework. International Journal of Parallel Programming, Volume 44, Issue 3.
June 2015.

In Preparation
P. T. Wojciechowski and K. Siek. The optimal pessimistic transactional memory
algorithm, May 2016. ArXiv:1605.01361 [cs.DC]. (In submission.)
K. Siek and P. T. Wojciechowski. Atomic RMI 2: Highly parallel pessimistic dis-
tributed transactional memory. IEEE Transactions on Parallel and Distributed Sys-
tems, April 2016. ArXiv:1606.03928 [cs.DC]. (Submitted.)
J. Baranowski, P. Kobyliński, K. Siek, and P. T. Wojciechowski. Helenos: A realistic
benchmark for distributed transactional memory. Journal of Systems and Software,
March 2016. ArXiv:1603.07899 [cs.DC]. (In revision.)
K. Siek and P. T. Wojciechowski. Transactions scheduled while you wait. Journal
of Grid Computing, October 2015. (Submitted.)
K. Siek and P. T. Wojciechowski. Last-use opacity: A strong safety property for
transactional memory with early release support. ACM Transactions on Program-
ming Languages and Systems, June 2015. ArXiv:1506.06275 [cs.DC]. (Submit-
ted.)

Book Chapters
K. Siek, P. T. Wojciechowski, P. Kujawa, A. Perek, J. Richter, and S. Staszyński.
Source-level static analysis and instrumentation. In T. Biały, C. Sobaniec, M. Sobczak,
B. Walter, and W. Wróblewski, editors, Information Technology and its Applica-
tions. Nakom, December 2011.

2 Contents

Conference and Workshop Papers
K. Siek and P. T. Wojciechowski. Brief announcement: Relaxing opacity in pes-
simistic transactional memory. In Proceedings of DISC’14: the 28th International
Symposium on Distributed Computing, October 2014.
K. Siek and P. T. Wojciechowski. Atomic RMI: a distributed transactional memory
framework. In Proceedings of HLPP’14: the 7th International Symposium on High-
level Parallel Programming and Applications, July 2014.
K. Siek and P. T. Wojciechowski. Zen and the art of concurrency control: An
exploration of TM safety property space with early release in mind. In Proceedings
of WTTM’14: the 6th Workshop on the Theory of Transactional Memory (co-located
with ACM PODC’14), July 2014.
P. T. Wojciechowski and K. Siek. Having your cake and eating it too: Combining
strong and eventual consistency. In Proceedings of PaPEC’14: the 1st Workshop on
the Principles and Practice of Eventual Consistency (co-located with ACM SIGOPS
EuroSys 2014), April 2014.
K. Siek and P. T. Wojciechowski. Brief announcement: Towards a fully-articulated
pessimistic distributed transactional memory. In Proceedings of SPAA’13: the 25th
ACM Symposium on Parallelism in Algorithms and Architectures, July 2013.
K. Siek and P. T. Wojciechowski. A formal design of a tool for static analysis
of upper bounds on object calls in Java. In Proceedings of FMICS’12: the 17th
International Workshop on Formal Methods for Industrial Critical Systems (co-
located with FM’12), number 7437 in Lecture Notes in Computer Science, August
2012.
P. T. Wojciechowski and K. Siek. Transaction concurrency control via dynamic
scheduling based on static analysis. In Proceedings of WTM’12: the Euro-TM Work-
shop on Transactional Memory (co-located with ACM SIGOPS EuroSys 2012),
April 2012.
K. Siek and P. T. Wojciechowski. Statically computing upper bounds on object
calls for pessimistic concurrency control. In Proceedings of EC 2’10: the Workshop
on Exploiting Concurrency Efficiently and Correctly (co-located with CAV’10, part
of FLoC’10), July 2010.

Table of Symbols

Symbol Description

pk ∈ Π process,
x, y, z ∈ Var variables,
dxc, dyc, dzc ∈ Obj objects,
Mdxc interface of object dxc,
S state of all objects,
S0 initial state of all objects,
Sdxc state of object dxc,
m ∈ Mdxc operation
bufi(x), sti(x) copy buffers for variable x in transaction Ti,
logi(x) log buffer for variable x in transaction Ti,
bufi(dxc), sti(dxc) copy buffers for object dxc in transaction Ti,
logi(dxc) log buffer for object dxc in transaction Ti,
starti initialization operation for transaction Ti,
tryC i commit operation for transaction Ti,
tryAi abort operation for transaction Ti,
ri(x) read operation to be executed by transaction Ti on variable x,
wi(x)v write operation to be executed by transaction Ti writing value v to

variable x,
mi(dxc) operation m to be executed by transaction Ti on dxc,
ri(dxc) read operation to be executed by transaction Ti on object dxc,
wi(dxc)v write operation to be executed by transaction Ti writing value v to

object x,
invi

[
m
]

invocation event by transaction Ti,
resi

[
u
]

response event by transaction Ti,
op operation execution,
starti → oki initialization operation execution by transaction Ti,
tryC i → Ci commit operation execution by transaction Ti returning value Ci,
tryC i → Ai commit operation execution by transaction Ti returning value Ai,
tryAi → Ai abort operation execution in transaction Ti,
mi(x)→ v execution of operation m on variable x by transaction Ti returning value

u,
ri(x)→v read operation execution on variable x by transaction Ti returning

value v,
wi(x)v→u write operation execution on variable x by transaction Ti writing v

and returning value u,
mi(dxc)→ v execution of operation m on object dxc by transaction Ti returning

value u,

4 Contents

Symbol Description

ri(dxc)→v read operation execution on object dxc by transaction Ti returning
value v,

wi(dxc)v→u write operation execution on object dxc by transaction Ti writing v
and returning value u,

v, u values,
oki succesful execution return value for transaction Ti,
Ai abort return value for transaction Ti,
Ci succesful commit return value for transaction Ti,
� placeholder value,
v0 initial value,
ω unknown value,
⊥ initial state of copy buffers,
Ti, Tj , Tk, Tl ∈ T transactions,
I ⊆ T irrevocable transactions,
R ⊆ T reluctant transactions,
ASeti transaction Ti’s access set,
RSeti transaction Ti’s read set,
WSeti transaction Ti’s write set,
P property,
L language,
s ∈ L statement,
L(s) evaluation of statement s according to language L,
P program,
P ∈ P subprogram,
E(P,Π) execution of program P by processes Π,
T trace,
H ∈ H history,
S ∈ H a sequential history,
ŜH ∈ H a sequential witness history to history H,
T̂x ⊆ H transactions decided on variable x,

ˇ
T̂x ⊆ H transactions strongly decided on variable x,
ψT (Ti, x) ⊆ T transactions reverting the state of x as viewed by transaction Ti,
HP,Π ⊆ H all possbile histories from execution of program P by processes Π,
H |= E(P,Π) history H resulting from execution of program P by processes Π,
HP ⊆ H all histories that satisfy property P,
Hist(T) history created from trace T ,
Vis(H,Ti) visible operation history, a subhistory of H as viewed by transaction

Ti,
LVis(H,Ti) last-use visible operation history, a subhistory of H as viewed by trans-

action Ti,
SLVis(H,Ti) strongly last-use visible operation history, a subhistory of H as viewed

by transaction Ti,
Decomp(H) a decomposition of history H,
Compl(H) a completion of history H,
Ci(H) a cut of transaction Ti in history H,
H|Ti subhistory of history H containing only operation executions from

transaction Ti,
H|dxc subhistory of history H containing only complete operation executions

on object dxc,
H|x subhistory of history H containing only complete operation executions

on variable x,
H↑e subhistory of history H containing only event e and events preceding

e,
H |̂Ti decided transaction history, a subhistory of H for transaction Ti,
H
�
|Ti decided transaction history completion, a subhistory of H for transac-

tion Ti,
H

ˇ
|̂Ti strongly decided transaction history, a subhistory of H for transaction

Ti,

Contents 5

Symbol Description

H
�

�
|Ti strongly decided transaction history completion, a subhistory of H for

transaction Ti,
H ′ ⊆ H history H ′ is a subsequence (subhistory) of H,
Seq(x) sequential specification of object x,
Seq(dxc) sequential specification of object dxc,
lkg global lock,
lk(x) lock for variable x,
lk(dxc) lock for object dxc,
owner(lk(x)) owner of lock lk(x),
mode(lk(x)) state of lock lk(x),
⊥, R,W lock states: unlocked, locked in read mode, write mode,
lock lk(x)→ R acquire lock lk(x) in read mode,
lock lk(x)→W acquire lock lk(x) in write mode,
convert lk(x)→W escalate lock lk(x) from read mode to write mode,
convert lk(x)→ R de-escalate lock lk(x) from write mode to read mode,
unlock lk(x) release lock lk(x),
lv(dxc) local version counter for object dxc,
ltv(dxc) local terminal version counter for object dxc,
pvi(dxc) private version counter for object dxc in transaction Ti,
gv(dxc) global version counter for object dxc,
cv(dxc) current version counter for object dxc,
rvi(dxc) recovery version counter for object dxc in transaction Ti,
rci(dxc) read counter for object dxc in transaction Ti,
wci(dxc) write counte for object dxc in transaction Ti,
uci(dxc) update counter for object dxc in transaction Ti,
aci(dxc) access counter for object dxc in transaction Ti,
supri(dxc) supremum for object dxc in transaction Ti,
rubi(dxc) read supremum for object dxc in transaction Ti,
wubi(dxc) write supremum for object dxc in transaction Ti,
wubi(dxc) update supremum for object dxc in transaction Ti,
gi(x)v view event on variable x in transaction Ti returning value v,
si(x)v update event on variable x in transaction Ti setting value v,
◦si(x)v routine update event on variable x in transaction Ti setting value v,
◊si(x)v recovery update event on variable x in transaction Ti setting value v,
ESeti event set for transaction Ti,
ξ(T , Ti, Tj) view chain between transactions Ti and Tj in trace T ,
≺T precedence relation in trace T ,
≺≺T direct precedence relation in trace T ,
≺T preface relation in trace T ,
; instigation relation,
; dependence relation,

¨; view relation,
...; virtual view relation,
≺̇ isolation order relation,
≺̈ directly isolation order relation,
τT execution time of trace T ,
τT (e) point in time at which event e is executed in trace T ,
τ `T (op) point in time at which operation execution op starts executing,
τ aT (op) point in time at which operation execution op finished executing,
τ r

T (Ti, x) release time of variable x by transaction Ti in trace T ,
τ c

T (Ti, x) completion time of variable x by transaction Ti in trace T ,
location(dxc) location of object dxc,
location(x) location of variable x,
location(Ti) location of transaction Ti,
R,Q,L locations.

1
Introduction

Concurrent programming is well known to be difficult (see e.g., [21, 39, 40, 68]). The
source of its difficulty lays in the fact that concurrent execution can cause operations
on separate processors to interleave in ways that produce anomalous results, especially
when memory accesses are concerned. Thus, it becomes necessary for the programmer
to predict and eliminate such interleavings by synchronizing the execution of specific
operations. Yet implementing synchronization correctly is notoriously difficult too, since
the programmer must reason about interactions among seemingly unrelated parts of the
system code. Furthermore, low-level synchronization mechanisms like barriers, monitors,
semaphores, and locks are easily misused so that performance, consistency, and progress
fall prey to simple bugs and design flaws. Worse still, the misuse may result in deadlocks,
livelocks, races, priority inversion, or viewing an inconsistent state of the system. Errors
like these are difficult to catch, difficult to track down, non-deterministic, and often
catastrophic in their effects.

However, concurrent programming is inescapable. In a world dominated by multicore
processors even the rank-and-file programmer is increasingly likely to have to turn to it
to take full advantage of various multiprocessor architectures. Moreso, the advent and
continuous evolution of large scale (geo-)distributed applications over the past decade
caused service-oriented architecture and cloud computing to become ubiquitous, and
anything from text editing, through data storage, to big data processing is delegated to
remote services. Thus, since distributed computing is concurrent in nature, developing
most practical applications requires that the programmer be aware of problems that may
stem from concurrency.

Hence, it is necessary to aid programmers in writing concurrent applications and to
shield them from the perils of concurrency. In order to do this, concurrent programming
needs to follow other programming domains in introducing encapsulating abstractions.
For instance, since application programmers have enough to worry about without delv-
ing into the details of distributed computing and networking, these details are compre-
hensively abstracted away and hidden from them within opaque libraries (e.g., Netty,
JGroups, Java Message Service, or the Java Remote Method Invocation mechanism), to
the point where such programmers rarely resort to directly using low-level mechanisms
like sockets. Similarly, the problem of keeping concurrent execution correct should be so
hidden away under an abstraction, rather than expecting the programmer to implement
each manually using synchronization primitives and to repeatedly avoid their various
pitfalls.

8 1 Introduction

Transactional Memory
Transactional memory (TM) [44, 71] serves as such an abstraction. TM transplants
the idea of transactions from database systems which automate concurrent execution
and obscure the details of synchronization from the programmer (see e.g., [12, 16, 91]).
Specifically, the programmer annotates the fragments of the code where synchronization
should be applied as transactions, and the TM system executes them using some under-
lying concurrency control algorithm. The algorithm interleaves concurrent transactions
to improve performance, while simultaneously applying synchronization as needed to en-
sure that the execution provides an illusion of transaction atomicity and isolation. There
is no need, however, for the programmer to know the details of the employed algorithm,
only to be aware of the specific algorithm’s correctness guarantees expressed by its prop-
erties (e.g., serializability [60] or opacity [33]). Therefore, such an abstraction makes it
is easier for conventionally-trained programmers to reason about and implement correct
and efficient concurrent programs.

Distributed transactional memory (DTM) [14, 49, 18, 68, 86, 10] extends the idea
of TM into distributed systems. This introduces new problems to be addressed by the
DTM system, such as asynchrony and partial failures, but also opens up new possibilities.
The thing that most starkly differentiates TM from its database predecessors is that
apart from executing read and write operations on shared memory (shared variables or
shared objects), the TM system can provide interfaces for other or different operations.
Classically, this can be an operation like increment, or stack operations like push and
pop, all of which atomically read and write the state of a shared object. The operations
can also be more complex, computation-intensive, programmer-specified procedures that
execute just about any code, and can include code with side effects. In DTM this idea
can be taken further: a DTM system can execute the code of an operation on the same
network node as the transaction that executes the operation, or on the same node as the
object on which the operation is being executed. This choice gives rise to various DTM
system models. The data flow (DF) model entails shared objects being migrated to the
client that uses them (while maintaining only a single copy of the object in the system). In
such a case the computation and side effects will be performed on the host onto which the
object is migrated to execute an operation. In the control flow (CF) model, shared objects
are bound to individual hosts and do not migrate, so the execution of their operations
is performed always on the object’s “home” host. Both models have their advantages
and disadvantages, but a unique feature of CF is that it allows to delegate computation
to remote hosts. This allows client transactions to “borrow” computational power from
remote object servers. In effect shared resources can act as both shared memory and
web services. This provides greater flexibility in designing and implementing distributed
applications.

Both of those models assume a distributed system where each network node is distinct
and each is a host to a number of discrete shared objects. Yet another model is to use
replicated transactions, where each transaction executes all of its operations so that its
effects are applied to all of the network nodes, so that the nodes are effectively replicas of
one another. We concentrate on non-replicated DTM in the remainder of this dissertation.

Optimistic Concurrency Control
Typically, TM (and DTM) systems employ the optimistic approach to concurrency con-
trol. Generally speaking, a client transaction executes its code speculatively, regardless
of other transactions running in parallel. If the transaction manages to perform all of its
code without interference it finishes successfully—commits. However if two transactions

1 Introduction 9

try to access the same shared variable or object, and one of them writes to it, they con-
flict and the TM system forces at least one of the transactions to abort and subsequently
restart. There are various ways of doing this, but, generally, optimistic TM systems at-
tempt to detect conflicts as soon as possible, to waste as little work as possible. They
also tend to buffer the values they write and update the original variable or object at
commit-time, rather than whenever each operations is executed, at encounter-time.

The optimistic approach is a fairly universal solution, however, it has two major draw-
backs. First, optimistic TM experiences problems stemming from speculative execution
in environments with high contention—i.e., where very many transactions attempt to
access the same shared variable or object simultaneously. Specifically, high contention
makes it more likely that most transactions will conflict and be forced to abort and re-
execute (at least partially). It also becomes more likely that each transaction will execute
several times before it eventually manages to commit. This causes a large portion of the
computational work done by the system as a whole to be wasted. In addition, it means
transactions that do manage to commit are effectively executed in sequence. Both of these
issues can have a significant impact on the performance of the system. A number of mech-
anisms were proposed to mitigate this problem by managing conflicting transactions, so
that they are prevented from conflicting again. These range from simple mechanisms like
exponential back-off [43], through serialization of execution of conflicting transactions,
to a dispatcher avoiding collisions based on a probability of conflict [24, 105] and other
advanced contention management techniques [25, 70]. These solutions defer the point at
which specific transactions start (or re-start after a conflict occurs) which reduces the
number of transactions executing at the same time. However, such solutions typically
operate based on various threshold parameters, which means they must either be tuned
manually or the system must derive such parameters during execution. It also means the
system needs to re-tune in reaction to changing workloads. In addition, these solutions
tend to use central coordination, which prevents them from being used in distributed
systems.

The second issue with optimistic TM is the problem of irrevocable operations. These
are operations that cannot be aborted and should not be repeated, such as I/O opera-
tions, network communication, or acquiring locks. These are typically part of any complex
code and are often difficult to locate when the application uses libraries, or when it com-
poses calls to remote services (in DTM). However, if these operations appear inside a
transaction and the transaction is forced to re-execute, they will cause side effects to
be visible (e.g., there may be stray network messages or a non–re-entrant lock may be
re-acquired and cause a deadlock). However, the modus operandi of optimistic transac-
tions depends on aborted transactions cleaning up after themselves. Fixing the problem
in the optimistic approach leads to complicated or cumbersome solutions that prevent
speculative execution in certain transactions. For instance, irrevocable transactions are
introduced in [92]. Such transactions always win conflicts with other transaction, so they
are never forced to abort. However, in order to prevent the paradoxical situations of
two conflicting irrevocable transactions, only one such transaction can execute at a time,
which causes this solution to limit parallelism. A different solution is proposed in [9, 62],
where the TM maintains multiple versions of each variable or object, so that a transac-
tion can read an older version of a variable instead of aborting. However, this solution
introduces complexity and overhead to the concurrency control algorithms. Another so-
lution, proposed in [38], is to move the irrevocable operations to commit, however this
requires instrumentation and cannot be applied to all types of irrevocable operations (e.g.
locking). Hence, the problem of irrevocable operations is often ignored or they are simply
forbidden in transactions (e.g., in Haskell [41]). Other research suggests that a form of
compensation can be used to fix the computations, so that conflicting transactions do not

10 1 Introduction

abort [13]. However, solutions like these limit the practicality of TM, especially in com-
plex service-oriented DTM systems, where irrevocable operations are often unavoidable,
and compensation may be impossible. For instance, if the the execution of an operation
on a shared object representing a service causes a material effect (e.g. printing a book),
then the irrevocable operation is a part of the semantics of the operation, and cannot be
compensated for at all (without cost).

Pessimistic Concurrency Control
A simpler method of dealing with both the problems described above is using a pessimistic
concurrency control algorithm. The pessimistic approach originates from database trans-
actions (e.g., two-phase locking [12, 91]) and was brought to TM in [56, 1, 10] as well as
the work in [96, 97]. The general idea behind pessimistic TM is that it does not execute
transactional operations speculatively, but delays them until they no longer conflict. This
means, that forced aborts do not occur on conflict, so they are much less common or even
impossible, and, therefore, high contention or irrevocability do not cause abort-related
problems.

However, the authors of [56] show that the pessimistic approach can have negative
impact on performance in high contention, since it depends on serializing transactions
that perform write operations to prevent aborts, which inherently limits parallelism. The
goal of this dissertation is to show that this penalty on parallelism is not inherent in the
pessimistic approach and can be overcome with the application of specific optimization
techniques.

To that end, we consider the technique of early release. Early release is an opti-
mization technique for TM, where certain pairs of transactions technically conflict but
nevertheless both are allowed to commit correctly [65], if they nevertheless produce a
history that is correct. This is particularly useful with pessimistic concurrency control,
where transactions, as a rule, do not abort. If they do not abort, then viewing the final
state of a variable does not have to lead to inconsistencies, even if the value is read
from a live transaction. On the other hand, TM systems employing early release (e.g.,
[43, 65, 28, 13, 75]) show that this yields a significant and worthwhile performance bene-
fit. For this reason we intend to use it as the core of our optimizations aiming to present
a practical, safe, and well-performing pessimistic TM.

Safety
Since TM allows transactional code to be mixed with non-transactional code and to
contain virtually any operation, rather than just reads and writes like in its database
counterparts, greater attention must be paid to the state of shared variables at any given
time. For instance, serializability [60] dictates that as long as the execution of committed
transactions reflects some sequential execution, then the entire concurrent execution is
correct. Hence, if a database transaction reads a stale value, it must simply abort and
retry, and no harm is done. However, if a TM transaction reads a stale value it may
break some presupposed invariant and execute an unanticipated dangerous operation,
like dividing by zero, accessing an illegal memory address, or entering an infinite loop.
Thus, it is insufficient for TM systems to use traditional database consistency conditions
like serializability to describe the guarantees they ensure. Instead, TMs must restrict or
eliminate the ability of transactions to view inconsistent state. To that end, the safety
property called opacity [33] was introduced, which includes the condition that transac-
tions do not read values written by other live (not completed) transactions alongside

1 Introduction 11

serializability and real-time order conditions. Opacity became the gold standard of TM
safety properties, and most TM systems found in the literature are, in fact, opaque.

However, if reading from live transactions is not allowed, then opacity precludes early
release, regardless of whether dangerous effects actually occur. Thus, before presenting a
practical and efficient pessimistic TM, we must first determine what correctness guaran-
tees should be provided by such a system and find or devise TM safety properties that
are comparably strong to opacity, but allow the application of early release. Since opacity
is a very restrictive property, a number of more relaxed properties were introduced that
tweaked opacity’s various aspects to achieve a more practical property. These properties
include virtual world consistency (VWC) [48], transactional memory specification (TMS1
and TMS2) [22], elastic opacity [28], live opacity [26], and others. A significant part of
this dissertation is dedicated to examining these properties in order to determine whether
or not they allow the use of early release in TM, and, if so, what compromises they make
with respect to consistency, and what additional assumptions they require. On the basis
of that analysis, we also introduce new properties to enforce specific practical correctness
guarantees that apply to TM with early release in general if they are not given by existing
properties.

System Model
TM can be applied to various system models that dictate for which assumptions particular
concurrency control algorithms must account. Depending on which model a given TM
(or DTM) operates on, it is more or less suitable for specific applications.

For instance, TMs can be designed specifically to operate on shared variables, which
are defined by a single value that can be either read or overwritten by operations executed
by the transaction. Such a model is typical for non-distributed TM (e.g. [21, 39, 65]),
but in DTM it is more typical to see a model where shared objects are used instead
of variables (e.g. [68, 86]). Shared objects can have complex state consisting of several
variables, and can specify arbitrary interfaces. Among these models we differentiate be-
tween a homogeneous and heterogeneous object model. In the former model all objects
are the same and relatively simple: they represent structures such as counters or stacks.
These objects have a single read and write operation in their interface, whose semantics
are known. In the heterogeneous model objects are assumed to each have their own in-
terface defining arbitrary methods with arbitrary, possibly hidden semantics operating
on hermetic, complex state. Different models have different applications, with variables
finding uses in high performance local and parallel systems as well as data stores, while
the object models find uses in complex cloud-computing applications and service-oriented
architectures, where objects can represent entire services.

In addition, TM systems can vary in the interface that each transaction provides to
the programmer. Many pessimistic as well as optimistic TM systems are commit-only,
meaning that each running transaction strives to execute all of its code and eventually
commit (e.g. [96, 6, 56]). On the other hand, arbitrary abort TMs allow transactions to
execute a programmatic abort operation from within the transactional code, that will
withdraw the transaction’s effects. The addition of an abort operation to the transactional
interface makes the TM more expressive and provides a vital feature for an efficient
implementation of partial-failure resistant distributed systems.

Note that a TM system operating in the variable model can make many more safe
assumptions about the state of the system than a TM system operating in either object
model, so if we compare their performance in the variable model the former TM is
likely to be more efficient, whereas if we compare their performance in the object model,
the latter will execute correctly, while the former might not. Similarly, a TM operating

12 1 Introduction

in the arbitrary abort model can be used as a commit-only TM, although likely less
efficient one, while a commit-only TM cannot operate correctly or as efficiently wherever
manually-issued aborts are required. We stipulate that in order for a pessimistic DTM
to be practical, it must be able to span a range of these system models, being able to
both perform correctly in the more general model, but also provide variants that operate
more efficiently in the more specialized models. Hence, we consider the implication of
applying the algorithms presented in this dissertation in various system models, striving
for generality.

We also add that in order for a distributed TM to be practically applicable, it must
not depend on centralized data structures and introduce a single point of failure to
a distributed system, since that compromises its scalability and its ability to function
despite partial failures.

Liveness and Progress
Apart from correctness, we note that TM should also ensure that transactions make
progress with their assigned computations by allowing individual operations to execute
(guaranteed by liveness properties), and by making sure transactions are eventually given
the chance to commit (described by progress properties). Deadlock-freedom is a rudimen-
tary TM liveness property which requires that the transactions in a TM system never
enter a wait-cycle from which they never leave. Strong progressiveness [33] is a common
progress property which stipulates that a conflict should never lead all of the conflicting
transactions to be forced to abort. A practical TM algorithm that does not meet these
conditions is useless in practice, since it can lead the concurrent application to “get stuck”
or to transactions treading water while infinitely restarting.

Thesis
Given our goals and stipulations presented above, we formulate our main thesis as follows:

It is possible to propose a pessimistic TM concurrency control algorithm for distributed
transactional memory that simultaneously:

a) achieves high performance,
b) satisfies strong safety, liveness, and progress properties,
c) guarantees correct execution for irrevocable operations, and
d) applies practically within general system models.

Contributions
We demonstrate the veracity of this thesis through the aggregate of the contributions
that we state briefly below, and that we describe in detail in the following chapters of
this dissertation.

I An analysis of existing properties and TM and DTM algorithms.
We formally examine the existing TM safety properties and database consistency
conditions and determine whether or not they can be applied to TM systems that
employ early release. Specifically, we resolve whether or not they allow early release
at all, what classes of inconsistent views they admit, and what restrictions they put
on transactions. We then survey selected existing pessimistic and distributed TM
systems, and TM systems that employ early release and determine their parameters,
as well as their safety guarantees. This allows us to draw further conclusions about

1 Introduction 13

the applicability of existing TM safety properties to systems with early release. We
also use the analysis to determine which algorithms and techniques can be used for
implementing a pessimistic DTM. The analyses are presented in Chapters 3 and 4,
and extend the research presented in [77] and [79].

II Novel strong safety properties for TM and DTM with early release.
We introduce two new TM safety properties called last-use opacity and strong last-
use opacity which give strong consistency guarantees and preclude most classes of
inconsistent views, while allowing early release. We demonstrate them and discuss
their characteristics in Chapter 5. They were first presented in [76, 79].

III Novel pessimistic TM and DTM concurrency control algorithms.
We introduce novel pessimistic TM concurrency control algorithms designed for
distributed systems. We start by extending existing versioning algorithms [96, 97]
to relieve them of a single point of failure and lift them into the arbitrary abort
model, producing BVA+R, SVA+R, and RSVA+R. We then employ a number of
far reaching modifications with respect to operation types to produce new highly
parallel concurrency control algorithms: OptSVA+R and OptSVA-CF+R (and their
variants). We show that these algorithms allow more parallel schedules than their
predecessors and demonstrate their properties. The algorithms are presented in
Chapter 6 and the correctness proofs for a selection of them are given in Chapter 7.
This is an extension of our research in [74, 75, 78, 82].

IV Safety proofs and proof techniques.
We introduce proof techniques that allow to demonstrate the safety properties
(opacity and last-use opacity) of algorithms with early release. We then use the
proof techniques to prove the properties of selected algorithms. This is presented
in Chapter 7 and extends the work presented in [79, 80, 102].

V Implementations of the new algorithms.
We provide CF DTM system implementations for two of the presented concurrency
control algorithms and show that OptSVA-CF+R outperforms a state-of-the-art
optimistic distributed TM. We show this in Chapter 8 and it follows the research
in [75, 78, 82].

VI Static analysis and precompiler.
We introduce a precompiler for the Java language that can derive the information
required a priori by some of the TM algorithms from the source code of transac-
tions. This is shown in Chapter 9 and represents the research published in [72, 73].

2
Preliminaries

This chapter introduces the basic concepts pertaining to further discussion, including
basic definitions describing transactional memory and execution of programs within it,
as well as various system models, and properties. We also explain the convention we use
for diagrams showing transactional executions.

2.1 Basic Definitions

In this section we introduce basic definitions relevant to further discussion and the no-
tation used throughout the dissertation.

2.1.1 Processes
The system is composed of processes Π = {p1, p2, ..., pn} concurrently executing program
P which constitutes a set of sequential programs P = {P1, P2, ..., Pn}, where process pi ex-
ecutes Pi. Each subprogram Pk ∈ P is a finite sequence of statements Pk = s1, s2, ..., sm in
some language L. The definition of L can be whatsoever, as long as it provides constructs
to execute transactional operations in accordance with the interface and assumptions de-
scribed further in Section 2.1.2.

Given program P and a set of processes Π, we denote an execution of P by Π as
E(P,Π). An execution entails each process pk ∈ Π evaluating some prefix of subprogram
Pk ∈ P. The evaluation of each statement by a process is deterministic and follows the
semantics of L. This evaluation produces a (possibly empty) sequence of events (steps)
which we denote L(s).

Furthermore by L(Pk) we denote a sequence s.t. given Pk = s1, s2, ..., sm, L(Pk) =
L(s1) · L(s2) · ... · L(sm). By extension, E(P,Π) produces a sequence of events, which we
call a trace T . T ` E(P,Π) iff ∀pk ∈ Π, Pk ∈ P,L(Pk) ⊆ T . E(P,Π) is concurrent, i.e.
while the statements in subprogram Pk are evaluated sequentially by a single process, the
evaluation of statements by different processes can be arbitrarily interleaved. Hence, given
T ` E(P,Π) and T ′ ` E(P,Π), it is possible that T 6= T ′. We call E(P,Π) a complete
execution if each process pk in Π evaluates all of the statements in Pk. Otherwise, we
call E(P,Π) a partial execution. By extension, if E(P,Π) is a complete execution, then
T ` E(P,Π) is a complete trace, and otherwise T is a partial trace.

16 2 Preliminaries

2.1.2 Objects and Variables
The system contains a set of shared objects (or just objects) Obj = {dxc, dyc, dzc, ...}.
An object dxc is an entity that has state Sdxc and a specified interface Mdxc. The state
Sdxc can be defined however. Interface Mdxc constitutes a set of operations (also called
methods) Mdxc = {m(dxc)1, m(dxc)2, ..., m(dxc)o} that can be executed on dxc to modify or
read elements of the state of dxc. The interfaces of objects can be heterogeneous, so given
any two objects dxc, dyc it is possible that Mdxc 6= Mdyc.

Any process pk ∈ Π can execute any operation m(dxc) ∈ Mdxc on dxc as part of
subprogram Pk. This results in the evaluation of some arbitrary sequence of statements
(as part of Pk) in language L which have the ability to return and modify Sdxc. Objects
are hermetic, meaning that the state Sdxc of dxc can only be modified or read by executing
some operation m(dxc) ∈ Mdxc on dxc.

Among the set of all Obj we distinguish a subset we call shared variables (or just
variables). Variables x, y, z ∈ Var are such objects that Var ⊆ Obj, whose state is
defined as a single value and whose interface consist of the following two operations:

a) write operation w(x)v that sets Sdxc to value v; the operation’s return value is the
constant ok (indicating correct execution),

b) read operation r (x) whose return value is the current value of Sdxc.

Language L provides statements that allow operations to be executed within the code
of the program. Whenever process pk ∈ Π executes some operation m(dxc) on variable
x (for any m(∈)Mdxc) as part of Pk, this causes an invocation event invk

[
m(dxc)

]
and a

subsequent response event resk
[
v
]
to be issued, where v is the return value of m(dxc). The

pair of these events (invk
[
m(dxc)

]
, resk

[
v
]
) is called a complete operation execution and

it is denoted mk(dxc)→ v in shorthand. For the sake of analogy we refer to an invocation
event invk

[
o
]
without the corresponding response event as a pending operation execution.

We distinguish three system models with respect to how shared objects are defined:
The variable object model (or just variable model) describes TMs that only use variables.
The homogeneous object model describes TMs that operate on simple objects like counters
or stacks. These object that share a common interface containing a single read operation
and a write operation. The semantics of those operations are known. The read operation
may view but not modify the state of the object, while the write operation may both
view and modify the state of the object. The heterogeneous object model describes TMs
that operate on arbitrary or complex objects. In the heterogeneous model each object
may define a different interface containing arbitrary operations with arbitrary semantics.
The semantics operations may not be known a priori. Note that the variable model is
a special case of the homogeneous object mode, and the homogeneous object model is a
special case of the heterogeneous object model.

2.1.3 Transactions
Transactional memory (TM) is a programming paradigm that uses transactions to con-
trol concurrent execution of operations on shared variables by parallel processes.

A transaction Ti ∈ T is some piece of code executed by process pk, as part of subpro-
gram Pk. Hence, we say that pk executes Ti. Any transaction Ti is executed by exactly one
process pk and that each process executes transactions sequentially. Process pk can exe-
cute local computations as well as operations on shared objects as part of the transaction.
That is, given dxc ∈ Obj, the process can execute:

a) operation m(dxc) ∈ Mdxc as part of some transaction Ti, which causes m(dxc) to be
executed under concurrency control and return either the operation’s return value

2.1 Basic Definitions 17

or the constant Ai; the latter signifies an unsuccessful execution resulting in the
transaction aborting.

In the specific case of a variable x ∈ Var , the process can execute the following two
operations on x:

a′) write (denoted wi(x)v, where i indicates transaction Ti) which sets Sdxc to v and
returns oki if the operation is successful, and Ai otherwise,

a′′) read (denoted ri(x)) which returns the value of Sdxc if the execution is successful,
or Ai otherwise.

In addition, the processes can execute the following transactional operations:

b) start (denoted starti) which initializes transaction Ti, and whose return value is
the constant oki,

c) commit (denoted tryC i) which attempts to commit Ti and returns either the con-
stant Ci, which signifies a successful commitment of the transaction or the constant
Ai in case of a forced abort,

Finally, there is also another operation allowed in some TM system models and not
in others, and we wish to discuss it separately. Namely, some TMs allow for a transaction
to programmatically roll back by executing the operation:

d) abort (denoted tryAi) which aborts Ti and returns Ai.

We call a TM system model where the abort operation is allowed (in addition to other
operations) the arbitrary abort system model, as opposed to the commit-only model.

The operations a–d defined above are part of the so-called transactional interface (or
transactional API). They can only be invoked within a transaction. Specifically, processes
execute operations on shared objects only as part of a transaction.

Even though transactions are subprograms evaluated by processes, it is convenient
to talk about them as separate and independent entities. Thus, rather than saying pk
executes some operation as part of transaction Ti, we will simply say that Ti executes
(or performs) some operation. Hence we will also forgo the distinction of processes in
transactional operation executions, and write simply: starti → oki, ri(x)→ v, wi(x)v→
oki, tryC i → Ci, etc. By analogy, we also drop the superscript indicating processes in
the notation of invocation and response events, unless the distinction is needed.

2.1.4 Sequential Specification
Given object dxc, let sequential specification of dxc, denoted Seq(dxc), be a prefix-closed
set of sequences containing invocation events and response events which specify the se-
mantics of shared variables. (A set Q of sequences is prefix-closed if, whenever a sequence
S is in Q, every prefix of S is also in Q.) Intuitively, a sequential specification enumer-
ates all possible correct sequences of operations that can be performed on a variable in
a sequential execution.

Specifically, in the case of any variable x ∈ Var , given that D is the domain of Sdxc,
and assuming initially Sdxc = v0 for some v0 ∈ D, the sequential specification of x s.t.,
Seq(x) is a set of sequences of the form [α1 → v1, α2 → v2, ..., αm → vm], where each
αj → vj (j = 1, 2, ...,m) is either:

a) wi(x)vj→oki, where vj ∈ D,
b) ri(x)→v0 and there are no preceding writes, or
c) ri(x)→vj and the most recent preceding write operation is wl(x)vj→okl (l < i).

18 2 Preliminaries

From this point on, unless stated otherwise, we assume that the domain D of all
transactional variables is the set of natural numbers N0 and that the initial value v0 of
each variable is 0.

2.1.5 Histories
Given a trace T ` E(P,Π), a TM history H is a subsequence of trace T consisting only
of executions of transactional operations s.t. for every event e, e ∈ H iff e ∈ T and e is
either an invocation or a response event specified by the transactional interface (given in
Section 2.1.3). We denote this transformation from a trace T to a history as Hist(T).
If H ⊂ T we say T produces H. Some subhistory H ′ of a history H is a subsequence of
H which we denote H ′ ⊆ H.

The sequence of events in a history Hj can be denoted as Hj = [e1, e2, ..., em]. For
instance, some history H1 below is a history of a run of some program that executes
transactions Ti and Tj :

H1 =
[

invi
[
starti

]
, resi

[
oki
]
, invj

[
startj

]
, resj

[
okj
]
,

invi
[
wi(x)v

]
, invj

[
rj(x)

]
, resi

[
oki
]
, resj

[
v
]
,

invi
[
tryC i

]
, resi

[
Ci
]
, invj

[
tryC j

]
, resj

[
Cj
]]
.

Given any history H, let H|Ti be the longest subhistory of H consisting only of
invocations and responses executed by transaction Ti. For example, H1|Tj is defined as:

H1|Tj =
[

invj
[
startj

]
, resj

[
okj
]
, invj

[
rj(x)

]
, resj

[
v
]
, invj

[
tryC j

]
, resj

[
Cj
]]
.

We say transaction Ti is in H, which we denote Ti ∈ H, iff H|Ti 6= ∅.
Let H|dxc be the longest subhistory of H consisting only of invocations and responses

executed on object dxc, but only those that form complete operation executions. Let H|x
be defined by analogy.

Given a complete operation execution op that consists of an invocation event ei and
a response event er, we say op is in H (op ∈ H) iff ei ∈ H and er ∈ H. Given a pending
operation execution op consisting of an invocation ei, we say op is in H (op ∈ H) iff
ei ∈ H and there is no other operation execution op′ consisting of an invocation event ei
and a response event er s.t. op′ ∈ H.

Given two complete operation executions op′ and op′′ in some history H, where op′
contains the response event res′ and op′′ contains the invocation event inv′′, we say op′
precedes op′′ in H if res′ precedes inv′′ in H. We denote this op′ ≺H op′′. For operations
op′, op′′ ∈ H, we say op′ directly precedes op′′, denoted op′ ≺≺H op′′ iff op′ ≺H op′′ and
@op′′′ ∈ H s.t. op′ ≺H op′′′ ≺H op′′.

A history whose all operation executions are complete is a complete history.
Most of the time it will be convenient to denote any two adjoining events in a history

that represent the invocation and response of a complete execution of an operation as
that operation execution, using the syntax e → e′. Then, an alternative representation
of H1|Tj is denoted as follows:

H1|Tj =
[

startj → okj , rj(x)→v, tryC j → Cj
]
.

In addition, sometimes the values written by particular operations, or returned by
them will not be relevant to the discussion at hand. In those situations use the placeholder

2.1 Basic Definitions 19

value � to indicate that whatever value was passed or returned. For instance, when the
value returned by the read operation is irrelevant in H1|Tj , we denote it as follows:

H1|Tj =
[

startj → okj , rj(x)→�, tryC j → Cj
]
.

Well-formedness
History H is well-formed if, for every transaction Ti in H, H|Ti is an alternating sequence
of invocations and responses s.t.,

a) H|Ti starts with an invocation invi
[
starti

]
,

b) no events in H|Ti follow resi
[
Ci
]
or resi

[
Ai

]
,

c) no invocation event in H|Ti follows invi
[
tryC i

]
or invi

[
tryAi

]
,

d) for any two transactions Ti and Tj s.t., Ti and Tj are executed by the same process
pk, the last event of H|Ti precedes the first event of H|Tj in H or vice versa.

In the remainder of the dissertation we assume that all histories are well-formed.

Unique Writes
History H has unique writes if, given transactions Ti and Tj (where i 6= j or i = j),
for any two write operation executions wi(x)v′→ oki and wj(x)v′′→ okj it is true that
v′ 6= v′′ and neither v′ = v0 nor v′′ = v0.

Completion
Given history H and transaction Ti, Ti is committed if H|Ti contains operation execution
tryC i → Ci. Transaction Ti is aborted if H|Ti contains response resi

[
Ai

]
to any invoca-

tion. Transaction Ti is commit-pending if H|Ti contains invocation tryC i but it does not
contain resi

[
Ai

]
nor resi

[
Ci
]
. Finally, Ti is live if it is neither committed, aborted, nor

commit-pending. We say a transaction is forcibly aborted if Ti is aborted and H|Ti does
not contain an invocation invi

[
tryAi

]
.

Given two histories H ′ =
[
e′1, e

′
2, ..., e

′
m

]
and H ′′ = [e′′1 , e′′2 , ..., e′′m], we define their

concatenation as H ′ · H ′′ = [e′1, e′2, ..., e′m, e′′1 , e′′2 , ..., e′′m]. We say P is a prefix of H if
H = P ·H ′. Then, let a completion Compl(H) of history H be any complete history s.t.,
H is a prefix of Compl(H) and for every transaction Ti ∈ H subhistory Compl(H)|Ti
equals one of the following:

a) H|Ti, if Ti finished committing or aborting,

b) H|Ti ·
[
resi

[
Ci
]]
, if Ti is live and contains a pending tryC i,

c) H|Ti ·
[
resi

[
Ai

]]
, if Ti is live and contains some pending operation,

d) H|Ti ·
[
tryC i → Ai

]
, if Ti is live and contains no pending operations.

Note that, if all transactions in H are committed or aborted then Compl(H) and H are
identical.

Equivalency
Two histories H ′ and H ′′ are equivalent (denoted H ′ ≡ H ′′) if for every Ti ∈ T it is true
that H ′|Ti = H ′′|Ti. When we say H ′ is equivalent to H ′′ we mean that H ′ and H ′′ are

20 2 Preliminaries

equivalent.

Real-time Order
A real-time order ≺H is an order over history H s.t., given two transactions Ti, Tj ∈ H,
if the last event in H|Ti precedes in H the first event of H|Tj , then Ti precedes Tj in
H, denoted Ti ≺H Tj . We then say that two transactions Ti, Tj ∈ H are concurrent if
neither Ti ≺H Tj nor Tj ≺H Ti. We say that history H ′ preserves the real-time order of
H if ≺H⊆≺H′ .

Sequential Histories
A sequential history S is a history, s.t. no two transactions in S are concurrent in S.
Some sequential history S is a sequential witness history of H if S is equivalent to H and
S preserves the real time order of H. We usually denote such a history ŜH .

Accesses
Given a history H and a transaction Ti in H, we say that Ti accesses some object dxc
in H iff there exists some invocation by Ti on any dxc of any operation m(dxc) ∈ Mdxc in
H|Ti. In addition, let Ti’s access set, denoted ASeti, in H be a set that contains every
object dxc such that Ti accesses dxc in H.

With respect to variables specifically, Ti reads variable x in H if there exists an
invocation invi

[
ri(x)

]
in H|Ti. By analogy, we say that Ti writes to x in H if there

exists an invocation invi
[
wi(x)v

]
in H|Ti. If Ti reads x or writes to x in H, we say Ti

accesses x in H. In addition, let Ti’s read set be a set that contains every variable x such
that Ti reads x. By analogy, Ti’s write set contains every x such that Ti writes to x. A
transaction’s access set, denoted ASeti, is the union of its read set and its write set.

Given a history H and a pair of transactions Ti, Tj ∈ H, we say Ti reads from Tj if
there is some variable x, for which there is a complete operation execution wj(x)v→okj
in H|Tj and another complete operation execution ri(x)→u in H|Ti, s.t. v = u.

Locality
Given any transaction Ti in some history H, any operation execution on a variable x
within H|Ti is either local or non-local. Read operation execution ri(x)→ v in H|Ti is
local if it is preceded in H|Ti by a write operation execution on x, and it is non-local
otherwise. Write operation execution wi(x)v→oki in H|Ti is local if it is followed in H|Ti
by a write operation execution on x, and non-local otherwise.

Conflicts
Following [33], transaction conflicts are defined for variables as follows. Given a history
H and a pair of transactions Ti, Tj ∈ H, we say Ti and Tj conflict on variable x in H if
Ti and Tj are concurrent, both Ti and Tj access x, and one or both of Ti and Tj write to
x. We call any two operation executions on x that cause two transactions Ti, Tj (i 6= j)
to conflict on some x conflicting operation executions.

We lift the definition of conflict to any shared object as follows. Given a shared
object dxc, any two operations m′(dxc), m′′(dxc) ∈ Mdxc, m′′(dxc) depends on m′(x) iff
m′(dxc) modifies Sdxc in a way that can impact the execution of m′′(dxc). The impact
can, for instance, amount to any modification of Sdxc in m′′(dxc), change the return value
of m′′(dxc) or impact the execution of side-effects in m′′(dxc). Then, given a history H and
a pair of transactions Ti, Tj ∈ H, we say Ti and Tj conflict on object dxc in H if Ti and

2.1 Basic Definitions 21

Tj are concurrent, both Ti and Tj access dxc, and any operation in H|Ti|dxc depends on
some operation in H|Tj |dxc or vice versa (or both). If the precise semantics of operations
of dxc are not know, we must conservatively assume that the dependency relation exists
between any two operations in Mdxc. Hence, any two concurrent transactions conflict if
they access such dxc.

2.1.6 Transaction Legality
The definitions given above allow us to formulate the central concept that defines con-
sistency of transactional execution: transaction legality. Intuitively, using variables as an
example, we can say a transaction is legal in a sequential history if it only reads values
of variables that were written by committed transactions or by itself.

More formally, let S be a sequential history that only contains committed transac-
tions, with the possible exception of the last transaction, which can be aborted. We say
that sequential history S is legal if for every dxc ∈ Obj, S|dxc ∈ Seq(dxc).

In addition, given any sequential history S and transaction Ti ∈ S, let visible history
Vis(S, Ti) be the longest subhistory of S s.t., for every transaction Tj ∈ Vis(S, Ti), either
i = j or Tj is committed in S and Tj ≺S Ti. Then, given a sequential history S and a
transaction Ti ∈ S, we say that Ti is legal in S if Vis(S, Ti) is legal.

2.1.7 Safety Properties
A property P is a condition that stipulates correct behavior. In relation to histories, a
given history satisfies P if the condition is met for that history. Given property P, we
call HP the set of all P-histories, defined such that H ∈ HP if, and only if H satisfies P.
In relation to programs, program P satisfies P if all histories produced by P satisfy P.

Safety properties [50] are properties which guarantee that “something [bad] will not
happen.” In the case of TM this means that, transactions will not observe concurrency
of other transactions. Property P is a safety property if it meets the following definition
(adapted from [8]):

Definition 1. A property P is a safety property if, given the set HP of all histories that
satisfy P:

a) Prefix-closure: every prefix H ′ of a history H ∈ HP is also in HP,
b) Limit-closure: for any infinite sequence of finite histories H0, H1, ..., s.t. for every

h = 0, 1, ..., Hh ∈ HP and Hh is a prefix of Hh+1, the infinite history that is the
limit of the sequence is also in HP.

For distinction, we use the term consistency condition to refer to properties that are
not safety properties.

We compare properties with respect to their relative strength. Given two properties
P′ and P′′ we say P′ is stronger than P′′ if HP′ ⊂ HP′′ (so P′′ is weaker than P′).
If neither HP′ ⊂ HP′′ nor HP′ ⊃ HP′′ , then the properties are incomparable, which we
denote HP′‖HP′′ .

2.1.8 Early Release
Early release pertains to a situation where conflicting transactions execute partially in
parallel while accessing the same variable. The implied intent is for all such transactions to
access these variables without losing consistency and thus for them all to finally commit.

Our definitions are based on the observed effects of the release without reference to the
actions of a concurrency control algorithm. That is a variable is considered to be released

22 2 Preliminaries

early by some transaction only when another transaction views the modifications applied
to the variable by the first transaction. We define the concept of early release as follows:

Definition 2 (Early Release). Given history H (with unique writes), transaction Ti ∈ H
releases variable x early in H iff there is some prefix P of H, such that Ti is live in P

and there exists some transaction Tj ∈ P such that there is a complete non-local read
operation execution opj = rj(x)→ v in P |Tj and a complete write operation execution
opi = wi(x)v→oki in P |Ti such that opi ≺P opj.

For the most part, we are concerned with early release to the extent it is used with
variables, but the definition can nevertheless be extended to shared objects with unknown
semantics:

Definition 3 (Strong Early Release). Given history H (with unique writes), transaction
Ti ∈ H releases object dxc early in H iff there is some prefix P of H, such that Ti is live
in P and there exists some transaction Tj ∈ P such that P |Ti and P |Tj each contain a
complete operation execution on dxc, opi and opj respectively, such that opi ≺P opj.

Since both concepts are analogous but pertain to different models, we will shorten
strong early release to early release without confusion.

2.1.9 Locks
Locks are used to block progress of a process as part of a TM algorithm. They are shared
objects but are not accessed transactionally. We denote locks as either global lkg or
associated with some variable lk(x) or object lk(dxc). Here, we discuss locks associated
with variables as examples, but the behavior and notation are analogous for global locks
and locks associated with objects.

Each lock lk(x) has read-write semantics. That is, each lock is initially unlocked and
it can be acquired in write mode (also called exclusive mode) or in read mode (also called
shared mode). Only one process can acquire the lock in write mode at a time. If a lock
is already owned, then other processes trying to acquire it in write mode wait until it
is released. However, if the lock is acquired in read mode, then other processes can also
simultaneously successfully acquire it in read mode (although processes attempting to
acquire the lock in write mode at the same time, still wait until the lock is unlocked.)
Because several processes can acquire a lock in read mode simultaneously, but only one
process can acquire a lock in write mode, we say read and write modes are conflicting.
Given a lock lk(x) we denote its state as mode(lk(x)), whose value can be either W to
indicate the lock is acquired in write mode, R for read mode, or ⊥ if the lock is unlocked.

Locks support the following operations:

a) acquire operation in write mode, lock lk(x)→W ,
b) acquire operation in read mode, lock lk(x)→ R,
c) release operation, unlock lk(x),
d) convert operations, convert lk(x)→W and convert lk(x)→ R.

Convert operations are used to change (escalate or de-escalate) the state of a lock that
is already owned by a given process. If other processes share the ownership of the lock
with the current process, a convert operation may block the invoking process. Locks can
also be used with try-lock semantics by using the following operations:

e) try-lock operation in write mode, try lock lk(x)→W ,
f) try-lock operation in read mode, try lock lk(x)→ R.

2.1 Basic Definitions 23

If a process attempts to try-lock a lock, but the lock cannot be acquired instantly, then,
instead of waiting, a try-lock operation immediately returns the Boolean value of false.
If the lock is acquired successfully without waiting, the lock is acquired and the operation
returns the value of true.

The lock’s current owner is denoted owner(lk(x)). We will attribute lock ownership to
specific transactions (rather than processes that execute them) that successfully executed
the acquire operation. That is, if some transaction Ti acquired lock lk(x) (but not yet
released it), we write owner(lk(x)) = Ti.

We say Ti is waiting for Tj to release lk(x) if Ti is in the process of executing
lock lk(x) → W and the lock is owned by Tj or if Ti is in the process of executing
lock lk(x) → R and the lock is owned by Tj in a conflicting mode. Given a set of
transactions Td we say a deadlock occurs for Td if for some set of transactions T′d ⊆ Td
defined as T′d = {T1, T2, T3, ..., Tn}, T1 is waiting for T2 to release some lock lk(x), tr2
is waiting for T3 to release some lock lk(y), ..., and Tn is waiting for T1 to release some
lock lk(z). We say that some history H contains a deadlock if, given the set TH of all
transactions in H, a deadlock occurs for TH . We say that a TM system is deadlock-free
if there does not exist any history H produced by the TM, s.t. H contains a deadlock.

2.1.10 Buffers
Buffers are transaction-local structures used to commute the effects of operation execu-
tion on shared objects. We use two types of buffers: copy buffers and log buffers (also
known as redo log buffers). We give examples using buffers for objects; buffers for variables
are defined analogously.

For some transaction Ti a copy buffer for object dxc is a transaction-local object
denoted bufi(dxc) or sti(dxc) that has the interface Mdxc, and whose state is defined by
analogy to state Sdxc. We discuss the buffer denoted bufi(dxc) below, but sti(dxc) and
bufi(dxc) are analogous. Initially bufi(dxc) = ⊥. Object dxc can be copied to bufi(dxc),
which means that the state of bufi(dxc) becomes equal to Sdxc. Similarly, bufi(dxc) can
be copied from dxc (we also say dxc is restored from bufi(dxc)) which means that Sdxc
becomes equal to the state of bufi(dxc). Once dxc is copied to bufi(dxc), transaction
Ti can execute operations from Mdxc on bufi(dxc), which causes the operations’ code to
execute and view and modify the state of bufi(dxc) in accordance to the semantics of
the executed operations.

A log buffer for object dxc is a transaction-local object denoted logi(dxc) for some
transaction Ti that has the same interface as dxc. The state of logi(dxc) is a sequence of
operations. At any time transaction Ti can execute operations from Mdxc on logi(dxc),
which causes the operation to be appended to the sequence of operations logi(dxc). Log
buffer logi(dxc) can be applied to dxc, which means each operation in the sequence of
logi(dxc) is executed on dxc. This is done sequentially and preserving the order in which
the operations were executed on logi(dxc).

We distinguish two approaches to the use of buffers by TM. Encounter-time TM
algorithms apply the effects of operation executions on shared objects immediately at
the point where the operation is executed. That is, when a transaction finishes executing
some operation m on some object, any side effects resulting from the execution of m
already manifested, and all modifications to the object resulting from the execution are
already reflected in the state of the variable. In commit-time TM algorithms transactions
generally perform operation executions using local buffers, so that the effects of the
execution may be deferred to some later point during the transaction execution (typically
to transaction commit).

24 2 Preliminaries

Ti
starti wi(x)1→oki tryAi→Ai

Tj
startj rj(x) →1 wj(x)2→Aj

Tk

startk rk(x)→0 wk(x)1→okk tryCk→Ck

Figure 2.1: Transaction diagram for H2.

Ti
starti wi(x)1→oki

release x

tryAi→Ai

Tj
startj rj(x)

wait for x

→1 wj(x)2→Aj

? consistent
forced abort
retry

Tk

startk rk(x)→0 wk(x)1→okk tryCk→Ck

Figure 2.2: Transaction diagram for H2 with implementation notes.

2.1.11 Approach to Concurrency Control
TM algorithms can either employ pessimistic or optimistic concurrency control (some-
times referred to as aggressive and conservative [12, 91]). In pessimistic TM operations on
shared variables tend to be delayed in order to prevent situations where their executions
can cause inconsistencies within the system state. In optimistic TM operations on shared
variables or objects tend to be executed speculatively: optimistic TM systems generally
avoid delaying operations, but instead they execute operations as soon as they are in-
voked. Since this can cause inconsistencies in the system, optimistic transactions perform
validation (at some point) before committing. If the validation fails, the transaction is
aborted and retried.

2.1.12 Strong Progressiveness
Let TcH is be the set of all subsets Q of all transactions in a history H, such that Q is not
empty and no transaction in Q conflicts with any transaction not in Q. Given transaction
Ti, let ObjcH(Ti) be a set of shared objects, such that object dxc ∈ ObjcH(Ti) iff there
exists a transaction Tj (i 6= j) in history H that (strongly) conflicts with transaction Ti
on shared object dxc. Given a set of transactions Q, ObjcH(Q) is a union

⋃
Tk∈Q ObjcH(Tk).

Given these sets, history H is strongly progressive iff, for every set Q ∈ TcH such that
|ObjcH(Q)| ¬ 1, at least one transaction in Q is not forcibly aborted in H.

2.2 Transaction Diagrams

When talking about examples of histories, it is easier to understand the relationships be-
tween various events if the history is depicted using diagrams. For example, the following
history is represented in the diagram in Fig. 2.1:

2.2 Transaction Diagrams 25

H2 =
[

starti → oki, startj → okj , invj
[
rj(x)

]
,

wi(x)1→oki, resj
[
v
]
, tryAi → Ai,wj(x)2→Aj ,

startk → okk, rk(x)→0,wk(x)1→okk, tryCk → Ck
]
.

This and other diagrams each depict a history consisting of operations executed by
transactions on a time axis. Every line depicts the operations executed by a particular
transaction. The symbol denotes a complete operation execution. The inscriptions
above operation executions denote operations executed by the transactions, e.g. ri(x)→0
denotes that a read operation on variable x is executed by transaction Ti and returns
0, and wi(x)1→ oki denotes that a write operation writing 1 to x is executed by Ti,
and tryC i→ Ci indicates that Ti attempts to commit and succeeds because it returns
Ci, whereas tryAi→Ai indicates that the transaction attempts to abort and succeeds,
etc. On the other hand, the symbol denotes an operation execution split into the
invocation and the response event to indicate waiting, or that the execution takes a long
time. In that case the inscription above is split between the events, e.g. a read operation
execution would show ri(x) above the invocation, and→1 over the response.

The diagram also adds additional information to the history to emphasize relation-
ships between events. If waiting is involved, the arrow is used to emphasize a happens
before relation between two events. The same is used to indicate causality, e.g. whenever
an abort event forces another operation to abort. Furthermore, denotes that the
preceding transaction aborts (here, Tj) and a new transaction (Tk) is spawned. These
elements are used as necessary to indicate particular scenarios and may be omitted.

In addition, annotations below events may be used to indicate computations per-
formed within a given TM implementation as part of the concurrency control algorithm.
We show an example in Fig. 2.2. The notation within these comments follows from the
convention used for pseudocode, with the exception that conditions will be marked by a
preceding ? mark (to save space).

3
Existing Properties

In this chapter we discuss a number of prominent TM safety properties, as well as some
applicable database consistency conditions, that can be used to determine the correctness
of the algorithms’ behavior, with a strong focus on how the properties in question regulate
behavior of TM algorithms that use the early release technique. Specifically, we examine
the properties to find out whether or not they allow transactions to use the early release
technique, and, if so, to what extent. For this purpose, we first define a set of tools which
we use for the examination, and then proceed to employ them on each property. We
summarize our findings at the end of the chapter. This chapter extends our previous
analysis in [77] and [79].

3.1 Analysis Parameters

The aim of the analysis is to find properties that describe the guarantees of TM systems
with early release that can be applied in practice. We seek a safety property that allows
early release, but, nevertheless, reduces or eliminates undesired behaviors.

Early Release Support
We begin our analysis by defining its key questions. The first and the most obvious is
whether a particular property supports early release at all. Early release pertains to a
situation where conflicting transactions execute partially in parallel while accessing the
same variable. The implied intent is for all such transactions to access these variables
without losing consistency and thus for them all to finally commit. We define early release
formally in Def. 2. Then, the ability for a property to support early release is defined as
follows:

Definition 4 (Early Release Support). Property P supports early release iff given some
history H that satisfies P there exists some transaction Ti ∈ H, s.t. Ti releases some
variable x early in H.

If a property allows early release, it allows a significant performance boost (see e.g.
[65, 75]) as transactions are executed with a higher degree of parallelism.

28 3 Existing Properties

Ti
starti wi(x)1→oki wi(x)2→oki tryC i→Ci

Tj
startj rj(x)→1 wj(x)3→Aj

Tk

startk rk(x)→2 wk(x)4→okk tryCk→Ck

Figure 3.1: A history with early release and overwriting.

Overwriting Support
Early release can give rise to some unwanted or unintuitive scenarios with respect to
consistency. The most egregious of these is overwriting, where one transaction releases
some variable early, but proceeds to modify it afterward. In that case, any transaction
that started executing operations on the released variable will observe an intermediate
value with respect to the execution of the other transaction, ie., view inconsistent state.

An example of overwriting is shown in Fig. 3.1, where transaction Ti releases variable
x early but continues to write to x afterward. As a consequence, Tj first reads the value of
x that is later modified. When Tj detects it is in conflict while executing a write operation
it is aborted. This is a way for the TM to attempt to mitigate the consequences of viewing
inconsistent state. The transaction is then restarted as a new transaction Tk.

However, as argued in [33], simply aborting a transaction that views inconsistent
state is not enough, since the transaction can potentially act in an unpredictable way
on the basis of using an inconsistent value to perform local operations. For instance,
if the value is used in pointer arithmetic it is possible for the transaction to access an
unexpected memory location and crash the process. Alternatively, if the transaction uses
the value within a loop condition, it can enter an infinite loop and become parasitic. Other
dangerous behaviors are possible, including division by zero precluded by invariants that
assume atomicity of transactions.

Thus, in our analysis of existing properties we ask the question whether, apart from
allowing early release, the properties also forbid overwriting. In the light of the poten-
tial dangerous behaviors that can be caused by it, we consider properties that allow
overwriting to be too weak to be practical.

Definition 5 (Overwriting Support). Property P supports overwriting iff P supports
early release, and given some history H (with unique writes) that satisfies P, for some
pair of transactions Ti, Tj ∈ H s.t.,

a) Ti releases some variable x early,
b) H|Ti contains two write operation executions: wi(x)v→oki and wi(x)v′→oki, s.t.

the former precedes the latter in H|Ti,
c) H|Tj contains a read operation execution rj(x)→ v that precedes wi(x)v′→ oki in

H.

Aborting Early Release Support
In addition, we look at whether or not a particular property forbids a transaction that
releases some variable early to abort. This is a precaution taken by many properties
to prevent cascading aborts, another type of scenario leading to inconsistent views. An
example of this is shown in Fig. 3.2. In such a case a transaction, here Ti, releases
a variable early and subsequently aborts. This can cause another transaction Tj that

3.2 Properties 29

Ti
starti wi(x)1→oki tryAi→Ai

Tj
startj rj(x)→1 wj(x)2→Aj

Tk

startk rk(x)→0 wk(x)3→okk tryCk→Ck

Figure 3.2: A history with early release and cascading abort.

executed operations on that variable in the meantime to observe inconsistent state. In
order to maintain consistency, a TM will then typically force Tj to abort and restart as
a result.

However, while the condition that no transaction that releases early can abort, solves
the problem of cascading aborts, it significantly limits the usefulness of any TM that sat-
isfies it, since TM systems typically cannot predict whether any particular transaction
eventually commits or aborts. In particular, there are important applications for TM,
where a transaction can arbitrarily and uncontrollably abort at any time. Such applica-
tions include distributed TM and hardware TM, where aborts can be caused by outside
stimuli, such as machine crashes.

An exception to this may be found in systems making special provisions to ensure
that irrevocable transactions eventually commit (see e.g., [92]). In such systems, early
release transactions could be ensured never to abort. However, case in point, these take
drastic measures to ensure that, e.g., at most a single irrevocable transaction is present
in the system at one time. Therefore, the requirement is too strict in the general case.

Definition 6 (Aborting Early Release Support). Property P supports aborting early
release iff P supports early release, and given some history H that satisfies P, for some
transaction Ti ∈ H that releases some variable x early, H|Ti contains Ai.

3.2 Properties

In this section we analyze the extent to which various properties support early release,
and what restrictions they apply to transactions that release variables early. The prop-
erties under consideration are the typical TM safety properties: serializability, opacity,
markability, virtual world consistency, transactional memory specification, live opacity,
and elastic opacity. We also consider some strong database consistency conditions that
pertain to transactional processing: recoverability, commitment order preservation, cas-
cadelessness, strictness, and rigorousness.

3.2.1 Serializability
The first property we discuss is serializability, a database property which can be regarded
as a baseline TM safety property. It can be considered the minimal strong property
acceptable in TM. It is also a property that can be grasped intuitively: a history is
serializable if there is some sequential execution that would reflect the same behavior as
shown in that history.

Serializability is defined formally in [60] in three variants: conflict serializability, view
serializability, and final-state serializability. We follow a more general version of serializ-

30 3 Existing Properties

ability defined in [90] (as global atomicity), which we adjust to account for non-atomicity
of commits in our model.

Definition 7 (Serializability). History H is serializable iff there exists some sequential
history S equivalent to a completion Compl(H) such that any committed transaction in
S is legal in S.

Intuitively, the definition does not preclude early release, as long as illegal transactions
are aborted. Serializability also makes no further stipulations on aborting transactions,
so it permits both overwriting and cascading aborts.

Lemma 1. Serializability supports early release.

Proof. Let H be a transactional history as shown in Fig. 3.1. Note that since all transac-
tions inH are committed or aborted thenH = Compl(H). Then, let there be a sequential
history ŜH = H|Ti ·H|Tj ·H|Tk. Note that ŜH ≡ H. Trivially, all the committed transac-
tions, Ti and Tk, in ŜH are legal in ŜH , so H is serializable. Since, by Def. 2, Ti releases
early in H, then, by Def. 4, serializability supports early release.

Lemma 2. Serializability supports overwriting.

Proof. Let H be a serializable history as in the proof of Lemma 1 above. Transaction Ti
writes 1 to x in H prior to Tj reading 1 from x, and subsequently Ti writes 2 to x. Thus,
according to Def. 5, serializability supports overwriting.

Lemma 3. Serializability supports aborting early release.

Proof. Let H be a history such as the one in Fig. 3.2. Since all transactions in H are com-
mitted or aborted then H = Compl(H). Then, let ŜH be a sequential history equivalent
to H such that ŜH = H|Ti ·H|Tj ·H|Tk. ŜH contains only one committed transaction
Tk, which is trivially legal in ŜH . Thus H is serializable. In addition, transaction Ti in
ŜH both releases x early (Def. 2) and contains an abort (Ai ∈ H|Ti). Thus, by Def. 6,
serializability supports aborting early release.

There is also a variant of serializability called strict serializability that adds the con-
dition that the witness history S which justifies the serializability of history H must also
preserve the real-time order of H. The results above trivially extend to this variant.

3.2.2 Commitment Order Preservation
Commitment order preservation (CO) is a database consistency condition, which requires
that transactions commit in the same order as the order in which the transactions ac-
cessed variables. It is often used as an additional condition to serializability. Formally,
CO is defined as follows (adapted from [91]):

Definition 8 (Commitment Order Preservation). History H preserves commitment or-
der iff for any two committed conflicting transactions Ti, Tj ∈ H s.t. i 6= j given any pair
of conflicting operation executions opi ∈ H|Ti and opj ∈ H|Tj, either opi ≺H opj and
resi

[
Ci
]
≺H resj

[
Cj
]
, or opj ≺H opi and resj

[
Cj
]
≺H resi

[
Ci
]
.

CO maintains the order of their commits with respect to the order in which they
access operations, but it makes no stipulations regarding aborted transactions, which
allows them to read from live transactions. Thus, early release is generally allowed under
commit ordering.

Lemma 4. Commitment order supports early release.

3.2 Properties 31

Proof. Let H be a transactional history as shown in Fig. 3.1. Here, all operations in Ti
conflict with all operations in Tj , and all operations in Ti conflict with all operations in
Tk. In addition, transactions Ti and Tk commit. Since Tk performs its operations on the
shared variable after Ti, then Tk must commit after Ti. Since this is the case, H preserve
commitment order (Def. 8). Since, by Def. 2, Ti releases early in H, then, by Def. 4,
commit ordering supports early release.

Lemma 5. Commitment order supports overwriting.

Proof. By analogy to Lemma 4.

Lemma 6. Commitment order supports aborting early release.

Proof. Let H be a history such as the one in Fig. 3.2. Here, only transaction Tk commits,
so trivially, the history preserver commitment order by Def. 8. Transaction Ti in H

releases x early (Def. 2) and contains an abort (Ai ∈ H|Ti). Thus, by Def. 6, CO supports
aborting early release.

Note that, a composition of CO with either serializability or recoverability (see below)
trivially also allows early release, overwriting, and aborting early release.

3.2.3 Recoverability
Recoverability is another database consistency condition used in conjunction with serial-
izability. Recoverability requires that transactions only commit after other transactions
whose changes they read commit. It is defined as below (following [36]):

Definition 9 (Recoverability). History H is recoverable iff for any Ti, Tj ∈ H, s.t. i 6= j

and Tj reads from Ti, Ti commits in H before Tj commits.

Recoverability requires that transactions only commit after other transactions whose
changes they read commit, which does not impinge on the ability to release early.

Lemma 7. Recoverability supports early release.

Proof. Let H be a transactional history as shown in Fig. 3.1. Here, transaction Tj reads
from Ti and Tk reads from Ti, and no other transactions are in the reads-from relation.
If H is recoverable, then, by Def. 9, Ti must commit before Tj commits and before Tk
commits. This condition is true for Ti and Tj , since Tj never commits. The condition is
trivially true for Ti and Tk. Hence, H is recoverable. Since, by Def. 2, Ti releases early
in H, then, by Def. 4, recoverability supports early release.

Lemma 8. Recoverability supports overwriting.

Proof. By analogy to Lemma 7.

Lemma 9. Recoverability supports aborting early release.

Proof. Let H be a history such as the one in Fig. 3.2. Here, transaction Tj reads from
Ti and no other transactions are in the reads-from relation. Since Ti and Tj both abort,
then, the condition in Def. 9, is trivially true for H. Hence, H is recoverable. Transaction
Ti in H releases x early (Def. 2) and contains an abort (Ai ∈ H|Ti). Thus, by Def. 6,
recoverability supports aborting early release.

Note that, a composition of recoverability and serializability or commitment order
preservation trivially also allows early release, overwriting, and aborting early release.

32 3 Existing Properties

3.2.4 Cascadelessness
Cascadelessness (also known as avoiding cascading aborts or rollbacks—ACA, ACR) is
a database consistency condition that is used to exclude scenarios where one aborting
transaction Ti forces another transaction Tj to abort, because Tj read from Ti before
Ti aborted. It is used to impose additional requirements on serializable executions. It is
defined as follows (after [12]):

Definition 10 (Cascadelessness). History H is cascadeless iff for any Ti, Tj ∈ H s.t.
i 6= j and Tj reads from Ti, Ti commits before the read.

Cascadelessness restricts reading from live transactions. Therefore, cascadelessness
clearly removes all the scenarios encompassed by Def. 2. Since this is the only provi-
sion of cascadelessness, the property forbids early release without giving any additional
guarantees. Hence, it also does not support overwriting nor aborting early release.

Lemma 10. Cascadelessness does not support early release.

Proof. By contradiction let us assume that cascadelessness supports early release. Then,
from Def. 4, there exists some history H, s.t. H is cascadeless and there exists some
transaction Ti ∈ H that releases some variable x early in H. From Def. 2, this implies
that there exists some prefix P of H s.t.

a) there is an operation execution opi = wi(x)v→oki and opi ∈ P |Ti,
b) there exists a transaction Tj ∈ P (i 6= j) and an operation execution opj = rj(x)→

v, s.t. opj ∈ P |Tj and opi precedes opj in P ,
c) Ti is live in P .

These imply that opj follows opi in P in such a way that there does not exist in P an
operation opc = tryC i → Ci in P s.t. opc ≺P opj . Therefore, such opc does not exist in
H either. This contradicts Def. 10, which dictates that Ti must commit before Tj reads
from Ti, so H is not cascadeless, which is a contradiction.

Since both Def. 5 and Def. 6 require early release support, then:

Corollary 1. Cascadelessness does not support overwriting.

Corollary 2. Cascadelessness does not support aborting early release.

3.2.5 Strictness
Strictness [12] is a strong database property that, given a write in one transaction, and
some other following operation in another transaction, that second operation can only be
executed if the transaction executing the write already committed or aborted. Formally:

Definition 11 (Strictness). History H is strict iff for any Ti, Tj ∈ H (i 6= j) and
given any operation execution opi = ri(x)→ v or opi = wi(x)v′→ oki in H|Ti, and any
operation execution opj = wj(x)v→okj in H|Tj, if opi follows opj, then Tj commits or
aborts before opi.

The definition unequivocally states that a transaction cannot read from another trans-
action, until the latter is committed or aborted. Thus, strictness precludes early release
altogether.

Lemma 11. Strictness does not support early release.

3.2 Properties 33

Proof. By contradiction let us assume that strictness supports early release. Then, from
Def. 4, there exists some history H, s.t. H is strict and there exists some transaction
Ti ∈ H that releases some variable x early in H. From Def. 2, this implies that there
exists some prefix P of H s.t.

a) there is an operation execution opi = wi(x)v→okj and opi ∈ P |Ti,
b) there exists a transaction Tj ∈ P (i 6= j) and an operation execution opj = rj(x)→

v, s.t. opj ∈ P |Tj and opi precedes opj in P ,
c) Ti is live in P .

These imply that opj follows opi in P in such a way that there does not exist in P an
operation opc that returns either Ai or Ci and opi ≺P opc ≺P opj . Therefore, there does
not exist an operation opc in H that returns either Ai or Ci and opi ≺H opc ≺H opj .
This contradicts Def. 11, so H is not strict, which is a contradiction.

Since both Def. 5 and Def. 6 require early release support, then:

Corollary 3. Strictness does not support overwriting.

Corollary 4. Strictness does not support aborting early release.

Note, that while strictness does not allow early release as defined by Def. 2, it allows
for parallel execution of reads by live transactions which can be considered a limited form
of early release (e.g. [43]).

3.2.6 Opacity
Opacity [32, 33] can be considered the standard TM safety property that guarantees
serializability and preservation of real-time order, and prevents reading from live trans-
actions. It is defined by the following two definitions. The first definition specifies final
state opacity that ensures the appropriate guarantees for a complete transactional his-
tory. The second definition uses final state opacity to define a safety property that is
prefix-closed. Both definitions follow those in [33].

Definition 12 (Final state opacity). A finite TM history H is final-state opaque if, and
only if, there exists a sequential history S equivalent to any completion of H s.t.,

a) S preserves the real-time order of H,
b) every transaction Ti in S is legal in S.

Definition 13 (Opacity). A TM history H is opaque if, and only if, every finite prefix
of H is final-state opaque.

This definition of opacity forbids reading from live transactions, so it precludes any
use of early release whatsoever.

Lemma 12. Opacity does not support early release.

Proof. By contradiction let us assume that opacity supports early release. Then, from
Def. 4, there exists some history H (with unique writes), s.t. H is opaque and there exists
some transaction Ti ∈ H that releases some variable x early in H.

From Def. 2, this implies that there exists some prefix P of H s.t.

a) there is an operation execution opi = wi(x)v→oki and opi ∈ P |Ti,
b) there exists a transaction Tj ∈ P (i 6= j) and an operation execution opj = rj(x)→

v, s.t. opj ∈ P |Tj and opi precedes opj in P ,

34 3 Existing Properties

c) Ti is live in P .

Let Pc be any completion of P . Since Ti is live in P , by definition of completion, it is
necessarily aborted in Pc (ie. Ai ∈ Pc|Ti). Given any sequential history ŜH equivalent
to Pc, since Ti is aborted in Pc and Vis(ŜH , Tj) only contains operations of committed
transactions, then Pc|Ti * Vis(ŜH , Tj). This means that opj ∈ Vis(ŜH , Tj) but opi 6∈
Vis(ŜH , Tj), so Vis(S, Tj) * Seq(x) and therefore Vis(ŜH , Tj) is not legal.

On the other hand, Def. 13 implies that any prefix P of H is final state opaque, which,
by Def. 12, implies that there exists some completion Pc of P for which there exists an
equivalent sequential history ŜH s.t., any Tj in ŜH is legal in ŜH . Since any Tj is legal
then for any Tj , Vis(ŜH , Tj) is also legal. But this is a contradiction with the paragraph
above. Thus, there cannot exist a history like H that is both opaque and contains a
transaction that releases some variable early.

Since both Def. 5 and Def. 6 require early release support, then:

Corollary 5. Opacity does not support overwriting.

Corollary 6. Opacity does not support aborting early release.

It is worth noting that opacity precludes reading from live transactions regardless of
whether the transactions in question ever abort, even given a transactional model where
transaction aborts are outright impossible.

3.2.7 Markability
Markability [52] is a TM safety property equivalent to opacity (i.e. every opaque history
is markable, and every markable history is opaque) introduced as a simpler way to prove
opacity. Since every markable history is opaque, then it follows from Lemma 12, and
Corollaries 5 and 6, that:

Corollary 7. Markability does not support early release.

Corollary 8. Markability does not support overwriting.

Corollary 9. Markability does not support aborting early release.

3.2.8 Rigorousness
Rigorousness is a strong database property which requires that given any two transac-
tion executing operations on the same variable, the latter of them cannot execute any
operations until the former commits or aborts. It is defined as a condition added onto
strictness, as follows (following [15]):

Definition 14 (Rigorousness). History H is rigorous iff it is strict and for any Ti, Tj ∈
H (i 6= j) such that Ti writes to variable x, i.e., opi = wi(x)v→ oki ∈ H|Ti after Tj
reads x, then Tj commits or aborts before opi.

Since in [7] the authors demonstrate that rigorous histories are opaque, and since we
show in Lemma 12 and Corollaries 5 and 6 that opaque histories do not support early
release, then neither does rigorousness.

Corollary 10. Rigorousness does not support overwriting.

Corollary 11. Rigorousness does not support overwriting.

Corollary 12. Rigorousness does not support aborting early release.

3.2 Properties 35

3.2.9 Transactional Memory Specification
In [22] the authors argue that some scenarios, such as sharing variables between trans-
actional and non-transactional code, require additional safety properties. Thus, they
propose and rigorously define two consistency conditions for TM: transactional memory
specification 1 (TMS1) and transactional memory specification 2 (TMS2).

TMS1 follows a set of design principles including a requirement for observing con-
sistent behavior that can be justified by some serialization. Among others, TMS1 also
requires that partial effects of transactions are hidden from other transactions. These
principles are reflected in the definition of the TMS1 automaton, and we paraphrase
only parts relevant to our further discussion, i.e. the condition for the correctness of an
operation’s response in the following definitions (see the definitions of extConsPrefix and
validResp for TMS1 in [22]).

Given history H and some response event r in H, let H↑r denote a subhistory of H,
s.t. for every operation execution op ∈ H, op ∈ H↑r iff op ≺H r and op is complete. This
represents all operations executed “thus far,” when considering the legality of r.

Let TcH be the set of all such transactions that Tk ∈ TcH iff Tk ∈ H and invk
[
tryCk

]
∈

H|Tk. Given response event r, let TcH↑r be the set of all transactions in H s.t. Tk ∈ TcH↑r
if Tk ∈ TcH and invk

[
tryCk

]
≺H r. These sets represent transactions which committed or

aborted (but are not live) and the set of all such transactions that did so before response
event r.

Given some history H, let T′H by any subset of transactions in H. Let σ be a se-
quence of transactions. Let ser(T′H ,≺H) be a set of all sequences of transactions s.t.
σ ∈ ser(T′H ,≺H) if σ contains every element of T′H exactly once, and, for any Ti, Tj ∈ T′H ,
if Ti ≺H Tj then Ti precedes Tj in σ.

Given a history H and some response event r in H, let ops(σ, r) be a sequence of
operations s.t. if σ = [T1, T2, ..., Tn] then ops(σ, r) = H↑r|T1 ·H↑r|T2 · ... ·H↑r|Tn. This
represents the sequential history prior to response event r that respects a specific order
of transactions defined by σ.

The most relevant condition in TMS1 with respect to our further discussion is the
validity condition of individual response operations. A prerequisite for checking validity
is to check whether a response event can be justified by some externally consistent prefix.
This prefix consists of operations from all transactions that precede the response event
and whose effects are visible to other transactions. Specifically, if a transaction precedes
another transaction in the real time order, then it must be both committed and included
in the prefix, or both not committed and excluded from the prefix. However, if a trans-
action does not precede another transaction, it can be in the prefix regardless of whether
it committed or aborted.

Definition 15 (Externally Consistent Prefix). Given a history H and a response event
r, let the externally consistent prefix TrH be any subset of all transactions in H s.t. for
any Ti, Tj ∈ TrH , if Ti ≺H Tj then Ti is in TrH iff resi

[
Ci
]
∈ H↑r|Ti.

TMS1 specifies that each response to an operation invocation in a safe history must
be valid. Intuitively, a valid response event is one for which there exists a sequential
prefix that is both legal and meets the conditions of an externally consistent prefix. More
precisely, the following condition must be met:

Definition 16 (Valid Response). Given a transaction Ti in H, we say the response r to
some operation invocation e in H|Ti is valid if there exists set TrH ⊆ TcH↑r and sequence
σ ∈ ser(TrH ,≺H) s.t. TrH satisfies Def. 15 and ops(σ · Ti, r) · [e→ r] is legal.

Intuitively, TMS1 specifies that each response to an operation in a safe history must
be valid (Def. 16), which means it is explained by a sequential prefix that is both legal

36 3 Existing Properties

and meets the conditions of an externally consistent prefix (Def. 15). Since the externally
consistent prefix excludes live transactions, then TMS1 does not allow early release in
general. More formally:

Lemma 13. TMS1 does not support early release.

Proof. Assume by contradiction that TMS1 supports early release. Then by Def. 4, there
exists some TMS1 history H s.t. Ti, Tj ∈ H and there is a prefix P of H s.t. opi =
wi(x)v → oki ∈ P |Ti, opj = rj(x)→ v ∈ P |Tj , and Ti is live in H. This implies that
invi

[
tryC i

]
6∈ P↑resj

[
v
]
|Ti. This means that Ti 6∈ TcH and therefore not in any T′H ⊆ TcH

or, by extension, not in any σ ∈ ser(T′H ,≺H). Therefore, there is no opi in ops(σ, resj
[
v
]
),

so, assuming unique writes, opj is not preceded by a write of v to x in ops(σ ·Tj , resj
[
v
]
) ·

[rj(x)→ v]. Therefore, ops(σ · Tj , resj
[
v
]
) · [rj(x)→ v] is not legal, which contradicts

Def. 16.

Since both Def. 5 and Def. 6 require early release support, then:

Corollary 13. TMS1 does not support overwriting.

Corollary 14. TMS1 does not support aborting early release.

TMS2 is a stricter, but more intuitive version of TMS1. Since the authors show in [22]
that TMS2 is strictly stronger than TMS1 (TMS2 implements TMS1), the conclusions
above equally apply to TMS2. Hence, from Lemma 13:

Corollary 15. TMS2 does not support early release.

Corollary 16. TMS2 does not support overwriting.

Corollary 17. TMS2 does not support aborting early release.

3.2.10 Virtual World Consistency
The requirements of opacity, while very important in the context of TM’s ability to
execute any operation transactionally, can often be excessively stringent. On the other
hand serializability is considered too weak for many TM applications. Thus, a weaker TM
consistency condition called virtual world consistency (VWC) was introduced in [48].

Let us first define a partial order ≺PO
H on the set of all transactions in H. Given two

transactions Ti, Tj ∈ H, Ti ≺PO Tj if:

a) Ti and Tj are executed by the same process pk and reski
[
Ci
]
≺H invkj

[
startj

]
, or

b) Tj reads from Ti, or
c) there exists some Tl ∈ H such that Ti ≺PO

H Tl and Tl ≺PO
H Tj .

The authors of [48] remark further that there is no ≺PO
H relation between Ti and Tj if Ti

is aborted. We say sequential history S is a linear extension of H if S ≡ H and the order
of transactions in S preserves the partial order ≺PO

H , i.e., ≺PO
H ⊆≺S . Then, the causal

past C(H,Ti) of some transaction Ti in some history H is such a history that includes
Ti (i.e. H|Ti ⊆ C(H,Ti) and includes every Tj (i.e. H|Tj ⊆ C(H,Ti) s.t. Tj ≺PO

H Ti.

Definition 17 (Virtual World Consistency). History H is virtual world consistent iff its
subhistory containing all committed transactions is serializable and preserves real-time
order, and for each aborted transaction Ti there exists a linear extension S of its causal
past C(H,Ti) that is legal.

VWC allows limited support for early release as follows.

3.2 Properties 37

Ti
starti ri(x)→0 wi(x)1→oki ri(y)→0 tryC i→Ci

Tj
startj rj(x)→1 tryC j→Cj

Figure 3.3: VWC history with early release.

Lemma 14. VWC supports early release.

Proof. Let H be a transactional history as shown in Fig. 3.3. Here, Ti performs two
operations on x and one on y, while Tj reads x. The sequential witness history of H is
S = H|Ti · H|Tj wherein both transactions are committed and trivially legal. Thus H
is VWC. Since, by Def. 2, Ti releases early in H, then, by Def. 4, VWC supports early
release.

Lemma 15. VWC does not support overwriting.

Proof. Since VWC requires that aborting transactions view a legal causal past, then, if
a transaction reading x is aborted, it must read a legal (i.e. “final”) value of x. Thus, let
us consider some history H (with unique writes) where some Ti writes value v to x and
releases x early, and some Tj reads v from x (so Tj reads from Ti).

a) If Ti writes some value v′ to x after releasing it, and Tj commits, then Tj is not
legal in any sequential witness history of H because there is another write operation
execution writing v′ to x between a write writing v to x and a read on x returning
v, and therefore H does not satisfy VWC.

b) If Ti writes some value v′ to x after releasing it, and Tj aborts, then the causal past
C(H,Tj) contains Ti, and Tj is illegal in C(H,Tj), because there is another write
operation execution writing v′ to x between a write writing v to x and a read on x
returning v, so C(H,Tj) is not legal. Thus, H does not satisfy VWC.

Therefore, any history H containing Ti, such that Ti releases x early and modifies it after
release does not satisfy VWC. Hence, by Def. 5, VWC does not support overwriting.

Lemma 16. VWC does not support aborting early release

Proof. Given a history H that satisfies VWC and a transaction Ti ∈ H that releases
variable x in H, let us assume for the sake of contradiction that Ti eventually aborts. By
Def. 2, there is some Tj in H that reads from Ti. If Ti eventually aborts, then Tj reads
from an aborted transaction.

a) If Tj eventually aborts, then its causal past C(H,Tj) does not contain aborted
transaction Ti and is, therefore, trivially illegal. Hence H does not satisfy VWC,
which is a contradiction.

b) If Tj eventually commits, then the sequential witness history is also illegal. Hence
H does not satisfy VWC, which is a contradiction.

Therefore, if Ti eventually aborts, H does not satisfy VWC, which is a contradiction.
Thus, since a VWC history cannot contain an abortable transaction that releases a
variable early. Hence, by Def. 6, VWC does not support aborting early release.

While VWC supports early release, there are severe limitations to this capability.
That is, VWC does not allow a transaction that released early to subsequently abort for
any reason.

38 3 Existing Properties

Ti
starti wi(x)1→oki tryC i→Ci

Tj
startj rj(x)→1 tryC i→Ci

Figure 3.4: A live opaque history with early release.

3.2.11 Live Opacity
Live opacity was introduced in [26] as part of a set of consistency conditions and safety
properties that were meant to regulate the ability of transactions to read from live trans-
actions. The work analyzes a number of properties and for each one presents a commit
oriented variant that forbids early release and a live variant that allows it. Here, we con-
centrate on live opacity, since it best fits alongside the other properties presented here,
however our conclusions will apply to the remainder of live properties.

Let H|(Ti, r) be the longest subsequence of H|Ti containing only read operation ex-
ecutions (possibly pending), with the exclusion of the last read operation if its response
event is Ai. Let H|(Ti, gr) be a subsequence of H|(Ti, r) that contains only non-local
operation executions. Let T ri be a transaction that invokes the same transactional op-
erations as those invoked in [starti → oki] ·H|(Ti, r) · [invi

[
tryC i

]
] if H|(Ti, r) 6= ∅, or

∅ otherwise. Let T gr
i be a transaction that invokes the same transactional operations as

those invoked in [starti → oki]·H|(Ti, gr)·[tryC i → Ci] if H|(Ti, gr) 6= ∅, or ∅ otherwise.
Given a history H, a transaction Ti ∈ H, and a complete local operation execution

op = ri(x)→v, we say the latter’s response event resi
[
v
]
is legal if the last preceding write

operation in H|Ti writes v to x. We say sequential history S justifies the serializability
of history H when there exists a history H ′ that is a subsequence of H s.t. H ′ contains
invocation and response events issued and received by transactions committed in H, and
S is a legal history equivalent to H ′.

Definition 18 (Live Opacity). A history H is live opaque iff, there exists a sequential
history S that preserves the real time order of H and justifies that H is serializable and
all of the following hold:

a) We can extend history S to get a sequential history S′ such that:

– for each transaction Ti ∈ H s.t. Ti 6∈ S, T gr
i ∈ S′,

– if < is a partial order induced by the real time order of S in such a way that
for each transaction Ti ∈ H s.t. Ti 6∈ S we replace each instance of Ti in the
set of pairs of the real time order of H with transaction T gr

i , then S′ respects
<,

– S’ is legal.

b) For each transaction Ti ∈ H s.t. Ti 6∈ S and for each operation op in T ri that is not
in T gr

i , the response for op is legal.

Live opacity is a variant of opacity specifically introduced to allow early release, but
only for non-aborting transactions. We show this below.

Lemma 17. Live opacity supports early release.

Proof. Let history H be that represented in Fig. 3.4. Since there is a transaction Ti ∈ H
that writes 1 to x and a transaction Tj that reads 1 from x before Ti commits, then there
is a prefix P of H that meets Def. 2. Therefore Ti releases x early in H.

3.2 Properties 39

Let S be a sequential history s.t. S = H|Ti ·H|Tj . Since the real-time order of H is ∅,
then, trivially, S preserves the real-time order of H. Since Vis(S, Ti) contains only H|Ti
and therefore only a single write operation execution and no reads, then it is legal and
Ti in S is legal in S. Furthermore, Vis(S, Tj) is such that Vis(S, Tj) = H|Ti ·H|Tj and
contains a read operation rj(x)→ 1 preceded by the only write operation wi(x)1→ oki,
so Vis(S, Tj) is legal, and, consequently, Tj in S is legal in S. Thus, all transactions in S
are legal in S, so H is serializable.

Let S′ be a sequential history that extends S in accordance to Def. 18. Since there
are no transactions in S′ that are not in S, then S′ = S. Thus, since every transaction in
S is legal in S, then every transaction in S′ is legal in S′. Trivially, S′ also preserves the
real time order of S. Therefore, the condition Def. 18a is met. Since there are no local
read operations in S, then condition Def. 18b is trivially met as well. Therefore, H is live
opaque.

Since H is both live opaque and contains a transaction that releases early, then the
lemma holds.

Lemma 18. Live opacity does not support overwriting.

Proof. For the sake of contradiction, let us assume that there is a history (with unique
writes) H that is live opaque and, from Def. 5, contains some transaction Ti that writes
value v to some variable x and releases x early and subsequently executes another write
operation writing v′ to x where the second write follows a read operation executed by
transaction Tj reading v from x.

Since H is live opaque there exists a sequential history S that justifies the serializ-
ability of H. There cannot exist a sequential history S where Tj reads from x between
two writes to x executed by Ti, because there cannot exist a legal Vis(S, Tj), so Tj would
not be legal in S. Therefore, Tj must be aborted in H and therefore Tj is not in any
sequential history S that justifies the serializability of H.

Since Tj is inH but not in S, then given any sequential extension S′ of S in accordance
to Def. 18, Tj is replaced in S′ by T grj which reads v from x and finally commits. However,
since the write operation execution writing v to x in Ti is followed in S′|Ti by another
write operation execution that writes v′ to x, then there cannot exist a Vis(S′, T grj) that
is legal. Thus T grj in S′ cannot be legal in S′, which contradicts Def. 18a. Thus, H is not
live opaque, which is a contradiction.

Therefore H cannot simultaneously be live opaque and contain a transaction with
early release and overwriting.

Lemma 19. Live opacity does not support aborting early release.

Proof. For the sake of contradiction, let us assume that there is a history (with unique
writes) H that is live opaque and, from Def. 6, contains some transaction Ti that writes
value v to some variable x and releases x and subsequently aborts in H.

Let S be any sequential history that justifies the serializability of H, and let S′ be
any sequential extension S′ of S in accordance to Def. 18. Since Ti aborts in H, then
it is not in S, and therefore it is replaced in S′ by T gri . Since T gri does not contain
any write operation executions, there is no write operation execution writing v to x in
S′. Since Ti released x early in H there is a transaction Tj in H that executes a read
operation reading v from x and the same read operation is in S′. But since there is no
write operation execution writing v to x in S′, no transaction containing a read operation
execution reading v from x can be legal in S′. Thus, H is not live opaque, which is a
contradiction.

Therefore H cannot be simultaneously live opaque and contain a transaction with
early release that aborts.

40 3 Existing Properties

In addition, note that, if some transaction Ti in some history H reads from a live
transaction and is itself live, then there cannot be any transaction Tj that reads from Ti
according to live opacity. This is because if Ti is replaced in S′ with T gri , then whatever
value Tj reads from Ti will not be written by T gri , so the read in Tj (or T grj) may not be
legal. We consider this to be overstrict, because the requirement that transactions which
release early already are not allowed to abort. This means that transactions that read
from live transactions will not experience inconsistent views regardless of whether that
live transaction reads only from committed transactions or whether it reads from some
yet another live transaction—all such live transactions must eventually commit. But if
the live transaction reads from yet another live transaction, the history is unnecessarily
precluded by live opacity, despite no inconsistent views being introduced by it.

3.2.12 Elastic Opacity
Elastic opacity is a safety property based on opacity, that was introduced to describe the
safety guarantees of elastic transactions [28]. The property allows to relax the atomic-
ity requirement of transactions to allow each of them to execute as a series of smaller
transactions.

An elastic transaction Ti is split into a sequence of subhistories called a cut denoted
Ci(H), where each subhistory represents a “subtransaction.” In brief, a cut that contains
more than one operation execution is well-formed if all subhistories are longer than one
operation execution, all the write operations are in the same subhistory, and the first
operation execution on any variable in every subhistory is not a write operation, except
possibly in the first subhistory. A well-formed cut of some transaction Ti is consistent
in some history H, if given any two operation executions opi and op′i on x in any sub-
histories of the cut, no transaction Tj (i 6= j) executes a write operation opj on x s.t.
opi ≺H opj ≺H op′i. In addition, given any two operation executions opi and op′i on x, y
respectively, no two transactions Tk, Tl (l 6= i, k 6= i) execute writes opk on x and opl
on y, s.t. opi ≺H opk ≺H op′i and opi ≺H opl ≺H op′i. A cutting function fC takes a
history H as an argument and produces a new history Hf where for each transaction
Ti ∈ H declared as elastic, Ti is replaced in Hf with the transactions resulting from the
cut Ci(H) of Ti. If some transaction is committed (aborted) in H, then all transactions
resulting from its cut are committed (aborted) in fC(H). Then, elastic opacity is defined
as follows:

Definition 19 (Elastic Opacity). History H is elastic opaque iff there exists a cutting
function fC that replaces each elastic transaction Ti in H with its consistent cut Ci(H),
such that history fC(H) is opaque.

Note that the authors demonstrate in [28] that elastic opacity is not strictly stronger
than serializability.

Elastic opacity (Def. 19) checks the validity of a history, not by validating the consis-
tency of transactions, but of fragments of transactions. Hence, elastic opacity supports
early release. A formal demonstration follows.

Lemma 20. Elastic opacity supports early release.

Proof. Let H be a transactional history with unique writes as shown in Fig. 3.5a. Let Ti
be an elastic transaction. Let Ci(H) be a cut of subhistory H|Ti, such that:

Ci(H) =
{[

starti′ → oki′ , ri′(y)→0,wi′(x)1→oki′ , tryC i′ → Ci′
]
,

[
starti′′ → oki′′ , ri′′(x)→1, ri′′(y)→0, tryC i′′ → Ci′′

]}
.

Ti
starti ri(y)→0 wi(x)1→oki ri(x)→1 ri(y)→0 tryC i→Ci

Tj
startj rj(x)→1 tryC i→Ci

(a) History.

Ti′
starti′ ri′(y)→0 wi′(x)1→oki′ tryC i′→Ci′

Ti′′
starti′′ ri′′(x)→1 ri′′(y)→0 tryC i′′→Ci′′

Tj
startj rj(x)→1 tryC i→Ci

(b) History after applying a cutting function.

Figure 3.5: An elastic opaque history with early release.

42 3 Existing Properties

All subhistories of Ci(H) are longer than one operation, all the writes are in the first
subhistory, and no subhistory starts with a write, so Ci(H) is well-formed. Since there
are no write operations outside of Ti, then it follows that Ci(H) is a consistent cut in
H. Let fC be any cutting function such that it cuts Ti according to Ci(H), in which case
fC(H) is defined as in Fig. 3.5b. Let S be a sequential history s.t. S = fC(H)|Ti′ ·fC(H)|Tj ·
fC(H)|Ti′′ . Since Ti′ precedes Ti′′ in S as well as in fC(H), and all other transactions are
not real time ordered, S preserves the real time order of fC(H). Trivially, each transaction
in S is legal in S. Thus, fC(H) is opaque by Def. 13, and in effect H is elastic opaque
by Def. 19. Since in H transaction Tj reads x from Ti while Ti is live, then, by Def. 2,
Ti releases x early in x. Hence, since H is elastic opaque, elastic opacity supports early
release, by Def. 4.

Lemma 21. Elastic opacity does not support overwriting.

Proof. For the sake of contradiction, let us assume that there is an elastic opaque history
H, s.t. transaction Ti writes value v to some variable x and releases it early in H.
Furthermore, let us assume that there is overwriting, so after some transaction Tj reads
v from x, Ti writes u to x. Since only elastic transactions can release early in elastic
opaque histories, and Ti releases early, Ti is necessarily elastic. Thus, in any fC(H) Ti is
replaced by a cut Ci(H).

The two writes on x in Ti are either a) in two different subhistories in Ci(H), or b) in
the same subhistory in Ci(H). Since the definition of a consistent cut requires all writes
on a single variable to be within one subhistory of the cut, then in case (a), Ci(H) is
inconsistent. Since by Def. 19 elastic opaque histories are created using consistent cuts,
then H is not elastic opaque, which is a contradiction.

In the case of (b), let us say that both writes are in a subhistory that is converted into
transaction Ti′ in fC(H). Since Ti releases x early, then by Def. 2, there is a transaction
Tj′ in fC(H) which executes a read on x reading the value written by Ti′ in fC(H). Since
we assume overwriting, the read operation on x in Tj′ reads the value written by the first
of the two writes in Ti′ and does so before the other write on x is performed within CH(i).
Then, in any sequential history S equivalent to fC(H) either Tj′ ≺S Ti′ or Ti′ ≺S Tj′ .
In the former case Tj′ in S is not legal in S, since the read on x that yields value v will
not be preceded by any operation that writes v to x in any possible Vis(S, Tj′). In the
latter case Tj′ in S is also not legal in S, since there will be a write operation writing
u to x between the read on x that yields value v and any operation that writes v to x
in Vis(S, Tj′). Since Tj′ in S is not legal in any S equivalent to fC(H), then, by Def. 12,
fC(H) is not final-state opaque, and hence, by Def. 13, not opaque. In effect, by Def. 19,
H is not opaque, which is a contradiction.

Thus, there cannot be an elastic opaque history H with overwriting.

Lemma 22. Elastic opacity does not support aborting early release.

Proof. For the sake of contradiction, let us assume that there is an elastic opaque history
H s.t. transaction Ti releases some variable x early in H and aborts. Since Ti releases
early then it writes v to x, and there is another Tj that executes a read on x that
returns v before Ti aborts. Since only elastic transactions can release early in elastic
opaque histories, and Ti releases early, Ti is necessarily elastic. If Ti aborts in H, then all
of the transactions resulting from its cut Ci(H) in fC(H) also abort (by construction of
fC(H)). Therefore, for any sequential history S equivalent to fC(H), there is no subhistory
H ′ ∈ Ci(H) s.t. H ′ ⊆ Vis(S, Tj), and in effect the read operation in Tj on x reading v is
not preceded by a write operation writing v to x. Therefore, Vis(S, Tj) is illegal, so Tj in
S is not legal in S, and thus, by Def. 13 fC(H) is not opaque. Since fC(H) is not opaque,
then by Def. 19, H is not elastic opaque, which is a contradiction.

3.3 Summary 43

Property Application Def. 4 Def. 5 Def. 6 ⊆Serializable
Serializability database, TM � � � �

CO database � � � ×
Recoverability database � � � ×
Cascadelessness database × × × ×
Strictness database × × × �

Rigorousness database × × × �

Opacity TM × × × �

Markability TM × × × �

TMS1 TM × × × �

TMS2 TM × × × �

VWC TM � × × �

Live opacity TM � × × �

Elastic opacity TM � × × ×
Table 3.1: Summary of property early release support: Def. 4 is early release support, Def. 5
is overwriting support, and Def. 6 is aborting early release support.

Elastic opacity supports early release, but, since it does not guarantee serializability
(as shown in [28]), we consider it to be a relatively weak property. This is contrary
to our premise of finding a property that allows early release and provides stronger
guarantees than serializability. It also makes elastic opacity unintuitive to programmers,
and therefore less than practical.

In addition, elastic transactions, i.e. transactions described by elastic opacity, were
proposed as an alternative to traditional transactions for implementing search structures.
However, we submit that the restrictions placed on the composition of elastic transactions
and the need for transactions with early release to be non-aborting put an unnecessary
burden on general-purpose TM. In particular, for a cut to be well-formed, it is necessary
that all writes are executed in the same subtransaction, and that no subtransaction starts
with a write, which severely limits how early release can be used and precludes scenarios
that are nevertheless intuitively correct.

3.3 Summary

In Table 3.1 we present a summary of the properties discussed in this chapter. The
table informs whether a particular property is a database property or a TM property,
and whether each of the properties satisfies the definitions for early release support,
overwriting support, and aborting early release support. Finally, the last column informs
whether each property is at least as strong as serializability.

It is worth noting, that only a small fraction of TM safety properties allow early
release at all. Those that do allow early release fall into two groups. The first group are
weak properties, which allow aborted transactions to view whatever inconsistent state—
they do not provide sufficient consistency guarantees and may lead to the dangerous
errors stemming from inconsistent views described in [33]. The second group are prop-
erties that include the requirement that transactions which release early not abort. This

44 3 Existing Properties

requirement is too restrictive and excludes many practical (D)TM applications. In ad-
dition, particular properties within that group are also not suitable for TM with early
release for other reasons. For instance, elastic opacity cannot be employed as a general
purpose safety property, since it allows non-serializable histories, which amounts to ac-
cepting histories that are not intuitively correct, while putting constraints on TMs that
exclude some histories that are intuitively correct. Another example is live opacity, which
arbitrarily forbids transactions that read from live transactions to be read from by other
transactions, even though such executions do not inherently cause inconsistent views.

4
Existing Algorithms

The purpose of this chapter is to present and examine existing TM concurrency control al-
gorithms with a focus on systems employing pessimistic concurrency control, distributed
TM, and systems using the technique of early release. Specifically, in the following consec-
utive sections we examine examples of distributed pessimistic TM algorithms, distributed
optimistic TM algorithms, non-distributed pessimistic TM algorithms, and optimistic
TM algorithms with early release. In each group we present a broad overview of the
class and proceed to introduce specific representative examples in depth. For each exam-
ple we attempt to determine the safety properties of each algorithm (indicating sources
or uncertainty as applicable), as well as placing them within system models defined in
Chapter 2. In addition, in the final section we provide a comparative summary of the
characteristics of algorithms which we examined and a brief discussion.

4.1 Distributed Pessimistic TM

Pessimistic distributed TM systems are a fairly unexplored part of the TM system spec-
trum. Nevertheless, two-phase locking algorithms have successfully been used in dis-
tributed database systems, and port well into the TM model. In addition, a family of
versioning algorithms designed for use in protocol stacks for communicating services (or
processes) is similarly well suited for use within the TM model. We present the details
of the former in Section 4.1.1, and of the later in Section 4.1.2.

4.1.1 Two-Phase Locking Algorithms
Two-phase locking (2PL) [12, 91] is a lock-based concurrency control algorithm whose
variants are used for database transactions in local as well as distributed databases. The
algorithms translate to variable-based transactional memory and distributed transac-
tional memory. Given the large number of applicable 2PL variants, we will refer to the
entire family of algorithms as the 2PL family. In order to avoid ambiguity, we will refer
to the original 2PL algorithm as Basic 2PL (B2PL).

46 4 Existing Algorithms

1 proc start(Transaction Ti) {
2 ASeti ← ∅
3 }
4 proc read(Transaction Ti, Var x) {
5 if owner(lk(x)) 6= Ti

6 lock lk(x)→ R
7 ASeti ← ASeti ∪ {x}
8 v ← x
9 if shrinking

10 for y ∈ ASeti: finished(y)
11 unlock lk(y)
12 return v
13 }
14 proc write(Transaction Ti, Var x, Value v) {
15 if owner(lk(x)) 6= Ti

16 lock lk(x)→ W
17 if owner(lk(x)) = Ti and mode(lk(x)) 6= W
18 convert lk(x)→ W
19 if sti(x) = ⊥
20 x ← sti(x)
21 ASeti ← ASeti ∪ {x}
22 x ← v
23 if shrinking {
24 for y ∈ ASeti: finished(y)
25 unlock lk(y)
26 for y ∈ ASeti: finished_writing(y)
27 convert lk(x)→ R
28 }
29 return oki

30 }
31 proc commit(Transaction Ti) {
32 for x ∈ ASeti

33 if owner(lk(x)) = Ti

34 unlock lk(x)
35 return Ci

36 }
37 proc abort(Transaction Ti) {
38 for x ∈ ASeti

39 if owner(lk(x)) = Ti {
40 if sti(x) 6= ⊥
41 x ← sti(x)
42 unlock lk(x)
43 }
44 return Ai

45 }

Figure 4.1: B2PL.

1 proc start(Transaction Ti) {}
2 proc read(Transaction Ti, Var x) {
3 if first operation on x
4 acquire_all(Ti)
5 v ← x
6 if shrinking {
7 for y ∈ ASeti: finished(y)
8 unlock lk(y)
9 if unlocked something

10 notify all
11 }
12 return v
13 }
14 proc write(Transaction Ti, Var x, Value v) {
15 if first operation on x
16 acquire_all(Ti)
17 x ← v
18 if shrinking {
19 for y ∈ ASeti: finished(y)
20 unlock lk(y)
21 for y ∈ ASeti: finished_writing(y)
22 convert lk(x)→ R
23 if unlocked something
24 notify all
25 }
26 return oki

27 }
28 proc commit(Transaction Ti) {
29 for x ∈ ASeti

30 if owner(lk(x)) = Ti

31 unlock lk(x)
32 if unlocked something
33 notify all
34 return Ci

35 }
36 proc acquire_all(Transaction Ti) {
37 atomic {
38 while ∃x ∈ RSeti: mode(lk(x)) = R or
39 ∃x ∈ WSeti: mode(lk(x)) = W
40 wait
41 for x ∈ RSeti

42 lock lk(x)→ R
43 for x ∈ WSeti:
44 lock lk(x)→ W
45 }
46 }

Figure 4.2: C2PL.

Basic 2PL
The general idea of B2PL is that for every variable x ∈ Var there is a read-write lock
lk(x). The algorithm uses these locks to prevent two concurrent transactions from ac-
cessing a data item in conflicting modes. Each transaction acquires locks in the growing
phase and releases them in the following shrinking phase. Once a transaction enters the
shrinking phase (i.e., releases a lock) it cannot acquire further locks.

Fundamentally, in the B2PL algorithm, when transaction Ti invokes an operation on
some variable x it must have acquired lk(x) in the appropriate mode before doing so.
Specifically:

a) before executing any read operation on x, Ti must acquire lk(x) in either read or
write mode (the former if there were no preceding writes), and

b) before executing any write operation on x, Ti must acquire lk(x) in write mode
(which means if it previously acquired lk(x) in read mode, it must escalate it to
write mode).

We give the pseudocode of B2PL in Fig. 4.1 defined as a TM consistency control
algorithm that responds to the invocations of operations on shared variables and trans-
actional operations following the rules above. The way in which locks are acquired and
released by B2PL is not strictly specified, so we model the B2PL TM implementation

4.1 Distributed Pessimistic TM 47

Ti
starti wi(x)1→oki

lock lk(x)→W

wi(y)1→oki
lock lk(y)→W

wi(z)1→oki
lock lk(z)→W
unlock lk(x)
unlock lk(y)
unlock lk(x)

tryC i→Ci

Tj
startj rj(x)

lock lk(x)→ R

→1 wj(y)2→oki
lock lk(y)→W

tryC j→Cj
unlock lk(x)
unlock lk(y)

Tk
startk rk(x)

lock lk(x)→ R

→1 wj(y)3

lock lk(y)→W

→okk wk(x)1→okk
convert lk(x)→W
convert lk(x)→ R

tryCk→Ck
unlock lk(x)
unlock lk(y)

Figure 4.3: An example B2PL history, adapted from [91].

under the assumption that locks should be acquired as late as possible and released as
soon as possible. Hence, locks are acquired in the appropriate mode during the first oper-
ation of a given type on a given variable. A lock on x can be released once a transaction
executed all of its operations on x (indicated finished(x)) and the transaction is in the
shrinking phase. In addition, a transaction can convert from a write lock to a read lock
if it will perform no writes on x in the future (indicated finished_writing(x)).

We show an example of a B2PL history in Fig. 4.3. Here, transaction Ti executes
three consecutive writes to variables x, y, and z. It acquires new locks with each write,
and finally releases them at the end of the last write (having somehow discovered that
no new locks will be acquired and no further operations will be executed). Meanwhile,
transactions Tj and Tk start and attempt to read x, which causes both of them to wait
until Ti releases lk(x). Tj and Tk are finally able to acquire lk(x) after Ti executes its last
write, and since both read from x, they can lock it simultaneously in read mode. Next,
both transactions attempt to write to y, but only one of them (Tj) can simultaneously
lock lk(y) in write mode. Hence Tk must then wait until Tj releases locks. For whatever
reason though, Tj is not able to confirm that no further operations will be executed or
locks acquired in its lifetime, so it only releases its locks on commit. Hence Tk may only
execute its write once Tj finishes committing. Finally, Tk executes one more write on z.
It must first convert the lock to write mode, because it only previously acquired lk(x) in
read mode. At this point Tk enters the shrinking phase and also recognizes that this was
the last write Tk will execute on x. However, (for some reason) it is not certain whether
Tk will execute further read operations on x. Hence, Ti only converts the lock back from
write mode to read mode after the write. Finally, Tk eventually commits, at which point
it releases all of the locks it retained until this point.

We intentionally leave vague the mechanism in which transactions obtain the knowl-
edge as to when no future operations will follow and when the transaction enters the
shrinking phase, since it is not given as part of the specification of B2PL. A simple ex-
ample mechanism would add operations to the transactional API that the programmer
could use to indicate that a given variable is no longer going to be used, or that no new
variables are going to be added to the access set. Note, though, that if no such mechanism
exists, simply releasing all locks on commit also fits the general specification of B2PL.

As demonstrated in [12], B2PL is (strict) serializable. However, since B2PL allows
committing out of order as well as reading from live transactions, it does not satisfy
stronger properties.

Correct B2PL executions may result in deadlocks. Take, for instance, the B2PL his-
tory in Fig. 4.4. Here transactions Ti and Tj concurrently access variables x and y. Ti
successfully acquires lk(x) in read mode and proceeds to execute a read on x. Soon after,

48 4 Existing Algorithms

Ti
starti ri(x)→0

lock lk(x)→ R

wi(y)1

lock lk(y)→W

Tj
startj wj(y)1→okj

lock lk(y)→W

wj(x)1

lock lk(x)→W

Figure 4.4: An example B2PL history with a deadlock, adapted from [12].

Ti
starti
WSeti = {x, y}

wi(x)1→oki
?∃x ∈ WSeti : mode(lk(x)) = W

lock lk(x)→W
lock lk(y)→W

wi(y)1→oki
unlock lk(x)
unlock lk(y)
notify Tj

tryC i→Ci

Tj
startj
WSeti = {x, z}

wj(x)2

? ∃x ∈ WSeti : mode(lk(x)) = W
wait

→okj
? ∃x ∈ WSeti : mode(lk(x)) = W

lock lk(x)→W
lock lk(z)→W

wj(z)2→okj
unlock lk(x)
unlock lk(z)

tryC j→Cj

Figure 4.5: An example C2PL history.

Tj acquires lk(y) in write mode and writes to y. Then, as Ti attempts to execute a write
operation on y it must acquire lk(y), which means it must wait until Tj releases lk(y).
Therefore Ti waits at the invocation of the write on y. Finally, Tj attempts to execute
a write on x, which requires it to acquire lk(x), which causes Tj to wait. Since Ti is
currently the owner of lk(x), Tj must wait until Ti releases lk(x). In this way, Ti and Tj
create a wait cycle and deadlock.

In order to resolve deadlocks, database systems using 2PL employ deadlock detectors
(independent of the transactions themselves), which track wait dependencies and detect
cycles in the wait dependency graph. Once detected, one of the transactions in the cycle—
the victim—is forcibly aborted, which causes it to abandon waiting, restore variables it
modified to their original values and retry later on. The choice of the victim is open
and may be modified according to goals (e.g. to eliminate cyclic restarts) as well as
circumstances (to redo the least computations). Other deadlock management techniques
exist as well, including executing lock acquisition conservatively, in a way as never to
cause a deadlock, and if a deadlock could happen in potentia, abort the transaction
before locking. Finally, the lock acquisition strategy can be modified to prevent wait
cycles in more conservative variants of 2PL.

Conservative 2PL
Conservative 2PL (C2PL) (also called Static 2PL) is a variant of 2PL that prevents
deadlocks and all transaction aborts by requiring locks to be preclaimed. C2PL assumes
the knowledge of the read set and write set a priori for each transaction. These sets are
then used to acquire all of the locks for all the variables each transaction might access
throughout its execution before the transaction invokes the first operation of any kind,
on any variable. If all the locks could be acquired, the transaction proceeds to execute its
operations. However, if any of the locks could not be acquired, the transaction acquires
none of the locks, but instead queues up to wait. Whenever a lock is released, waiting
transactions are notified, and they each re-try to acquire all of the locks, following the
same procedure and either proceed to execute their operations in case of success, or end
up waiting again. We give the pseudocode of an implementation of C2PL in Fig. 4.2.

We give an example of a C2PL history in Fig. 4.5. Here, Ti executes two consecutive
writes on x and y. Before executing the first write, it acquires locks for both variables,
which is successful, since all locks are initially unlocked. Meanwhile Tj attempts to execute

4.1 Distributed Pessimistic TM 49

1 proc start(Transaction Ti) {
2 ASeti ← ∅
3 }
4 proc read(Transaction Ti, Var x) {
5 if owner(lk(x)) 6= Ti

6 lock lk(x)→ R
7 ASeti ← ASeti ∪ {x}
8 v ← x
9 if shrinking

10 for y ∈ ASeti: finished(y)
11 if mode(lk(x)) = R
12 unlock lk(y)
13 return v
14 }
15 proc write(Transaction Ti, Var x, Value v) {
16 if owner(lk(x)) 6= Ti

17 lock lk(x)→ W
18 if owner(lk(x)) = Ti and mode(lk(x)) 6= W
19 convert lk(x)→ W
20 if sti(x) = ⊥
21 x ← sti(x)
22 ASeti ← ASeti ∪ {x}
23 x ← v
24 return oki

25 }
26 proc commit(Transaction Ti) {
27 for x ∈ ASeti

28 if owner(lk(x)) = Ti

29 unlock lk(x)
30 return Ci

31 }
32 proc abort(Transaction Ti) {
33 for x ∈ ASeti

34 if owner(lk(x)) = Ti {
35 if sti(x) 6= ⊥
36 x ← sti(x)
37 unlock lk(x)
38 }
39 return Ai

40 }

Figure 4.6: S2PL.

1 proc start(Transaction Ti) {
2 ASeti ← ∅
3 }
4 proc read(Transaction Ti, Var x) {
5 if owner(lk(x)) 6= Ti

6 lock lk(x)→ R
7 ASeti ← ASeti ∪ {x}
8 v ← x
9 return v

10 }
11 proc write(Transaction Ti, Var x, Value v) {
12 if owner(lk(x)) 6= Ti

13 lock lk(x)→ W
14 if owner(lk(x)) = Ti and mode(lk(x)) 6= W
15 convert lk(x)→ W
16 if sti(x) = ⊥
17 x ← sti(x)
18 ASeti ← ASeti ∪ {x}
19 x ← v
20 return oki

21 }
22 proc commit(Transaction Ti) {
23 for x ∈ ASeti

24 unlock lk(x)
25 return Ci

26 }
27 proc abort(Transaction Ti) {
28 for x ∈ ASeti {
29 if sti(x) 6= ⊥
30 x ← sti(x)
31 unlock lk(x)
32 }
33 return Ai

34 }

Figure 4.7: R2PL.

a write on x. Hence, it also attempts to acquire locks for all the variables in its write set.
This fails, since Ti holds the lock for x, so Tj begins waiting. Then, Ti executes its last
write, releases its locks on x and y, and notifies all waiting transactions, i.e. Tj . Then, Tj
can attempt to acquire all its locks again. Since this is successful, Tj proceeds to execute
its operations.

Since waiting transaction never holds any locks, they do not participate in a wait
dependency cycle, which means C2PL transactions never deadlock (see [12]). Since dead-
locks are the only cause of aborts in B2PL, C2PL also completely eliminates aborts.

Since C2PL admits a subset of histories admitted by B2PL, C2PL is also (strict)
serializable. However, C2PL does not satisfy any stronger properties, since it is possible
for transactions to read from live transactions and commit out of order.

Even though C2PL does not involve forced aborts, it can easily be extended to the
arbitrary abort model, by providing an abort operation and keeping “clean” backup
copies of variables just like in B2PL.

Strict 2PL
Strict 2PL (S2PL) is a variant of 2PL that abandons early release in favor of stronger
properties. Specifically, S2PL behaves like B2PL, but write locks are never released until
the transaction commits or aborts. We give the pseudocode in Fig. 4.6 (compare with
Fig. 4.1). As a result no transaction ever reads from another live transaction. Hence, as
demonstrated in [91], S2PL satisfies strictness.

We show an example of an S2PL history in Fig. 4.8. Here, transaction Ti executes

50 4 Existing Algorithms

Ti
starti ri(x)→0

lock lk(x)→ R

wi(y)1→oki
lock lk(y)→W
unlock lk(x)

tryC i→Ci
unlock lk(y)

Tj
startj wj(x)1

lock lk(x)→W

→okj wj(y)2

lock lk(y)→W

→okj tryC j→Cj

Figure 4.8: An example S2PL history.

Ti
starti ri(x)→0

lock lk(x)→ R

wi(y)1→oki
lock lk(y)→W

tryC i→Ci
unlock lk(z)
unlock lk(y)

Tj
startj wj(x)1

lock lk(x)→W

→okj wj(y)2→okj
lock lk(y)→W

tryC j→Cj

Figure 4.9: An example R2PL history.

a read on x, followed by a write on y. The transaction acquires the appropriate locks
before each operation execution. After executing the write operation Ti determines it
will not acquire further locks, so it can start releasing locks. The only lock Ti can release
immediately is lk(x) which it acquired in read mode. Ti can only release the remaining
lock lk(y) on commit, since it was acquired in write mode. In effect, transaction Tj must
wait until Ti commits before accessing y, although it may access x much sooner.

It is possible for S2PL transactions to deadlock. In order to prevent deadlocks in strict
executions, the S2PL can use the same approach to acquiring locks as C2PL, in effect
creating a variant of 2PL we will refer to as conservative strict 2PL (CS2PL). CS2PL is
strict like S2PL, does not deadlock, and, in effect, never aborts, like C2PL. By analogy
to CA2PL, we can create CAS2PL, a variant of CS2PL that allows arbitrary aborts.

Rigorous 2PL
Rigorous 2PL (R2PL, also known as strong strict 2PL) is another variant of 2PL which
releases all locks at commit time (or during abort) in order to satisfy the property
rigorousness. We give the pseudocode in Fig. 4.7 (compare with Fig. 4.6).

Since locks are released only at the end of a transaction, if some transaction Ti exe-
cutes any operation opi on x after some other transaction Tj executes its own operation
opj on x, then Ti commits or aborts between opi and opj . Hence, trivially, R2PL satisfies
rigorousness. However, just as with S2PL, deadlocks are not prevented in R2PL.

We show an example of an R2PL history in Fig. 4.9. The history is analogous to
that in Fig. 4.8, with the exception that Ti does not release any locks before it commits.
Hence Tj must delay all of its operations until after Ti is already finished.

As with S2PL, R2PL allows deadlocks, but can be extended to prevent them by
preclaiming locks. Hence, conservative rigorous 2PL (CR2PL) and conservative aborting
rigorous 2PL (CAR2PL) variants of R2PL can trivially be derived.

Object-based 2PL
Even though 2PL algorithms are designed specifically for variables, their pessimistic
approach and in-place modifications make them suitable for the homogeneous object
model as they are. In addition, if object interfaces are known, there is a proposition in
[12] of extending the lock system to a more complex one, where each operation in an

4.1 Distributed Pessimistic TM 51

object’s interface uses a different lock, and a table of lock compatibility is defined. This
would allow the TM to be applied in an extended homogeneous object model with more
operation types and more complex semantics.

Adapting the 2PL algorithms to the heterogeneous object model requires that all
operations are treated as writes and all locks are treated as exclusion locks.

Distributed 2PL
2PL algorithms can be easily used in distributed contexts using the control flow model of
transaction execution. No modifications to the algorithm are required for that, although
various auxiliary modules, like deadlock detection may require a comprehensive overhaul
with respect to their non-distributed counterparts (see e.g. [12]). In that case conservative
variants of 2PL are best suited for distributed environments.

4.1.2 Versioning Algorithms
Versioning algorithms [96, 97] are a family of pessimistic distributed transactional con-
currency control algorithms. The algorithms were initially designed with communicating
processes or network services in mind [100], but apply to transactional memory operating
in the heterogeneous object model.

In general, versioning uses two version counters to determine whether a given transac-
tion can be allowed to access a particular shared object, or whether the access should be
deferred to avoid conflicts. The intuition behind how these counters work is by analogy
to how the teller may manage a queue in a bank: customers who come into the bank
retrieve a ticket with a number from a dispenser and wait before approaching the teller
until their number is called. Meanwhile the teller increments the number as she finishes
serving each consecutive customer. In the analogy, each customer is a transaction, and
the teller is an object. The number in the customer’s hand is his version for that ob-
ject, and it is being compared against the number that is currently being served by the
teller—the object’s version.

Basic Versioning Algorithm
Basic Versioning Algorithm (BVA) [100, 96] is a straightforward implementation of ver-
sioning concurrency control. This mechanism is key in our further discussion, so we
explain it in detail below. We also provide the full pseudocode of BVA in Fig. 4.10.

Whenever a transaction Ti starts, it retrieves a private version pvi(dxc) for every
object dxc in its access set ASeti. The access set is assumed to be known a priori.
The values of private versions received by consecutive transactions are assigned from a
sequence of consecutive positive integers. The sequence is generated using a global version
counter gv(dxc), which is initially 0 and is incremented with each starting transaction
that has dxc in its access set. The assignment is also guarded by a global lock so that it
is done atomically. In effect, transactions’ private versions have the following properties:

I no two transactions have the same private version for any shared object,
II if transaction Ti started before Tj and they both access dxc, then pvi(dxc) <

pvj(dxc),
III given two transactions Ti and Tj , if pvi(dxc) < pvj(dxc) then for any shared object
dyc that both transactions plan to access, pvi(dyc) < pvj(dyc), and

52 4 Existing Algorithms

1 proc start(Transaction Ti) {
2 lock lkg → W
3 for dxc ∈ ASeti {
4 gv(dxc)← gv(dxc) + 1
5 pvi(dxc)← gv(dxc)
6 }
7 unlock lkg

8 }
9 proc access(Transaction Ti, Object dxc, Method m) {

10 wait until pvi(dxc) - 1 = lv(dxc)
11 execute m on dxc returning v
12 return v
13 }
14 proc commit(Transaction Ti) {
15 for dxc ∈ ASeti {
16 wait until pvi(dxc) - 1 = lv(dxc)
17 :dismiss(Ti, dxc)
18 }
19 return Ci

20 }
21 proc :dismiss(Transaction Ti, Object dxc) {
22 lv(dxc)← pvi(dxc)
23 }

1 proc start(Transaction Ti) {
2 lock lkg → W
3 for dxc ∈ ASeti {
4 gv(dxc)← gv(dxc) + 1
5 pvi(dxc)← gv(dxc)
6 }
7 unlock lkg

8 }
9 proc access(Transaction Ti, Object dxc, Method m) {

10 wait until pvi(dxc) - 1 = lv(dxc)
11 execute m on dxc returning v
12 aci(dxc)← aci(dxc) + 1
13 if aci(dxc) = supri(dxc)
14 :release(Ti, dxc)
15 return v
16 }
17 proc commit(Transaction Ti) {
18 for dxc ∈ ASeti {
19 wait until pvi(dxc) - 1 = ltv(dxc)
20 :dismiss(Ti, dxc)
21 ltv(dxc)← pvi(dxc)
22 }
23 return Ci

24 }
25 proc :release(Transaction Ti, Object dxc) {
26 lv(dxc)← pvi(dxc)
27 }
28 proc :dismiss(Transaction Ti, Object dxc) {
29 if pvi(dxc) - 1 = lv(dxc)
30 lv(dxc)← pvi(dxc)
31 }

Figure 4.10: BVA. Figure 4.11: SVA.

IV if Ti started before Tj and no other transaction started in between the two, and
both plan to access dxc, then they have consecutive private versions for dxc, i.e.
pvi(dxc) = pvj(dxc)− 1.

BVA uses private versions to maintain order when accessing shared objects via objects’
local versions. That is, each shared object dxc has its own local version counter, denoted
lv(dxc), which is always equal to the private version of such transaction Tj that most
recently finished using the object, i.e. out of all transactions that have dxc in their access
set, Tj is the one that committed most recently. Specifically, when Tj does commit, it
writes its own private version for dxc to the local version counter of dxc. This is enclosed in
the dismiss procedure. In the context of versioning algorithms, whenever any transaction
writes its private version to a local version counter for some object, we say the transaction
released the object.

Once Tj releases dxc, Tj will execute no further operations on dxc, so some other
transaction can safely start calling methods on the object. BVA determines which trans-
action gets to access the object next by simply selecting the transaction with the next
consecutive private version, i.e. such Ti whose pvi(dxc) − 1 = pvj(dxc). Thus, invari-
ably dxc can be accessed by such Ti for which pvi(dxc) − 1 = lv(dxc), and no other
transaction. Hence, if some transaction Ti wants to access dxc, then it may do so if
pvi(dxc)− 1 = lv(dxc). We call this condition the access condition. On the other hand,
if Ti wants to access dxc and the access condition is not satisfied, then it waits until it is
satisfied. In this way, only one transaction is able to access dxc at any one time. Initially,
all local version counters are set to 0, so a transaction with a private version of 1 can
access a given variable as the first.

An example of how this mechanism works is shown in Fig. 4.12. Here, Ti and Tj
attempt to access shared object dxc at the same time. Transaction Ti starts first, so
pvi(dxc) = 1, and Tj starts second, so pvj(dxc) = 2. Since initially lv(dxc) = 0, Tj is not
able to pass the access condition and execute an operation on dxc when it tries to, so it
waits. On the other hand, Ti can pass the access condition pvi(dxc) − 1 = lv(dxc) and

4.1 Distributed Pessimistic TM 53

Ti
starti
pvi(dxc)←1

mi(dxc)→� tryC i→Ci
lv(dxc)←1

Tj
startj
pvj(dxc)←2

mj(dxc)

? lv(dxc)=1

→� tryC j→Cj
lv(dxc)←2

Tk
startk
pvk(dyc)←1

mk(dyc)→� tryCk→Ck

Figure 4.12: An example BVA history.

it executes an operation on dxc without waiting. Once Ti commits, it sets lv(dxc) to 1,
so Tj then becomes capable of passing the access condition and finishing executing its
operation on dxc. In the mean time, transaction Tk can proceed to access dyc completely
in parallel.

Given that transactions access objects in an order defined by private versions, and
since private versions are assigned to transactions both atomically and from a monotonic
sequence of integers, BVA avoids deadlocks. In addition, BVA trivially never aborts. In
[96, 97] the author shows that BVA is serializable (as isolation). In fact, BVA preserves
real-time order and executes all potentially conflicting transaction sequentially, so it is
straightforward to see that it is rigorous, as well as opaque.

While BVA is a strong algorithm, serializing conflicting transactions makes for a low
degree of parallelism in produced histories. Hence, the author of [96, 97] introduces two
variants of BVA that execute conflicting transactions partially in parallel: the Supremum
Versioning Algorithm (SVA) and the Routing Versioning Algorithm (RVA). Out of these,
RVA uses a different system model where operations on shared objects are executed com-
pletely asynchronously (without reading the result of the operation) and may complete
even after the transaction commits. These assumptions do not fit the TM system model,
so RVA is not directly applicable. On the other hand, eliminating asynchrony trivially
reduces RVA to BVA. Hence, in further discussion we concentrate on SVA alone.

Supremum Versioning Algorithm
Supremum Versioning Algorithm (SVA) [100, 97] is a variant of BVA that uses an early
release mechanism to execute concurrent conflicting transactions partially in parallel.
That is, SVA transactions use the versioning concurrency control mechanism from BVA,
but transactions sometimes are able to release shared objects before the transaction com-
mits. After executing an operation on some shared object, a transaction uses additional
a priori knowledge to decide whether it will perform any further actions on that object.
If it can be safely determined that no further operation will occur, the transaction re-
leases the object instantly. We explain the mechanism below and give the pseudocode in
Fig. 4.11.

Each SVA transaction has a priori knowledge of suprema: it knows at most how
many times it will attempt to access each object throughout its execution. We denote
transaction Ti’s supremum for object dxc as supri(dxc) and it takes the value of either a
positive integer (if supremum were 0, the object would not be in the access set of Ti), or
infinity ω. If the supremum is unknown, setting it to ω guarantees correct execution (since
only an upper bound is required). However, the supremum must never be lower than the
actual number of accesses. Suprema can be derived and specified for each transaction

54 4 Existing Algorithms

Ti
starti
pvi(dxc)←1
supri(dxc)=1

mi(dxc)→�

aci(dxc)←1
? aci(dxc)=supri(dxc)

lv(dxc)←1

tryC i→Ci

Tj
startj
pvj(dxc)←2

mj(dxc)

? lv(dxc)=1

→� tryC j→Cj

Figure 4.13: An example SVA history (early release).

manually by the programmer, but it can also be derived and automatically supplemented
by a type checker [96]. In addition, as part of our research we propose a static analyzer
and precompiler that can generate this information (see Chapter 9).

Given specified suprema, each SVA transaction Ti counts operation executions on each
variable as they occur using an access counter aci(dxc). When the access counter reaches
the supremum for dxc, aci(dxc) = supri(dxc), the transaction knows that no further
accesses on dxc will occur afterward as part of Ti. Therefore, the transaction releases the
object immediately (by writing its own private version for dxc to the local version counter
of dxc). This allows, another transaction Tj , such that pvj(dxc)−1 = lv(dxc) = pvi(dxc)
to execute operations on dxc right away, without waiting for Ti to commit. On the other
hand, if a transaction does not reach the supremum for some object dxc, the object will
be released during commit, as in BVA.

The early release mechanism is illustrated further in Fig. 4.13. Here, transactions Ti
and Tj both try to access dxc. Like in Fig. 4.12, since Ti’s private version for dxc is lower
than Tj ’s, the former manages to access dxc first, and Tj waits until dxc is released. Ti
has upper bound information: it knows that it will execute at most one operation on dxc
(supri(dxc) = 1). The number of operations executed on dxc is tracked using counter
aci(dxc). After Ti executes its operation on dxc, it increments aci(dxc). Since this causes
aci(dxc) to reach the supremum supri(dxc), i.e. aci(dxc) = supri(dxc) = 1, Ti releases
dxc immediately after it accesses dxc, rather than waiting to do so until commit. In effect,
Tj can access dxc earlier. Tj is even capable of committing before Ti.

Given that SVA acquires versions during the start of the transaction, and since these
versions are used later on to defer operations, SVA is sometimes mistaken for an imple-
mentation of a 2PL algorithm with early release: B2PL and C2PL. We contrast the three
algorithms in Fig. 4.14. We use the variable model in this comparison for all algorithms
(although SVA is still agnostic with respect to operation semantics). The histories shown
there contain three transactions each (executing the same transactional code). Transac-
tion Ti starts first and attempt to first read x and then write to x. Transaction Tj starts
second and attempts to first update the value of y twice, and then read the value of x.
Finally, transaction Tj starts last and attempts to read the value of y. The history in
Fig. 4.14a is an SVA execution of those three transactions, the history in Fig. 4.14b is a
B2PL execution, and Fig. 4.14c represents a C2PL execution.

The SVA execution is the most parallel of the three, since each variable is “acquired”
and released individually, so Tj can first release y and still attempt to gain access to
x afterward. On the other hand, B2PL does not allow Tj to release any locks until it
entered the shrinking phase. Hence in B2PL Tj cannot release y until the transaction
acquires the lock for x. Thus, the time at which Tj releases y is delayed, which causes Tk
to execute longer than it does under SVA.

Whereas, C2PL attempts to acquire all locks for its read and write set before the
first operation on any shared variable, which causes Tj to wait until Ti releases x before
executing operations on y. This introduces additional delays in comparison to SVA. SVA
prevents those delays since the access condition to each variable is checked independently

Ti
starti
pvi(x)←1
supri(x)=2

ri(x)→0

aci(x)←1

wi(x)1→oki
aci(x)←2

? aci(x)=supri(x)
lv(x)←1

tryC i→Ci

Tj
startj
pvj(x)←2
pvj(y)←1
suprj(y)=2

wj(y)1→okj
? lv(y) = 0

acj(y)←1

wj(y)2→okj
acj(y)←2

? acj(y)=suprj(y)
lv(y)←1

rj(x)→1

? lv(x) = 1

tryC j→Cj

Tk
startk
pvk(y)←2

rk(y)

? lv(y) = 1

→2 tryCk→Ck

(a) SVA.

Ti
starti ri(x)→0

lock lk(x)→ R

wi(x)1→oki
convert lk(x)→W
unlock lk(x)

tryC i→Ci

Tj
startj wj(y)1→okj

lock lk(y)→W

wj(y)2→okj rj(x)→1

lock lk(x)→ R
unlock lk(x)
unlock lk(y)

tryC j→Cj

Tk
startk rk(y)

lock lk(y)→ R

→2

unlock lk(y)

tryCk→Ck

(b) B2PL.

Ti
starti ri(x)→0

lock lk(x)→ R

wi(x)1→oki
convert lk(x)→W
unlock lk(x)

tryC i→Ci

Tj
startj wj(y)1

lock lk(x)→ R
lock lk(y)→W

→okj
lock lk(x)→ R
lock lk(y)→W

wj(y)2→okj rj(x)→1

unlock lk(x)
unlock lk(y)

tryC j→Cj

Tk
startk rk(y)

lock lk(y)→ R

→2

unlock lk(y)

tryCk→Ck

(c) C2PL.

Figure 4.14: A comparison between SVA, B2PL, and C2PL histories.

56 4 Existing Algorithms

of other variables. The only point at which SVA causes transactions to wait is during the
start operation itself.

In contrast to BVA, since two transactions can commit in reverse order to the order
in which they accessed some shared object dxc, and since SVA’s early release permits a
situation where a transaction will read from another live transaction, then SVA cannot
satisfy opacity, rigorousness, recoverability, or strictness. Since an SVA transaction can
read from a live transaction that reads from another live transaction, SVA is not live
opaque. Nevertheless, SVA guarantees strict serializability, as shown in [97]. It also never
deadlocks or aborts, just as BVA. We discuss the safety properties of SVA further in
Section 7.1.

4.2 Distributed Optimistic TM

Given that distributed systems often face similar concurrency control problems as (non-
distributed) multiprocessor, several distributed TM systems were proposed. Broadly, two
models of distributed TM are used. Transactional memory can be replicated on several
network nodes and locally-scoped transactions can be used by processes to consistently
and reliably propagate any changes of shared data to all the replicas (see e.g., [14, 18, 49,
99]). In the other model distributed transactions can be employed to atomically access a
subset selected from a larger set of objects. Each object is accessible from a single location
only (objects can be replicated, if necessary, but this is an orthogonal issue). This type
of TM includes HyFlow2 [86], a state-of-the-art distributed TM system implemented
in Scala on top of the Akka library. HyFlow2 implements the optimistic Transactional
Forwarding Algorithm (TFA) [67, 69] and operates in the data flow model. HyFlow [68]
is an earlier version of HyFlow2, implemented in Java on top of Aleph and DeuceSTM
and included control flow and data flow concurrency control algorithms, including TFA
[67] and DTL2 (a distributed version of TL2 [21]). HyFlow was compared with HyFlow2
in [86] and was shown to perform worse then its successor. We examine DTL2 and TFA
more closely in Sections 4.2.1 and 4.2.2, respectively.

In addition to TM systems, it is worth mentioning distributed transactional database
and data store systems. Distributed transactions are successfully used where require-
ments for strong consistency meet wide-area distribution, e.g., in Google’s Percolator [61]
and Spanner [17]. Percolator supports multi-row, ACID-compliant, pessimistic database
transactions that guarantee snapshot isolation. This is a much weaker guarantee than ex-
pected from TM systems. Another drawback in comparison to DTM is that writes must
follow reads. Spanner provides semi-relational replicated tables with general purpose dis-
tributed transactions. It uses real-time clocks and Paxos to guarantee consistent reads.
Spanner requires some a priori information about access sets and defers commitment,
but aborts on conflict. Irrevocable operations are banned in Spanner. Spanner transac-
tions provide snapshot isolation and external consistency (akin to real-time order), much
weaker properties than considered sufficient in DTM.

4.2.1 Distributed Transactional Locking II
Distributed Transactional Locking II (DTL2) is an optimistic TM concurrency control
algorithm implemented within HyFlow [68]. It is a distributed version of Transactional
Locking II (TL2) [21], a quintessential optimistic (non-distributed) TM concurrency
control algorithm that operates in the variable system model and uses locks for synchro-
nization and a global version clock to determine whether operations are valid.

1 proc start(Transaction Ti) {
2 RSeti ← ∅
3 WSeti ← ∅
4 rvi ← gv
5 }
6 proc read(Transaction Ti, Var x) {
7 RSeti ← RSeti ∪ {x}
8 if mode(lk(x)) = W or version(x)) > rvi

9 return abort(Ti)
10 if x ∈ WSeti: // bloom filter
11 return bufi(x)
12 else
13 return x
14 }
15 proc write(Transaction Ti, Var x, Value v) {
16 WSeti ← WSeti ∪ {x}
17 bufi(x)← v
18 return oki

19 }
20 proc commit(Transaction Ti) {
21 // Lock the write set.
22 for x ∈ WSeti in order
23 lock lk(x)→ W
24 if ∃x ∈ WSeti: owner(lk(x)) 6= Ti

25 return abort(Ti)
26

27 // Increment and fetch global version clock.
28 lock lkg → W
29 gv← gv + 1
30 wvi ← gv
31 unlock lkg

32

33 // Validate the read set.
34 if rw + 1 6= wvi

35 if ∃x ∈ RSeti:
36 mode(lk(x)) = W or version(x) > wvi

37 return abort(Ti)
38

39 // Commit and release.
40 for x ∈ WSeti in order {
41 x ← bufi(x)
42 version(x)← wvi

43 unlock lk(x)
44 }
45 return Ci

46 }
47 proc abort(Transaction Ti) {
48 for x ∈ WSeti

49 if owner(lk(x)) = Ti

50 unlock lk(x)
51 return Ai

52 }

53 proc start(Transaction Ti) {
54 RSeti ← ∅
55 WSeti ← ∅
56 rvi ← gv
57 }
58 proc read(Transaction Ti, Var x) {
59 if mode(lk(x)) = W or version(x)) > rvi

60 return abort(Ti)
61 return x
62 }
63 proc commit(Transaction Ti) {
64 return Ci

65 }
66 proc abort(Transaction Ti) {
67 return Ai

68 }

(a) R/W Transactions. (b) R Transactions.

Figure 4.15: (Distributed) TL2.

58 4 Existing Algorithms

We show the full pseudocode of DTL2 in Fig. 4.15 and explain it in detail below.
DTL2 allows transactions to run in either a read/write (R/W) mode or a read-only (R)
mode. This can be determined a priori or all transactions can run as read-only and
switch to R/W mode if they attempt to execute a write. The pseudocode in Fig. 4.15a
defines the behavior of transactions in R/W mode, and Fig. 4.15b describes the behavior
of R transactions. Since the algorithm operates in the CF model, we feel that the details
where transactions and variables are located, and how data is moved between nodes can
be omitted in the description of the algorithm without confusion.

Each shared variable x in the system has an associated version counter version(x)
and an exclusive lock lk(x). In addition, there is a single global version clock gv. The
global clock is accompanied by a global lock lkg, that has to be acquired to modify gv.

In both R/W and R mode, as transaction Ti starts, it makes a transaction-local copy
of gv and stores it as its read version rvi. The read version is later compared against
variable versions in order to determine whether the transaction’s view is consistent. I.e.,
when a read-only transaction Ti attempts to read x, it updates its read set and then
checks whether version(x) > rvi. If that is the case, x was modified since Ti started, so
Ti cannot continue without viewing an inconsistent state of the system. Hence Ti aborts
in such a case. Similarly, Ti aborts if some other transaction locked lk(x), since that
means that some other transaction will commit changes to x and Ti will eventually have
to abort anyway.

When a R/W transaction Ti attempts to read x, the procedure is similar, but it may
be the case that Ti already wrote to x. DTL2 transactions writes update a transaction-
local buffer bufi(x) (for some Ti, x) and only apply the changes to the actual variable
during commit. In the original TL2 specification this buffer is implemented as a redo
log instead. Hence, if Ti reads x after previously writing to it, it is sufficient to simply
retrieve the value from a buffer. Hence, transactions read their own writes.

Once a read-only transaction reaches commit, it is already consistent, and it has no
buffered writes to transfer to variables, so it simply finishes execution. On the other hand,
any R/W transaction Ti must apply the changes in its buffers to variables in a consistent
manner during commit. Thus, first Ti locks its entire write sets. This is done using some
prescribed order to prevent deadlocks. If any lock cannot be instantly obtained, Ti aborts.

Otherwise, the transaction increments the global version clock, to indicate that the
state of the system is changed. The incremented value is stored as the transaction’s
write version wvi. Next, Ti validates its read set. I.e., if any other transaction modified
any of the variables in Ti’s read set, then Ti is inconsistent and must abort. Hence,
the transaction checks whether version(x) > rvi for each x in its read set and acts
accordingly. Similarly, it also checks whether such variable’s locks are locked, which would
indicate that some other transaction is in the process of committing, so Ti also aborts.
If rvi + 1 = wvi, there are no concurrent transactions that could interfere with Ti’s read
set, in which case read-set validation may be skipped. Once the read-set is deemed valid,
Ti proceeds to apply changes from its buffers to the variables in its write set. Once the
changes were applied to some variable x, its version is updated to wvi, and its lock is
released. Once this is done for all variables in the write set, the transaction is complete.

We show an example of three concurrent transactions executing under DTL2 in
Fig. 4.16. All three transactions read 0 from the global clock as they start, so they
all have a read version of 0. Then, transaction Ti executes a read operation on x, which
validates correctly and returns 0, the current value of x. Then, transaction Tj executes
a write on x. It adds x to its write set and puts the written value 1 into the local buffer
bufi(x). Since this value is stored locally, the next read operation in Tj simply retrieves
it from the buffer, without having to retrieve it from the original location. Meanwhile
Ti performs its own write on x, writing 2 to its own local buffer—since this only has

4.2 Distributed Optimistic TM 59

Ti
starti
rvi←0

ri(x)→0

RSeti←RSeti ∪ {x}
? version(x) > rvi

wi(x)2→oki
bufi(x)←2

tryC i →Ai

lock lk(x)→W
gv←2

? version(x) > 0
unlock lk(x)

Tl

startl
rvl←1

Tj
startj
rvj←0

wj(x)1→okj
WSetj←WSetj ∪ {x}
bufj(x)←0

rj(x)→1

? x ∈ WSetj
bufj(x)←1

tryC j

lock lk(x)→W
gv←1
x←2
version(x)←1

→Cj
unlock lk(x)

Tk
startk
rvk←0

wk(x)3→okk
bufk(x)←3

tryCk→Ak

lock lk(x)→W
gv←3

? version(x) > 0
unlock lk(x)

Figure 4.16: An example DTL2 history.

transaction-local effects, the operation does not interfere with concurrent transactions.
Eventually transaction Tj attempts to commit. It locks its write set by locking lk(x)

and increments the global clock to 1. This means that the transaction’s write version
equals 1. Since the read version and write version are consecutive values, ti means no
other transaction attempted to commit since Tj started, so no validation is required.
Hence, Tj updates x to 2, and increases its version to its write version: 1. Transaction Tj
commit successfully. Meanwhile transaction Ti also attempts to commit, but the commit
procedure must wait until the locks are released, so Ti waits until Tk commits. Then, Ti
checks the version of all the variables in its read set, i.e. for x. Since Tj set the version
of x to 1 during its own commit, and since that is larger than Ti’s read version of 0,
Ti is forced to abort at this point and restarts later on as Tl (we only show Tl’s start
operation).

Once Ti finished committing, Tk executes a write. Since that write is performed on
the buffer, the transaction continues execution despite Tj committing and invalidating
Tk view of the system. However, once Tk attempts to commit a similar situation occurs
as with Ti—Tk’s read version 0 is lower than the version of x, so Tk must also abort and
retry later on (not shown).

In [52] the authors demonstrate that TL2 is opaque, so, by extension, DTL2 is also
opaque. We conjecture that DTL2 is rigorous. DTL2 also never deadlocks, but it aborts
on conflict, which may cause issues with irrevocable operations.

In its basic form, DTL2 is designed for relatively low contention systems, where con-
flicts occur only sporadically. Otherwise, it is prone to suffer from high transaction abort
rates. Hence modules are typically added to DTL2 to control the execution of transac-
tions. Specifically, a contention manager can be employed that postpones re-execution of
transactions that aborted due to conflicts.

4.2.2 Transaction Forwarding Algorithm
Transaction Forwarding Algorithm (TFA) [67, 69] is an optimistic distributed TM con-
currency control algorithm. TFA was specifically designed for the data flow model, where
each shared object is migrated to immobile transactions in order for the transaction to
execute operations on the object. In addition, the model specifies that only one copy of
each object exists in the system, as opposed to objects being replicated (although caching
through buffers is used). TFA can be applied to homogeneous objects and variables—we
use the latter model in our discussion. The basic modus operandi of TFA resembles that
of DTL2, however TFA specifically defines how shared objects are migrated within the

60 4 Existing Algorithms

system and uses a mechanism akin to Lamport timestamps [55] in place of DTL2’s global
version clock. This change introduces a lot of additional complexity into the algorithm,
but in return TFA transactions have a lower chance of aborting during presumed con-
flicts that would not cause inconsistency. For the same reason, TFA also does not have a
single point of failure. We describe the algorithm in detail below and provide an adapted
pseudocode in Fig. 4.17.

When a TFA transaction starts, it copies the value of the local clock lcL for node L,
the node the transaction starts on, to a transaction-local variable wvi. This is the trans-
action’s write version used to determine whether there were modifications to variables
observed by the transactions since it started execution.

When transaction Ti reads a variable x, it first checks whether that variable it wrote
to x already. If that is the case, then, just like in DTL2, the transaction uses the copy
of the variable made during the write to perform the read. Otherwise, the transaction
first loads the variable into the buffer using the procedure :open, and then uses that to
perform the read. The behavior is similar in the case of writes as well. In order to write
to a variable, the transaction first buffers the variable using :open, and then performs
the write on the buffer.

Apart from loading a variable to the buffer, the :open procedure performs all the
necessary early validation required to both read and write a variable. These are analogous
to DTL2, but use distributed clocks rather than a single global clock. Specifically, given
variable x located on node R, before x is buffered, the transaction moves its local clock
lcL forward to match lcR. Then, after x is buffered, if x is a local variable, then the
transaction simply checks whether any other transaction updated the variable since the
transaction started. If such an interruption occurred, then x has a higher version then the
transaction’s write version. This forces Ti to abort. Otherwise, the operation can proceed.
If the variable is not local to the transaction, then the transaction catches up its local
clock lcL with the variable’s lcR. Then, the transaction attempts to catch its write version
to match lcR, if necessary. However, before doing so, it checks if any of the variables in
its read set were invalidated, i.e. if any of their versions are ahead of their respective
local clocks. If this is true for any variable in the read set, then the transaction aborts.
If all the steps were successfully performed, the transaction can perform operations on
the buffered copy of x.

The commit operation is analogous to DTL2. Initially, the objects in the write set are
locked according to some global order. The commit fails, if this cannot be done. When
all the locks are acquired, the read set is validated by checking each variable’s version
against the transaction’s write version and making sure that the locks are unlocked. If
validation succeeds, then no other transaction wrote to any of the variables in the read
set, or is currently committing on them. In the next step, the transaction’s local clock is
incremented. Then, all the variables in the write set are moved from their original location
onto the transaction’s node and updated using buffered values. In this way, the “master”
copy of each object is located wherever the most recent committed transaction that
updated it resides. Once the variable is updated, the transaction’s version is updated to
the transaction’s write version, to reflect that a new fresh value of the variable is present.
Finally, each variable’s lock is released and the commit is successfully completed.

We show an example execution of TFA in Fig. 4.18. This example is analogous to
the DTL2 execution in Fig. 4.16, with a few exceptions. TFA checks version consistency
before each write, irrespective of the fact that it is performed locally. This allows TFA to
find potential conflicts earlier, and abort a transaction sooner, which wastes less work.
More importantly, in the TFA execution Tk is not forced to abort, as opposed to the
DTL2 example. That is because using the system of local clocks instead of a global
clock allows transactions to catch up to the existing state of the system. Thus, even if

1 proc start(Transaction Ti) {
2 RSeti ← ∅
3 WSeti ← ∅
4 L ← location(Ti)
5 wvi ← lcL
6 }
7 proc read(Transaction Ti, Var x) {
8 RSeti ← RSeti ∪ {x}
9 if x ∈ WSeti

10 return bufi(x)
11 if :open(Ti, x) = false
12 return abort(Ti)
13 else
14 return bufi(x)
15 }
16 proc write(Transaction Ti, Var x, Value v) {
17 WSeti ← WSeti ∪ {x}
18 if :open(Ti, x) = false
19 return abort(Ti)
20 else {
21 bufi(x)← v
22 return oki

23 }
24 }
25 proc commit(Transaction Ti) {
26 // Lock the write set.
27 for x ∈ WSeti in order
28 lock lk(x)→ W
29 if ∃x ∈ WSeti: owner(lk(x)) 6= Ti

30 return abort(Ti)
31

32 // Validate the read set.
33 if ∃x ∈ RSeti:
34 mode(lk(x)) = W or version(x) > rvi

35 return abort(Ti)
36

37 // Increment and fetch global version clock.
38 L ← location(Ti)
39 lcL ← lcL + 1
40

41 // Commit and release.
42 for x ∈ WSeti {
43 R ← location(x)
44 if L 6= R
45 move x from R to L
46 x ← bufi(x)
47 version(x)← lcL
48 unlock lk(x)
49 }
50 return Ci

51 }
52 proc abort(Transaction Ti) {
53 for x ∈ WSeti

54 if owner(lk(x)) = Ti

55 unlock lk(x)
56 return Ai

57 }

58 proc :open(Transaction Ti, Var x) {
59 L ← location(Ti)
60 R ← location(x)
61

62 // Retrieve object.
63 if lcR < lcL
64 lcR ← lcL
65 copy x from R to L as bufi(x)
66

67 if L = R {
68 // Open local object.
69 if version(x) > wvi

70 return false
71 else
72 return true
73 } else {
74 // Open remote object.
75 if lcL < lcR
76 lcL ← lcR
77 if wvi < lcR {
78 if ∃y ∈ RSeti and Q = location(y):
79 version(y) > lcQ
80 return false
81 wvi ← lcR
82 }
83 return true
84 }
85 }

Figure 4.17: TFA.

62 4 Existing Algorithms

Ti
starti
wvi←0

ri(x)→0

bufi(x)←0
? version(x) > wvi

wi(x)2→oki
bufi(x)←2

? version(x) > wvi

tryC i →Ai

lock lk(x)→W
? version(x) > location(Ti)

unlock lk(x)

Tl

startl
wvl←1

Tj
startj
wvj←0

wj(x)1→okj
WSetj←WSetj ∪ {x}
bufj(x)←0

? version(x) > wvj

rj(x)→1

? x ∈ WSetj
bufj(x)←0

tryC j

lock lk(x)→W
L←1
x←2
version(x)←1
move x to location(Tj)

→Cj
unlock lk(x)

Tk
startk
wvk←0

wk(x)3→okk
? lcL < lcR
? lcL=1

bufk(x)←3
? wvk < lcR
? version(x) > lcR

wvk←version(x)

tryCk→Ck
? lcL←2

Figure 4.18: An example TFA history.

transaction Tj updated the version of x to 1 during commit, it also adjusted its local
clock to 1. Then, when transaction Tk writes to x it can adjust its own local clock to
Tj ’s local clock, since it did not actually view or modify any variable prior to this point.
Then, Tk uses Ti’s local clock to validate x’s version, rather than a stale value read from
a global clock. Given these adjustments, Tk is able to validate correctly during commit.

The authors show in [69] that TFA is opaque. In addition, just like DTL2, TFA does
not deadlock. On the other hand it also aborts on conflict, which may cause issues with
irrevocable operations.

4.3 Non-distributed Pessimistic TM

A great majority of TM concurrency control algorithms are optimistic. Nevertheless, a
handful of partially or fully-pessimistic non-distributed TM algorithms were recently in-
troduced. In [92] the authors introduced the idea of irrevocable transactions. The system
can execute irrevocable transactions concurrently to ordinary transactions, but irrevoca-
ble transactions always execute one at a time and never abort. This makes the execution
safe for irrevocable operations within these transactions, and prevents wasted effort due
to aborting long-running transactions. However, such transactions severely limit the level
of parallelism of which the system is capable. In [62], the authors introduce a partially
pessimistic TM where read-only transactions use multiversioning to prevent aborts. How-
ever, the maintenance of multiple versions introduces a high overhead, and read/write
transactions aborted nevertheless. In [9], the authors propose a system with irrevocable
single-version read-only transactions that used locking for each read variable. However,
this introduces overhead that makes the system outperformed by optimistic TMs. While
not exactly a pessimistic system per se, Twilight STM [13] is an interesting system that
relaxes isolation to allow conflicting transactions to reconcile using so-called twilight code
at the end of the transaction and commit nevertheless. If a transaction reads a value that
was modified by another transaction since its start, twilight code can re-read the changed
variables and re-write the variables the transaction modified to reflect the new state, al-
lowing the transaction to commit anyway. Even though the operations are re-executed,
as per optimistic concurrency control, it means that transactions that execute twilight
never need to abort.

In [56] the authors propose pessimistic non-distributed TM that defers read/write

4.3 Non-distributed Pessimistic TM 63

transactions to execute sequentially (as in [92]) but allows parallel read-only transac-
tions. The read/write transactions maintain consistency by waiting for concurrent read-
only transactions to complete, before making any updates in memory. This idea was
improved upon in Pessimistic Lock Elision (PLE) [1], where a number of optimizations
were introduced, including encounter-time synchronization, rather than commit-time. We
examine these algorithms in Sections 4.3.1 and 4.3.2 respectively.

SemanticTM [10, 26] is another pessimistic non-distributed TM. Rather than using
versioning or blocking, transactions are scheduled and place their operations in bulk into
a producer-consumer queues attached to variables. The instructions are then executed
by a pool of non-blocking executor threads that use statically derived access sets and
dependencies between operations to ensure the right order of execution. The scheduler
ensures that all operations of one transaction are executed consistently and in the right
order. We examine the system further in Section 4.3.3.

4.3.1 Matveev and Shavit’s Pessimistic TM
In [56] the authors propose a fully-pessimistic TM algorithm for multicores operating
in the variable model. The algorithm is loosely based on TL2 [21] and the work on
irrevocable transactions in [92], and uses the quiescence mechanism from [20]. The result
is a TM algorithm that executes its RW transactions in series and prevents them from
writing to location that may be read by read-only transaction. In effect, the authors
introduce a fully-pessimistic non-aborting commit-time TM. As far as we can tell the
authors never named their algorithm: they refer to it in the original paper as well as
later work simply as pessimistic TM (PTM) and go out of their way to indicate this is
not its proper name. We will therefore refer to the algorithm as Matveev and Shavit’s
Pessimistic TM, which we abbreviate as MS-PTM. We describe the operation of the
MS-PTM algorithm in detail below and give the pseudocode in Fig. 4.19.

Note that the pseudocode indicates memory fences, processor instructions that ex-
plicitly order the execution of instructions in a block of code. These are necessary for the
original application of MS-PTM in local multi-core processors. We omit such low-level
details in the other descriptions of algorithms in this dissertation, but retain them here
for verisimilitude with the original proposition in [56].

The synchronization in MS-PTM is based on a global version counter gv, transaction-
local version counters rvi, and each variable’s x version version(x), much like TL2. Also
like TL2, MS-PTM specifies two types of transactions: RW and R. R and RW transac-
tions are synchronized by blocking reads and deferring writes to commit via buffering.
The mechanism is based on the global version counter. During start each transaction
reads the global version and stores it as its read version. Write operations do not block,
they simply store the written value in the buffer. A read operation in any transaction
will block until the transaction’s read version differs from the variables version. If the
read version is equals to the variable’s version, this means that some RW transaction is
committing. During the commit procedure RW transactions increment the global value
twice: once at the outset, and once at the finish. R transactions that started after a
RW transaction started committing will therefore be blocked until the RW transaction
finishes committing. R transactions that started before the RW transaction started com-
mitting will not be blocked by the RW transaction. Instead the RW transaction will not
start writing from buffers into memory until all such R transactions finish execution.
Specifically, RW transactions use the quiescence mechanism which makes them wait un-
til all other transactions whose read versions are lower than the current global version
update their read version to be equal or greater than the global version. R transactions
can meet this condition when they update their version to infinity during commit.

1 proc start(Transaction Ti) {
2 waitingi ← true
3 memory fence
4 while true {
5 if waitingi = false {
6 rvi ← gv
7 memory fence
8 return oki

9 }
10 if mode(lkg) 6= W {
11 try lock lkg → W
12 if owner(lkg) = Ti {
13 waitingi ← false
14 rvi ← gv
15 memory fence
16 return oki

17 }
18 }
19 }
20 }
21 proc read(Transaction Ti, Var x) {
22 if x ∈ WSeti:
23 return bufi(x)
24 if progressi = false
25 if version(x) = rvi {
26 wait until rvi 6= gv
27 progressi ← true
28 }
29 return x
30 }
31 proc write(Transaction Ti, Var x, Value v) {
32 WSeti ← WSeti ∪ {x}
33 bufi(x)← v
34 return oki

35 }
36 proc commit(Transaction Ti) {
37 // Synch and update versions.
38 if rvi is even
39 wait until rvi 6= gv
40 for x ∈ WSeti

41 version(x)← rvi + 1
42

43 // First global version increment.
44 gv← gv + 1
45 rvi ← gv
46 memory fence
47

48 // Signal next writer.
49 if ∃Tj: waitingj = true
50 waitingj ← false
51 else
52 unlock lkg

53

54 // Quiescence.
55 for ∀Tj: j 6= i
56 if rvj < gv
57 wait until rvj gv
58

59 // Write the write set.
60 for x ∈ WSeti

61 x ← bufi(x)
62 memory fence
63

64 // Second global version increment.
65 gv← gv + 1
66 return Ci

67 }

68 proc start(Transaction Ti) {
69 rvi ← gv
70 memory fence
71 }
72 proc read(Transaction Ti, Var x) {
73 if progressi = false
74 if version(x) = rvi {
75 wait until rvi 6= gv
76 progressi ← true
77 }
78 return x
79 }
80 proc commit(Transaction Ti) {
81 rvi ← ∞
82 return Ci

83 }

(a) RW Transactions. (b) R Transactions.

Figure 4.19: MS-PTM.

Ti
starti
waitingi←true

→oki
? waitingi=false

rvi←2

wi(x)2→oki
bufi(x)←2

ri(x)→2

? x ∈ WSeti

ri(y)

? version(x) = rvi
? rvi 6= gv

→1 tryC i→Ci
x←2
unlock lkg

Tj
startj→okj
rvj←1
lock lkg →W
waitingj←false

wj(x)1→okj
bufj(x)←1

wj(y)1→okj
bufj(y)←1

tryC j

? rvj is even
version(x)← 2
version(y)← 2
gv←2
waitingj←false

? rvkgv

→Cj
x←1 y←1

Tk
startk→oki
rvk←1

rk(x)→0

? version(x) = rvk

tryCk→Ck
rvk←∞

Figure 4.20: An example MS-PTM history.

Ti
starti →oki

lock lkg →W

Tj
startj→okj
lock lkg →W
writer←Tj
rvj←0

wj(x)1→okj
stj(x)←0
version(x)←1
x←1

wj(y)1→okj
stj(y)←0
version(y)←1
y←1

tryC j

gv←1
? rvk 6= update
? rvkgv

→Cj
unlock lkg

Tk
startk→okk
rvk←0

rk(x)→0

? version(x) ¬ rvk

rk(y)→0

? version(y) ¬ rvk
stj(y)

tryCk→Ck
rvk←∞

Figure 4.21: An example PLE history.

66 4 Existing Algorithms

In addition to this mechanism, once a transaction was blocked and managed to pro-
ceed, it cannot be blocked. This is because transactions are blocked during read only
if they start during an RW transaction’s commit. Thus, if a transaction was blocked
and released, the transaction that blocked it had already committed, and any future
RW transactions will wait until this transaction commits before modifying the variables.
There is no purpose to checking versions in such cases, so a transaction-local variable
progressi is used instead.

Only one RW transaction is allowed to execute operations at a time. Specifically,
during transaction start, the first RW transaction acquires a global lock, which causes
any other RW transactions to have to wait. However, instead of releasing the lock during
commit, the transaction “passes” the lock to the next waiting transaction by signaling
it using the transaction-local waitingi variable. The lock is released only if there are no
more waiting RW transactions.

We give an example execution under MS-PTM in Fig. 4.20. Here, two RW transactions
Ti, Tj , and one R transaction Tk execute concurrently. Tj starts first, acquires the global
lock and receives the read version of 1. Hence, when Ti attempts to start later on,
it cannot, since it cannot acquire the global lock, so it waits until one of two things
happen: either the lock is released, or the currently running RW transaction releases Ti
by falsifying the waitingi variable. Meanwhile, Tj executes writes on variables x and y.
The values are not written to memory, but are stored in the buffer. This does not prevent
the R transaction Tk from executing a read on x, which reads the value 0, without taking
the RW transaction’s operations into account. When Tj finishes executing operations it
proceeds to commit. It updates the versions of each variable in its write set and increments
the global version. Then it sets waitingi to false, which releases Ti to act. This means,
that soon after Tj invokes tryC j , Ti can execute its own write on x using the buffer. It
can also execute a local read on x, since it will simply read the value from said buffer.
However, when Ti tries to perform a non-local read on y it encounters a situation where
the variables version is equal to its read version, meaning that another RW transaction is
in progress, and it must wait until that transaction finishes committing and increments
the global version further. However Tj cannot commit yet either. It must first perform
quiescence and wait for concurrent R transactions to finish. Thus it waits until Tk sets
its read version to infinity. Tk does so during commit. Then, Tj can finish its commit by
writing its write set to memory, and incrementing the global version. This, then allows Ti
to finish its read and eventually commit. Since Ti is the last RW transaction, it unlocks
the global lock.

The authors do not discuss the properties of MS-PTM in [56], but since RW transac-
tions wait for concurrent R transactions, no transactions ever abort, and the algorithm is
commit-time, then on intuition MS-PTM is opaque. MS-PTM is non-aborting and does
not deadlock.

Given the amount of communication among transactions that MS-PTM requires, the
algorithm is not trivial to implement in distributed environments. An implementation
would require either that a given client be able to poll other clients for the status of their
transactions, or a global structure to coordinate. In the first case, communication among
clients is likely to be costly (especially in geo-distributed systems) or even impossible
(e.g. due to firewalls). The second solution introduces a major bottleneck and a single
point of failure. Thus, a more comprehensive re-tooling is required.

4.3.2 Pessimistic Lock Elision
The Pessimistic Lock Elision (PLE) [1] is a non-distributed pessimistic TM algorithm.
It is an adaptation of MS-PTM to the encounter-time update approach, rather than

4.3 Non-distributed Pessimistic TM 67

1 proc start(Transaction Ti) {
2 lock lkg

3 writer ← Ti

4 rvi ← gv
5 memory fence
6 return oki

7 }
8 proc read(Transaction Ti, Var x) {
9 return x

10 }
11 proc write(Transaction Ti, Var x, Value v) {
12 if sti(x) = ⊥
13 sti(x)← x
14 version(x)← rvi + 1
15 x ← v
16 return oki

17 }
18 proc commit(Transaction Ti) {
19 gv← gv + 1
20 memory fence
21

22 // Quiescence.
23 for ∀Tj: i
24 wait until rvi 6= update
25 wait until rvi gv
26

27 unlock lkg

28 return Ci

29 }

30 proc start(Transaction Ti) {
31 rvi ← update
32 memory fence
33 rvi ← gv
34 memory fence
35 return oki

36 }
37 proc read(Transaction Ti, Var x) {
38 if version(x) ¬ rvi

39 return x
40 Tj ← writer
41 if stj(x) 6= ⊥
42 return stj(x)
43 else
44 return x
45 }
46 proc commit(Transaction Ti) {
47 rvi ← ∞
48 return Ci

49 }

(a) RW Transactions. (b) R Transactions.

Figure 4.22: PLE.

commit-time. As such, PLE can be used interchangeably with locks in such contexts as
hardware lock elision and as a fallback for optimistic hardware transactional memory. It
also confers a performance advantage over MS-PTM. We describe the operation of the
algorithm below and give the pseudocode in Fig. 4.22.

When RW transactions execute, values are written directly to memory, however, prior
to executing the write transaction, Ti will append the old value of the variable x in
buffer sti(x). This will allow concurrent R transactions to access either the current or
the old version of the variable. Basically, an R transaction chooses the current version
if it is consistent with its read version version(x) ¬ rvi, or if the RW transaction did
not write anything yet. Otherwise, the buffered version is retrieved from the currently
running RW transaction. Reads in RW transactions execute unconditionally using the
current version, since no other transaction can interfere with the variable. When a RW
transaction commits, it increments gv, waits for executing R transactions via quiescence,
and releases the global lock. The extra wait step in quiescence is included to ensure the
order of operations on the global version and read version counters.

We give an example execution under PLE in Fig. 4.20. Here, two RW transactions
Ti, Tj , and one R transaction Tk execute concurrently. Tj starts first, so it acquires the
global lock, receives the read version of 0, and names itself the active writer. Transaction
Ti attempts to start a moment later, but cannot do so, since the global lock is taken, so
it waits. However transaction Tk starts unimpeded and reads x. Since the version of x
is consistent, it reads the memory location directly. Then, Tj executes two consecutive
writes, one on x and one on y. Both variables are therefore not in version 1, and Tj
maintains their old version in its buffer. When Tk executes a read on y next, the current
version of y is not consistent with the transaction’s read version, so it reads it from
Tj ’s buffer. Next, Tj attempts to commit, so it increments the global version. However
it cannot proceed, since there is an extant R transaction, so it waits until Tk commits,
which it detects by monitoring Tk’s read version. Once Tk commits it sets its read version
to infinity, which allows Tj to commit. Once Tj commits it releases the global lock, which

68 4 Existing Algorithms

allows Ti to begin execution.
The authors do not discuss the algorithm’s safety in [1], but since RW transactions

execute sequentially and wait for R transactions on commit, no transactions ever abort,
R transactions read a stale but consistent state of the system, then on intuition PLE is
opaque. PLE is non-aborting and does not deadlock.

4.3.3 SemanticTM
SemanticTM [10, 23] is a unique wait-free, fully pessimistic (abort-free) TM system with
instruction-level parallelism operating in the variable model.

SemanticTM maintains a list associated with each shared variable in the system,
which we will refer to as an execution queue, where transactions place operations to be
executed along with the operation’s dependencies. Dependencies are relations between
operations in a single transaction that determine the order in which the operations must
be executed. For instance, given a write operation which writes value v to variable x,
the operation cannot proceed until v is computed: if v is computed by executing another
operation, let’s say a read on y, then the write depends on the read. The authors define a
number of dependency types, including ones for arithmetic, conditional expressions, and
loops, as well as ones for operations on shared variables.

Given such execution queues, SemanticTM employs a pool of independent worker
threads. Each worker thread randomly (but uniformly) selects a variable, and tries to
execute the first operation in the queue, provided its dependencies allow it. This process
is done without blocking, which means workers execute in a wait-free fashion. This may
cause several workers to execute the same instruction in parallel, but it does not violate
safety.

The consistency of operation executions is assured in SemanticTM due to the order in
which operations are placed onto execution queues. First, each operation mi on variable
x from transaction Ti is placed onto the execution queue for x after all of the operations
on x in Ti on which mi depends. Second, given any two transactions Ti and Tj , for each
variable x, if any of Ti’s operations precede any of Tj ’s operations in the execution queue
for x, then all of Ti’s operations precede all of Tj ’s operations in the execution queue for
any variable.

SemanticTM does not specify how these conditions are satisfied by the system, indi-
cating rather that the operations are to be loaded onto execution queues statically. This
would imply that either the entire code of all transactions in the system, as well as the
order in which they execute is known a priori. We consider this an impractical assump-
tion for general purpose TM, especially with an outlook towards distributed systems. To
our best knowledge, this is also a much stronger assumption than is made by any other
TM.

The alternative is to use a run-time scheduler that maintains a proper order among
operations from different transactions for each variable’s execution queue. In order to
do so, the scheduler itself requires some form of synchronization. In the simplest case,
a global lock can be used to prevent one transaction from enqueueing operations while
another is in progress. This, however, implies that (potentially) conflicting transactions
are serialized by the scheduler. A more subtle scheduler may be implemented, effectively
using some transactional “front end” to enqueue operations to be executed by the Se-
manticTM “back end.”

The authors of [23] propose that SemanticTM is opaque (although the proof is not
given) assuming an appropriate scheduler. Regardless, SemanticTM is trivially serializ-
able. Assuming a static or wait-free scheduler, SemanticTM is also wait-free. Finally, no
transaction ever aborts, but irrevocable operations can be executed multiple times if two

4.4 Optimistic TM with Early Release 69

or more processors simultaneously access the same execution queue.

4.4 Optimistic TM with Early Release

A number of TM systems employ early release to improve parallelism. One example is
Dynamic STM [43], the system that can be credited with introducing the concept of early
release in the TM context. Dynamic STM allows transactions that only perform read op-
erations on particular variables to (manually) release them for use by other transactions.
However, it left the assurance of safety to the programmer, and, as the authors state,
even linearizability cannot be guaranteed by the system. The authors of [83] expanded
on the work above and evaluated the concept of early release with respect to read-only
variables on several concurrent data structures. The results showed that this form of
early release does not provide a significant advantage in most cases, although there are
scenarios where it would be advantageous if it were automated.

Dependency Aware STM [65] (DATM) is another noteworthy system with an early
release mechanism. DATM is an optimistic multicore-oriented TM based on TL2 [21],
augmented with early-release support. It allows a transaction Ti to write to a variable
that was accessed by some uncommitted transaction Tj , as long as Tj commits before
Ti. DATM also allows transaction Ti to read a speculative value, one written by Tj and
accessed by Ti before Tj commits. DATM detects if Tj overwrites the data or aborts, in
which case Ti is forced to restart. We examine DATM in detail in Section 4.4.1.

4.4.1 Dependence Aware TM
Dependency Aware TM (DATM) [65, 66] is a non-distributed commit-time optimistic
TM concurrency control algorithm based on TL2 but extended with an early release
mechanism. Specifically, DATM tracks dependencies between transactions and either
passes uncommitted data between them, or delays some of them to prevent their conflicts
from causing inconsistencies. In effect, conflicting transactions can be committed. We
explain the details of the dependency awareness mechanism below.

DATM specifies three kinds of dependences between transactions. If transaction Ti
writes some variable x and then Tj reads x afterward, then they are in a write-read
dependence, denoted Wi→Rj . If transaction Ti reads some variable x and then Tj writes
to x afterward, then they are in a read-write dependence, denoted Ri→Wj . If transaction
Ti writes to some variable x and then Tj writes to x afterward, then they are in a write-
write dependence, denoted Wi→Wj . If there is any dependece from Ti to Tj we say Tj
depends on Ti.

DATM transactions respond to these dependences using either forwarding or ordering.
If two transactions Ti and Tj are in Wi→Rj , then the value written by Ti is forwarded
to Tj when Tj performs a read. This means that if Ti previously wrote some new value to
x (and stored it in buffer bufi(x), since DATM is commit-time), then when Tj executes
a read operation on x it does not read the value of x directly from memory, but instead
reads the value of x from bufi(x). If two transactions Ti and Tj are in any relation
Wi→Rj , Wi→Wj or Ri→Wj , then the transactions are ordered: Tj cannot perform its
commit until Ti commits or aborts (in particular it cannot write its write set to memory).
In addition, if Ti aborts and Wi→Rj , then this forces Tj to also abort (thus, a cascading
abort occurs).

We show an example of overwriting and forwarding in Fig. 4.23. Here transaction Ti
executes a read and a consecutive write on variable x. The write causes the value of x

Ti
starti ri(x)→0

sti(x)←0

wi(x)1→oki
bufi(x)←1

tryC i→Ci
x←bufi(x)

Tj
startj rj(x)→1

stj(x)←bufi(x)
Wi→Rj

tryC j

?Ti is committed

→Cj

(a) Forwarding an ordering (adapted from [65]).

Ti
starti ri(x)→0

sti(x)←0

wi(x)1→oki
bufi(x)←1

wi(x)2→oki
bufi(x)←1
Tj is doomed

tryC i→Ci
x←bufi(x)

Tj
startj rj(x)→1

stj(x)←bufi(x)
Wi→Rj

tryC j

?Tj is doomed

(b) Forwarding and overwriting.

Ti
starti ri(x)→0

sti(x)←0

wi(x)1→oki
bufi(x)←1

tryC i→Ci
x←bufi(x)

Tj
startj rj(x)→0

stj(x)←0

wj(x)2→Aj

stj(x)←bufi(x)
Wi→Rj

Tk

startk

(c) Abort due to dependence cycle (adapted from [66]).

Ti
starti wi(x)1→oki

bufi(x)←1

ri(y)→1

sti(y)←bufj(y)

tryC i

?Tj is committed

Tj
startj wj(y)1→okj

bufj(y)←1

rj(x)→1

stj(x)←bufi(x)

tryC j

?Ti is committed

(d) Deadlock due to dependence cycle.

Figure 4.23: Examples of DATM histories.

4.5 Summary 71

to be buffered in bufi(x). Then, transaction Tj performs a read on x. The transactions
use a sequence associated with x to determine that a dependence Wi→Rj was created.
On the basis of this information, Ti forwards x to Tj , meaning Tj grabs the value of x
directly from bufi(x). Afterward, Tj attempts to commit. However, since the dependence
Wi→Rj exists, DATM defers Tj ’s commit until Ti commits. During commit Ti updates
the memory using the values it stored in the buffer. Finally, once Ti finishes its commit
procedure, Tj can finish to commit as well.

DATM buffers values read by each transaction Ti from each variable x in a separate
buffer which we indicate sti(x), which means that repeated reads do not need to engage
in forwarding or re-reading the value from memory. Transactions also read its own written
value by moving it from bufi(x) to sti(x), making local reads always consistent. On the
other hand overwriting, repeated writes by Ti to some variable x causes any transaction
for which there is a Wi→Rj dependece to be forced to abort. A doomed flag is set for
the dependent transaction in such cases, which every transaction checks during commit.
Since DATM does not have any mechanism to determine a priori whether forwarding a
variable will cause an abort or not, overwriting cannot be avoided. We show an example
of overwriting in Fig. 4.23b.

DATM is able to prevent deadlocks due to dependence cycles on the same variable.
If such a cycle appears, the transactions detect it by scanning the sequence of transac-
tions accessing the variable, and one of the transactions aborts. However, two DATM
transactions can deadlock during commit if they conflict on multiple variables (they can
enter a dependence cycle). We give examples of a prevented and undetected deadlock in
Fig. 4.23c and 4.23d, respectively.

The authors demonstrate in [65] that DATM is serializable (conflict serializable).
Since transactions can read from live transactions, it should be evident, that DATM
does not guarantee properties such as strictness, rigorousness, TMS1 and TMS2, and
opacity. Since commits of conflicting transactions are ordered in accordance to the order
of accesses of variables, and a Wi→Rj dependence induces a rollback in the transaction
that reads from an aborting transaction, then DATM guarantees recoverability. Since
aborting transactions can cause transactions that depend on them to also abort, DATM
is not cascadeless.

4.5 Summary

We present a summary of the characteristics of the examined algorithms in Table 4.1.
There, the approach column indicates whether a given TM uses the optimistic or pes-
simistic approach to concurrency control. The progress column indicates whether the
algorithm is blocking or wait-free. Here we describe SemanticTM as wait-free with an as-
terisk, to indicate the assumptions placed on the scheduler. The updates column specifies
whether the algorithm is encounter time or commit-time. The aborts column specifies
what scenarios can cause a transaction to abort, be it a deadlock, a conflict, a cascad-
ing abort, or an arbitrary abort (invoked manually by the programmer). The a priori
column indicates what information must be known to each transaction before it starts:
some TMs require that the read set and the write set be known, while others require
only a union of the two, while other still place additional constraints. The objects col-
umn indicates how the object model must be defined for the TM to operate. Note that
algorithms that operate in a heterogeneous model can be used with homogeneous and
variable models without modification, but they will not optimize with regards to read
operations. Similarly, TMs operating in the homogeneous model can be used in the vari-

Algorithm Approach Progress Updates Aborts A priori Objects Deadlock Safety Early release Irrevocable
B2PL pessimistic blocking encounter-time on deadlock ∅ any yes strict serializable yes abortable
C2PL pessimistic blocking encounter-time abort-free RSet, WSet any no strict serializable yes correct
S2PL pessimistic blocking encounter-time on deadlock ∅ any yes strict reads abortable
R2PL pessimistic blocking encounter-time on deadlock ∅ any yes rigorous no abortable
CS2PL pessimistic blocking encounter-time abort-free RSet, WSet any no opaque reads correct
CR2PL pessimistic blocking encounter-time abort-free RSet, WSet any no opaque no correct
CAS2PL pessimistic blocking encounter-time arbitrary abort RSet, WSet any no opaque reads user abortable
CAR2PL pessimistic blocking encounter-time arbitrary abort RSet, WSet any no opaque no user abortable
BVA pessimistic blocking encounter-time abort-free ASet heterogeneous no opaque no correct
SVA pessimistic blocking encounter-time abort-free ASet, suprema heterogeneous no strict serializable yes correct
TL2/DTL2 optimistic blocking commit-time on conflict ∅ variable no opaque no abortable
TFA optimistic blocking commit-time on conflict ∅ homogeneous no opaque no abortable
MS-PTM pessimistic blocking commit-time abort-free ∅ variable no opaque no correct
PLE pessimistic blocking encounter-time abort-free ∅ variable no opaque no correct
SemanticTM pessimistic wait-free* encounter-time abort-free ASet, dependencies variable no opaque no repeatable
DATM optimistic blocking commit-time on overwriting, ∅ variable yes conflict yes abortable

deadlock, and serializable
cascade

Table 4.1: Summary comparison of discussed TM algorithms.

4.5 Summary 73

able model. On the other hand, algorithms marked as any operate in the variable model,
but can be trivially lifted to any of the other models. The deadlock column indicates
whether a deadlock can occur (at all) in this algorithm. The safety column indicates
the strongest safety property or consistency condition satisfied by the transaction. The
early release column indicates whether the algorithm allows conflicting transactions to
simultaneously use the same shared object, e.g. by releasing a lock before committing.
Some algorithms allow this only with respect to objects that they only read. Finally, the
irrevocable column indicates how the algorithm handles the execution of irrevocable oper-
ations. Such an operation may be subject to aborts or repeated execution without aborts,
which is incorrect behavior. We differentiate between aborts caused by the concurrency
control algorithm and those caused by the transaction’s programmer—if the transaction
elects to abort arbitrarily, aborting irrevocable operations is the programmer’s wish, and,
therefore, correct behavior.

Properties for TM with Early Release
Note that despite there being some strong safety properties that allow early release like
VWC, live opacity, and elastic opacity, the TM algorithms that use the early release
technique do not satisfy them, but instead satisfy only variants of serializability, which
are relatively weak. The stronger properties cannot be satisfied by these TM algorithms
because of the stringent and, we submit, impractical requirements they make with respect
to abortability of transactions that employ early release. On the other hand, the behavior
of these algorithms differs greatly. For instance, 2PL and SVA do not allow overwriting to
occur in aborted transactions, while DATM does. Since these differences are not expressed
by safety properties the algorithms satisfy, we conclude that there is a lack of adequate
TM safety properties that can regulate and describe the behavior of transactions with
early release.

Applicability to Distributed TM
Among the algorithms presented, a number can be used in distributed systems. These
include two-phase locking algorithms, versioning algorithms, DTL2 and TFA. These al-
gorithms are either designed specifically for the distributed context, or were successfully
implemented in such systems. Out of these, versioning algorithms use a global locking
structure, which is problematic for scalability in distributed systems, since all clients will
have to contact a single network node. Nevertheless, the global lock can be replaced by
a more comprehensive locking scheme using the knowledge of a priori access sets (we
propose one in Chapter 6). Out of these systems TFA is specifically designed to operate
in the DF model, while DTL2, versioning algorithms, and two-phase locking algorithms
fit the CF model.

MS-PTM, PLE, and DATM are less well-suited for distributed systems, since they
use global locking structures, which are a scalability stumbling block in such systems (all
clients communicating with a single lock), and a potential single point of failure. Secondly,
MS-PTM, PLE, and DATM require extensive communication between transactions (e.g.
quiescence). However, communication between clients is impractical in many architec-
tures, since it requires client applications to serve other client applications. Clients may
be geo-distributed, which introduces additional delays, placed behind firewalls, which pre-
vents them from communicating, or have limited processing capability, as in the case of
mobile devices. Hence, in order to apply these algorithms in distributed systems, methods
must be devised for transactions to push the required information to other transactions.
Note that a global structure collecting the required information is not acceptable for the
same reasons as a global lock. Hence, more comprehensive solutions are required.

74 4 Existing Algorithms

An application of SemanticTM in distributed systems is difficult to envision, due to
its requirement for transactional operations to be placed onto executor queues in order.
Assuming that requirement is met, Semantic TM can be used to execute transactional
operations in a distributed system, although its model does not necessarily fit CF nor
DF. On the other hand, meeting the requirement for operation order in executor queues
is unlikely to be met statically, and so, will require a distributed on-line scheduler to be
employed during execution. Such a scheduler is a system whose complexity will match
those of a TM, so we consider SemanticTM not to be applicable to distributed systems
directly.

Note that out of the systems applicable to distributed systems only 2PL (specifically
C2PL) and versioning algorithms provide support for irrevocable operations.

5
New Properties

In this chapter we introduce last-use opacity, a strong TM safety property that allows
early release, but makes provisions for transaction safety. First we motivate the need
for the property based on our analysis of the existing properties and how they apply
to existing algorithms (Chapter 3). Then we provide an intuition, as well as the formal
definition of the property, which we further explain using numerous examples. Finally, we
provide an in-depth discussion of the scenarios allowed by the property, the implications
for TM consistency in practice, and the relationship between last-use opacity and other
TM safety properties and consistency conditions.

The introduced property allows a small class of inconsistent views to occur, which,
we argue, are relatively harmless in practice, and only occur in a specific system model.
Nevertheless, we follow by introducing a strong version of the last-use opacity property,
which eliminates the inconsistent views altogether at the cost of parallelism. As such, this
property is more generally applicable, but more difficult to enforce. The results presented
in this chapter extend our work in [76, 77, 79].

5.1 Last-use Opacity

The survey of properties shows that, while there are many safety properties for TM with
a wide range of guarantees they provide, with respect to early release they fall into three
basic groups.

The first group consists of properties that allow early release but do not prevent
overwriting: serializability and recoverability. These properties do not regulate what can
be seen by aborting transactions. In effect, they allow any dangerous scenario to occur
with respect to early release, as long as the situation is resolved by aborting offending
transactions. As argued in [33], this is insufficient for TM in general, because operating
on inconsistent state may lead to uncontrollable errors, including crashing the process.

The second group consists of properties that preclude the dangerous situations al-
lowed by the first group. This group includes cascadelessness, strictness, rigorousness,
opacity, markability TMS1, and TMS2. The properties in this group forbid early release
altogether, thus solving all related consistency problems, but making them unusable in
conjunction with the early release technique.

76 5 New Properties

The third group allows early release but precludes overwriting and reading from
aborting transactions. It includes live opacity, elastic opacity, and VWC. These prop-
erties seem to provide a reasonable middle ground between allowing early release and
eliminating inconsistent views. However, these properties forbid transactions to release
early and abort. As such they can be useful only for TM operating in the commit-only
model, or in TM systems where transactions that release early become irrevocable.

On the other hand the commit-only model limits the applicability of such TMs in
certain contexts, since arbitrary aborts can be a necessary prerequisite for some appli-
cations. For instance, aborts are a necessary part of recovery mechanisms that bring the
TM system to a consistent state as a result of a partial failure. Another example is a
deadlock recovery system, which aborts transactions to eliminate wait dependency cy-
cles. Furthermore, TM systems that provide the programmer access to arbitrary aborts
are more expressive. That is, there are situations where the programmer may want to
withdraw any changes made by a transaction mid-execution. Reverting changes ad hoc
detracts from the readability of the code, and it is usually less efficient. The problem
becomes magnified in distributed TM, where performing an ad hoc abort and compensa-
tion remotely usually comes at a price of extra network communication overhead. Thus,
for DTM and TM systems in the arbitrary abort model, live opacity and VWC are not
useful.

On the other hand, if transactions are allowed to abort in general, but not in the case
of ones with early release, then this results in additional complexity to a TM (see e.g.,
[92]). Moreover, in applications like distributed computing, transaction aborts may be
induced by external stimuli, so it can be completely impossible to prevent transactions
from aborting [74]. In addition, some of those properties also have specific problems that
make them difficult to apply widely in practice. For instance, elastic opacity introduces
unnecessary restrictions on the order of operations within a transaction, while simultane-
ously diverging from the minimal standard set by serializability. Meanwhile, live opacity
arbitrarily precludes transactions that read variables released early from releasing early
themselves.

In summary, properties from the first group are not adequate for any TM and those
from the second group do not allow any form of early release. The third group imposes
an overstrict requirement that transactions which release early be irrevocable. None of
the properties provide a satisfactory, strong safety property that could be used for a TM
with early release in general. Thus, guarantees given by a TM where early release is a
necessary component, but where transactions cannot be prevented from aborting, cannot
be adequately expressed with the existing properties.

5.1.1 Intuition
We present last-use opacity, a new TM safety property that provides strong consistency
guarantees and allows early release without compromising on the ability of transactions
to abort. The property is based on the preliminary work in [76, 77].

The idea of last-use opacity hinges on identifying the closing write operation execu-
tion on a given variable in individual transactions. Informally, a closing write on some
variable is such, that the transaction which executed it will not subsequently execute an-
other write operation on the same variable in any possible extension of the history. What
is possible is determined by the program that is being evaluated to create that history.
Knowing the program, it is possible to infer (to an extent) what operations a particu-
lar transaction will execute. Hence, knowing the program, we can determine whether a
particular operation on some variable is the last possible such operation on that variable
within a given transaction. Thus, we can determine whether a given operation is the

5.1 Last-use Opacity 77

1 subprogram P1 {
2 transaction { // spawns as T1
3 x ← 1
4 if (y > 0)
5 x ← x + y
6 y ← x + 1
7 }
8 }

9 subprogram P2 {
10 transaction { // spawns as T2
11 y ← y + 1
12 }
13 }

Figure 5.1: Transactional program with closing write.

closing write operation in a transaction.
Take, for instance, the program in Fig. 5.1, where subprogram P1 spawns transaction

T1, and P2 spawns T2. Let us assume that initially x and y are set to 0. Depending on the
semantics of the TM, as these subprograms interweave during the execution, a number
of histories can be produced. We can divide all of among them into two cases. In the first
case T2 writes 1 to y in line 11 (in P2) and this value is then read by T1 in line 4 (in P1).
As a consequence, T1 will execute the write operation in line 5. The second case assumes
that T1 reads 0 in line 4 (e.g., because T2 executed line 11 much later). In this case, T1
will not execute the write operation in line 5. We can see, however, that in either of the
above cases, once T1 executes the write to x on line 3, then no further writes to x will
follow in T1 in any conceivable history. Thus, the write operation execution generated by
line 5 is the closing write on x in T1. On the other hand, the write operation execution
generated by line 3 of P1 is never the closing write on x in T1, because there exists a
conceivable history where another write operation execution will appear (i.e., once line 5
is evaluated). This is true even in the second of the cases, because line 5 can be executed
in potentia, even if it is not executed de facto.

Note that once any transaction Ti completes executing its closing write on some
variable x, it is certain that no further modifications to that variable are intended by
the programmer as part of Ti. This means, from the perspective of Ti (and assuming no
other transaction modifies x) the state of x would be the same at the time of the closing
write as if the transaction attempted to commit. Hence, with respect to x, we can treat
Ti as if it had attempted to commit.

Last use opacity uses the concept of a closing write to dictate one transaction can read
from another transaction. We give a formal definition in Section 5.1.2, but, in short, given
any two transactions, Ti and Tj , last-use opacity allows Ti to read variable x from Tj if
the latter is either committed or commit-pending, or, if Tj is live and it already executed
its closing write on x. This has the benefit of allowing early release while excluding
overwriting completely. However, last-use opacity does allow cascading aborts to occur.
We discuss the guarantees given by the property in Section 5.1.4 and the implications of
inconsistent views in Section 5.1.5, as well as ways of mitigating them. We compare the
strength of last-use opacity with other properties in Section 5.1.6.

5.1.2 Definition
First, we define the concept of a closing write to some variable by a particular transaction.
We do this by first defining a closing write operation invocation, and then extend the
definition to complete operation executions.

Given program P and a set of processes Π executing P, since different interleavings
of Π cause an execution E(P,Π) to produce different histories, then let HP,Π be the set
of all possible histories that can be produced by E(P,Π), i.e., HP,Π is the largest possible

78 5 New Properties

set s.t. HP,Π = {H | H |= E(P,Π)}.

Definition 20 (Closing Write Invocation). Given a program P, a set of processes Π
executing P and a history H s.t. H |= E(P,Π), i.e. H ∈ HP,Π, an invocation invi

[
w(x)v

]
is the closing write invocation on some variable x by transaction Ti in H, if for any
history H ′ ∈ HP,Π for which H is a prefix (i.e., H ′ = H · R) there is no operation
invocation invi

[
w(x)u

]
s.t. invi

[
w(x)v

]
precedes invi

[
w(x)u

]
in H ′|Ti.

Definition 21 (Closing Write). Given a program P, a set of processes Π executing P
and a history H s.t. H |= E(P,Π), an operation execution is the closing write on some
variable x by transaction Ti in H if it comprises of an invocation and a response other
than Ai, and the invocation is the closing write invocation on x by Ti in H.

The closing read invocation and the closing read operation are defined analogously.
We call a write invocation or operation that is not closing, a non-closing write invocation
or operation, and so on for read invocations and operations. In transaction diagrams we
mark a closing write operation execution in some history as . Note that an operation
can be the ultimate operation execution in some transaction, but still not fit the definition
of a closing operation execution.

If a transaction executes its closing write on some variable, we say that the transaction
decided on x.

Definition 22 (Transaction Decided on x). Given a program P, a set of processes Π and
a history H s.t. H |= E(P,Π), we say transaction Ti ∈ H decided on variable x in H iff
H|Ti contains a complete write operation execution wi(x)v→oki that is the closing write
on x.

Given some history H, let T̂H be a set of transactions s.t. Ti ∈ T̂H iff there is some
variable x s.t. Ti decided on x in H. Given any Ti ∈ H, a decided transaction subhistory,
denoted H |̂Ti, is the longest subsequence of H|Ti s.t.:

a) H |̂Ti contains starti → oki, and
b) for any variable x, if Ti decided on x in H, then H |̂Ti contains (H|Ti)|x.

In addition, a decided transaction subhistory completion, denoted H
�

|Ti, is a sequence s.t.
H
�

|Ti = H |̂Ti ·
[
tryC i → Ci

]
.

Given a sequential history S s.t. S ≡ H, LVis(S, Ti) is the longest subhistory of S,
s.t. for each Tj ∈ S:

a) if i = j or Tj is committed in S and Tj ≺S Ti, then S|Tj ⊆ LVis(S, Ti),
b) if Tj is not committed in S but Tj ∈ T̂H and Tj ≺S Ti, and it is not true that

Tj ≺H Ti, then either S
�

|Tj ⊆ LVis(S, Ti) or not.

Given a sequential history S and a transaction Ti ∈ S, we then say that transaction
Ti is last-use legal in S if LVis(S, Ti) is legal. Note that if S is legal, then it is also last-use
legal (see appendix for proof).

Definition 23 (Final-state Last-use Opacity). A finite history H is final-state last-use
opaque if, and only if, there exists a sequential history S equivalent to any completion of
H s.t.,

a) S preserves the real-time order of H,
b) every transaction in S that is committed in S is legal in S,
c) every transaction in S that is not committed in S is last-use legal in S.

Definition 24 (Last-use Opacity). A history H is last-use opaque if, and only if, every
finite prefix of H is final-state last-use opaque.

5.1 Last-use Opacity 79

Ti
starti wi(x)1→oki tryC i→Ci

Tj
startj rj(x)→1 tryC j→Cj

Figure 5.2: Early release—last-use opaque history.

Ti
starti wi(x)1→oki tryC i→Ci

Tj
startj rj(x)→1 tryAj→Aj

Figure 5.3: Early release to an aborting transaction—last-use opaque history.

Ti
starti wi(x)1→oki tryAi→Ai

Tj
startj rj(x)→1 tryAj→Aj

Figure 5.4: Early release with two aborting transactions—last-use opaque history.

Theorem 1. Last-use opacity is a safety property.

Proof. By Def. 24, last-use opacity is trivially prefix-closed.
Given HL that is an infinite limit of any sequence of finite histories H0, H1, ..., s.t

every Hh in the sequence is last-use opaque and every Hh is a prefix of Hh+1, since each
prefix Hh of HL is last-use opaque, then, by extension, every prefix Hh of HL is also
final-state last-use opaque, so, by Def. 24, HL is last-use opaque. Hence, last-use opacity
is limit-closed.

Since last-use opacity is both prefix-closed and limit-closed, then, by Def. 1, it is a
safety property.

5.1.3 Examples
In order to aid understanding of the property we present examples of last-use opaque
histories. These are contrasted by examples of histories that are not last-use opaque. We
discuss the examples below.

Early Release on Closing Write
The example in Fig. 5.2 shows Ti executing a write on x once and releasing x early to
Tj . We assume that the program generating the history is such, that the write operation
executed by Ti is the closing write operation execution on x. The history is intuitively
correct, since both transactions commit, and Tj reads a value written by Ti. On the formal
side, since both transactions are committed in this history, the equivalent sequential
history would consist of all the events in Ti followed by the events in Tj and both
transactions would be legal, since Ti writes a legal value to x and Tj reads the last value
written by Ti to x. Thus, the history is final-state last-use opaque.

80 5 New Properties

Ti
starti wi(x)1→oki tryC i→Ci

Tj
startj rj(x)→1 tryC j→Cj

Figure 5.5: Early release before closing write—not last-use opaque.

Ti
starti wi(x)1→oki tryAi→Ai

Tj
startj rj(x)1 tryAj→Aj

Figure 5.6: Early release with two aborting transactions before closing write—not last-use
opaque.

Since last-use opacity requires prefix closeness, then all prefixes of the history in
Fig. 5.2 also need to be final-state last-use opaque. We present only two of the interesting
prefixes, since the remainder are either similar or trivial. The first interesting prefix is
created by removing the commit operation execution from Tj , which means Tj is aborted
in any completion of the history. We show such a completion in Fig. 5.3. Still, Ti writes
a legal value to x and Tj reads the last value written by Ti to x, so that prefix is also
final-state last-use opaque. Another interesting prefix is created by removing the commit
operation executions from both transactions. Then, in the completion of the history
both transactions are aborted, as in Fig. 5.4. Then, in an equivalent sequential history
Tj would read a value written by an aborted transaction. In order to show legality of a
committed transaction, we use the subhistory denoted Vis, which does not contain any
transactions that were not committed in the history from which it was derived. Thus, if Tj
were committed, it would not be legal, since its Vis would not contain a write operation
execution writing the value the transaction actually read. However, since Tj is aborted,
the definition of final-state last-use opacity only requires that LVis rather than Vis be
legal, and LVis can contain operation executions on particular variables from an aborted
transaction under the condition that the transaction already executed its closing write
on the variables in question. Since, in the example Ti executed its closing write on x,
then this write will be included in LVis for Tj , so Tj will be last-use legal. In consequence
the prefix is also final-state last-use opaque. Indeed, all prefixes of example Fig. 5.2 are
final-state last-use opaque, so the example is last-use opaque, and, by extension, so are
the examples in Fig. 5.3 and Fig. 5.4.

Early Release on Non-closing Write
Contrast the example in Fig. 5.2 with the one in Fig. 5.5. The histories presented in both
are identical, with the exception that the write operation in Fig. 5.2 is considered to
be the closing operation execution, while in Fig. 5.5 it is not. The difference would stem
from differences in the programs that produced these histories. For instance, the program
producing the history in Fig. 5.5 could conditionally execute another operation on x, so,
even though that condition was not met in this history, the potential of another write on
x means that the existing write cannot be considered a closing write operation execution.
The consequence of this is that while the example itself is final-state last-use opaque, one
of its prefixes is not, so the history is not last-use opaque. The offending prefix is created

5.1 Last-use Opacity 81

Ti
starti wi(x)1→oki tryC i→Ci

Tj
startj rj(x)→1 tryAj→Aj

Figure 5.7: Early release to a prematurely aborting transaction—last-use opaque.

Ti
starti wi(x)1→oki tryC i→Ci

Tj
startj rj(x)→1 tryC j→Cj

Figure 5.8: Commit order not respected—not last-use opaque.

Ti
starti wi(x)1→oki tryC i→Ci

Tj
startj wj(x)2→okj tryC j→Cj

Figure 5.9: Reverse commit order in writer transactions—last-use opaque.

by removing commit operations in both transactions, so both transactions would abort in
any completion, as in Fig. 5.6. Here, since Ti does not execute the closing write operation
on x, then the write operation would not be included in LVis for Tj , so the value read
by Tj could not be justified. Thus, Tj is not legal in that history, and, therefore, the
history in Fig. 5.6 is not final-state last-use opaque (so also not last-use opaque). Fig. 5.6
represents the completion of a prefix of the history in Fig. 5.5, so Fig. 5.6 not being
final-state last-use opaque, means that Fig. 5.5 is not last-use opaque.

Recoverability
The examples in Fig. 5.7 and Fig. 5.8, show that recoverability is required, i.e., trans-
actions must commit in order. Last-use opacity of the example in Fig. 5.7 is analogous
to the one in Fig. 5.3, since their equivalent sequential histories are identical, as are the
sequential histories equivalent to their prefixes. Furthermore, intuitively, if Tj reads a
value of a variable released early by Ti and aborts before Ti commits, this is correct
behavior. On the other hand, the history in Fig. 5.8 is not last-use opaque, even though
it is final-state last-use opaque (by analogy to Fig. 5.2). More specifically, a prefix of
the history where the commit operation execution is removed from Ti is not final-state
last-use opaque. This is because a completion will require that Ti be aborted, the oper-
ations executed by Ti are not going to be included in any Vis. Since Tj is committed,
then its Vis must be legal, but it is not, because the read operation reading 1 will not be
preceded by any writes in Vis. Since the prefix contains an illegal transaction, then it is
not final-state last-use opaque, and thus, the history in Fig. 5.8 is not last-use opaque.

On the other hand, the example in Fig. 5.9 shows that the commitment order is not
required for all conflicting transactions, just those with a reads-from relation. Here, the
example is analogous to Fig. 5.8, but Tj does not read from Ti. This means that Tj ’s
LVis and Vis will be legal regardless of whether Ti’s operations are included or excluded.

82 5 New Properties

Ti
starti wi(x)1→oki tryAi→Ai

Tj
startj rj(x)→1 wj(x)2

Tk
startk rk(x)→0

Figure 5.10: Freedom to read from or ignore an aborted transaction—last-use opaque.

Ti
starti wi(x)1→oki wi(x)2→oki tryC i→Ci

Tj
startj rj(x)→1 tryC j→Cj

Figure 5.11: Early release with overwriting—not last-use opaque.

Then, given a sequential history equivalent to the example, where Ti precedes Tj , both
Ti and Tj in such a history will be legal. Hence the history is final-state last-use opaque.
Then, in all prefixes of the history Ti is aborted in the completion, whereas Tj may be
either committed or aborted. If Tj is committed, then Ti will not be included in Tj ’s Vis,
but this does not make Vis illegal, as we pointed out earlier. Similarly, if Tj is aborted,
then Ti may or may not be included in Tj ’s LVis, but this is immaterial with respect to
Tj ’s LVis being legal. Hence all the prefixes will be final-state last-use opaque as well,
and, in effect, the example is last-use opaque.

Consistent Values
The example in Fig. 5.10 shows that a transaction is allowed to read from a transaction
that eventually aborts, or ignore that transaction, because of the freedom left within the
definition of LVis. I.e., transactions Tj is concurrent to Ti, but Tk follows Ti in real time.
Ti executes a closing write on x, so Tj is allowed to include the write operation on in its
LVis. Since Tj sees the value written to x by that write, Tj includes the write in LVis.
On the other hand, Tk cannot include Ti’s write in LVis, since Ti aborted before Tk even
started, so the write should not be visible to Tk. On the other hand Tk is allowed to
include Tj in its LVis. Tk should not do so, however, since it ignores Tj as well as Ti
(which makes sense as Tj is doomed to abort). Hence Tk reads the value of x to be 0. If
Tj is included in Tk’s LVis, reading 0 would be incorrect. Hence, the definition of LVis
allows Tj to be arbitrarily excluded. In effect all three transactions are correct (so long
as Tj does not eventually commit).

Overwriting
Fig. 5.11 shows an example of overwriting, which is not last-use opaque, since there is no
equivalent sequential history where the write operation in Ti writing 1 to x would precede
the read operation in Tj reading 1 from x without the other write operation writing 2
to x also preceding the read. Thus, in all cases Tj is not legal, and the history is neither
final-state last-use opaque, nor last-use opaque.

5.1 Last-use Opacity 83

Ti
starti wi(x)1→oki ri(y)→1

Tj
startj rj(x)→1 wj(y)1→okj

Figure 5.12: Dependency cycle—not last-use opaque.

Dependency Cycle
Finally, Fig. 5.12 shows an example of a cyclic dependency, where Tj reads x from Ti,
and subsequently Ti reads y from Tj . Both writes in the history are closing writes. This
example has unfinished transactions, which are thus aborted in any possible completion
of this history. There are two possible sequential histories equivalent to that completion:
one where Ti precedes Tj and one where Tj precedes Ti. In the former case, LVis of Ti
does not contain any operations from Tj , because Tj follows Ti. Thus, there is no write
operation on y preceding a read on y returning 1 in Ti’s LVis, which does not conform
to the sequential specification, so Ti’s LVis is not legal. Hence, Ti is not legal in that
scenario. The former case is analogous: Tj ’s LVis will not contain a write operation from
Ti, because Ti follows Tj . Therefore Tj ’s LVis contains a read on x that returns 1, which
is not preceded by any write on x, which causes the sequence not to conform to the
sequential specification and renders the transaction not legal. Since either case contains
a transaction that is not legal, then that history is not final-state last-use opaque, and
therefore not last-use opaque.

5.1.4 Guarantees
Last-use opacity gives the programmer the following guarantees.

Serializability
If a transaction commits, then the value it reads can be explained by operations executed
by preceding or concurrent transactions. This guarantees that a transaction that views
inconsistent state will not commit.

Lemma 23 (Serializability). Every last-use opaque history is serializable.

Proof. For the sake of contradiction let us assume that H is last-use opaque and not
serializable. Since H is last-use opaque, then from Def. 24 H is also final-state last-use
opaque. Then, from Def. 23 there exists a completion HC = Compl(H) such that there
is a sequential history ŜH s.t. ŜH ≡ HC , ŜH preserves the real-time order of HC , and
any committed transaction in ŜH is legal in ŜH . However, since H is not serializable,
then from Def. 7 there does not exist a completion HC = Compl(H) such that there is
a sequential history ŜH s.t. ŜH ≡ HC , and any committed transaction in ŜH is legal in
ŜH . This contradicts the previous statement.

Real-time Order
Successive transactions will not be rearranged to fit serializability, so a correct history
will agree with an external clock, or an external order of events.

Lemma 24 (Real-time Order). Every last-use opaque history preserves real-time order.

Proof. Trivially from Def. 24 and Def. 23a.

84 5 New Properties

Recoverability
If one transaction reads from another transaction, the former will commit only after the
latter commits. This guarantees that transactions commit in order.

Lemma 25 (Recoverability). Every last-use opaque history is recoverable.

Proof. Let us assume that H is not recoverable. Then there must be some transactions
Ti and Tj s.t. Tj reads from Ti and then Tj commits before Ti. Such a history will contain
a prefix P where any completion will contain an aborted Ti and a committed Tj , so for
any equivalent sequential history ŜH Vis(ŜH , Tj) will not contain ŜH |Ti. Since Tj reads
from Ti then such Vis(ŜH , Tj) will not be legal, so by Def. 23 P is not last-use opaque
and thus, by Def. 24, H is not last-use opaque, which is a contradiction.

Last-use opacity does not preserve commitment order as defined in Def. 8, but we
consider recoverability sufficient for TM. Note that strong properties like opacity also
deal with commitment order only to the extent of recoverability.

Precluding Overwriting
If transaction Ti reads the value of some variable written by transaction Tj , then Tj will
never subsequently modify that variable.

Lemma 26 (Precluding Overwriting). Last-use opacity does not support overwriting.

Proof. For the sake of contradiction let us assume that there exists H that is a last-use
opaque history with overwriting, i.e. (from Def. 5) there are transaction Ti and Tj s.t.:

a) Ti releases some variable x early,
b) H|Ti contains wi(x)v→ oki and wi(x)v′→ oki, s.t. the former precedes the latter

in H|Ti,
c) H|Tj contains rj(x)→v that precedes wi(x)v′→oki in H.

Since H is opaque, then there is a completion C = Compl(H) and a sequential history S
s.t. S ≡ H, S preserves the real-time order of H, and both Ti and Tj in S are legal in S.
In S, either Ti ≺S Tj or Tj ≺S Ti. In either case, any Vis(S, Tj) or LVis(S, Tj) by their
definitions will contain either the sequence of both wi(x)v→ oki and wi(x)v′→ oki or
neither of those write operation executions. In either case, rj(x)→v will not be directly
preceded by wi(x)v → oki among operations on x in either Vis(S, Tj) or LVis(S, Tj).
Therefore, Tj in S cannot be legal in S, which is a contradiction.

Aborting Early Release
A transaction can release some variable early and subsequently abort.

Lemma 27 (Aborting Early Release). Last-use opacity supports aborting early release.

Proof. Let H be the history depicted in Fig. 5.4. Here, Ti releases x early to Tj and
subsequently aborts, which satisfies Def. 6. Since Ti and Tj are both aborted in H, H
has a completion C = Compl(H) = H. Let S be a sequential history s.t. S = H|Ti ·H|Tj .
S vacuously preserves the real-time order of H and trivially S ≡ H. Transaction Ti in S
is last-use legal in S, because LVis(S, Ti) = H

�

|Ti—whose operations on x are limited to a
single write operation execution—is within the sequential specification of x. Transaction
Tj in S is also last-use legal in S, since LVis(S, Tj) = H

�

|Ti ·H
�

|Tj—whose operations on x
consist of wi(x)v→oki followed by rj(x)→v—is also within the sequential specification
of x. Since both Ti and Tj in S are last-use legal in S, H is final-state last-use opaque. All

5.1 Last-use Opacity 85

1 // invariant: x 0
2 transaction {
3 x = y - 1
4 if (x < 0)
5 abort
6 }

1 // invariant: x 0
2 transaction {
3 *(_array + x);
4 }

(a) Abort example. (b) Memory error example.

Figure 5.13: Inconsistent view examples.

prefixes of H are trivially also final-state last-use opaque (since either their completion
is the same as H’s, they contain only a single write operation execution on x, or contain
no operation executions on variables), so H is last-use opaque.

Exclusive Access
Any transaction has effectively exclusive access to any variable it accesses, at minimum,
from the first to the final modification it performs, regardless of whether it eventually
commits or aborts.

Lemma 28 (Exclusive Access). Any transaction in any last-use opaque history has ex-
clusive access to variable x between its first and last write to x.

Proof. From Lemmas 23 and 26.

5.1.5 Inconsistent Views
Last-use opacity does not preclude transactions from aborting after releasing a variable
early. As a consequence there may be instances of cascading aborts, which have varying
implications on consistency depending on whether the TM model allows transactions to
abort programmatically. We distinguish three cases of models and discuss them below.

Commit-only Model
Let us assume that transactions cannot arbitrarily abort, but only do so as a result of
receiving an abort response to invoking a read or write operation, or while attempting
to commit. In other words, there is no tryA operation in the transactional API, as per
the commit-only transactional model. In that case, since overwriting is not allowed, the
transaction never reveals intermediate values of variables to other transactions. This
means, that if a transaction released a variable early, then the programmer did not
intend to change the value of that variable. So, if the transaction eventually committed,
the value of the variable would have been the same. So, if the transaction is eventually
forced to abort rather than committing, the value of any variable released early would
be the same regardless of whether the transaction committed or aborted. Therefore, we
can consider the inconsistent state to be safe. In other words, if the variable caused an
error to occur, the error would be caused regardless of whether the transaction finally
aborts or commits. Thus, we can say that with this set of assumptions, the programmer
is guaranteed that none of the inconsistent views will cause unexpected behavior, even if
cascading aborts are possible. Note that the use of this model is not uncommon (see eg.
[28, 5, 6]).

86 5 New Properties

Ti
starti ri(y)→0 wi(x) -1→oki ri(x)→ -1 tryAi→Ai

Tj
startj rj(x)→ -1

Figure 5.14: Last-use opaque history with inconsistent view.

Arbitrary Abort Model
Alternatively, let us assume that transactions can arbitrarily abort (in addition to forced
aborts as described above) by executing the operation tryA as a result of some instruc-
tion in the program. In that case it is possible to imagine programs that use the abort
instruction to cancel transaction due to the “business logic” of the program. Therefore
a programmer explicitly specifies that the value of a variable is different depending on
whether the transaction finally commits or not. An example of such a program is given in
Fig. 5.13a. Here, the programmer enforced an invariant that the value of x should never
be less than zero. If the invariant is not fulfilled, the transaction aborts. However, writing
a value to x that breaks the invariant is the closing write operation execution for this
program, so it is possible that another transaction reads the value of x before the transac-
tion aborts. If the transaction that reads x is like the one in Fig. 5.13b, where x is used to
index an array via pointer arithmetic, a memory error is possible. Nevertheless, the his-
tory from Fig. 5.14 that corresponds to a problematic execution of these two transactions
is clearly allowed by last-use opacity (assuming that the domain of x is Z). Thus, if the
abort operation is available to the programmer the guarantee that inconsistent views will
not lead to unexpected effects is lost. Therefore it is up to the programmer to use aborts
wisely or to prevent inconsistent views from causing problems, by prechecking invariants
at the outset of a transaction, or maintaining invariants also within a transaction (in a
similar way as with monitor invariants). Alternatively, a mechanism can be built into the
TM that prevents specific transactions at risk from reading variables that were released
early, while other transactions are allowed to do so. However, if these workarounds are
not satisfactory, we present a stronger variant of last-use opacity in Section 5.2 that deals
specifically with this model and eliminates its inconsistent views.

Restricted Abort Model
We present a third alternative to aborts in transactions: a compromise between only
forced aborts and programmer-initiated aborts. This option assumes that the tryA op-
eration is not available to the programmer, so it cannot be used to implement business
logic. However, we allow the TM system to somehow inject tryA operations in the code
in response to external stimuli, such as crashes or exceptions and use aborts as a fault
tolerance mechanism. However, since the programmer cannot use the operation, the pro-
grams must be coded as in the commit-only model, and therefore the same guarantees
are given as in the commit-only model.

5.1.6 Strength
We compare the relative strength of last-use opacity with other properties from Chapter 3
and present the result of the comparison in Fig. 5.15. We provide the proofs for each
comparison in Appendix A.

5.2 Strong Last-use Opacity 87

HLU opacity ⊃ H opacity
HLU opacity ⊃ Hmarkability
HLU opacity ⊃ H live opacity
HLU opacity ⊃ H rigorousness
HLU opacity ⊃ HTMS2

HLU opacity ‖ H elastic opacity
HLU opacity ‖ HVWC
HLU opacity ‖ H strictness
HLU opacity ‖ H cascadelessness
HLU opacity ‖ HTMS1
HLU opacity ‖ HCO

HLU opacity ⊂ H serializability
HLU opacity ⊂ H recoverability

Figure 5.15: Strength of last-use opacity.

5.2 Strong Last-use Opacity

Even though last-use opacity prevents inconsistent views in the commit-only and re-
stricted aborts models, it does not prevent inconsistent views in the arbitrary aborts
model. Hence, we present a variant of last-use opacity called strong last-use opacity that
extends the definition of a closing write operation to take tryA operations into account,
as if it was an operation that modifies a given variable.

5.2.1 Intuition
Strong last-use opacity behaves in the same way as last-use opacity: it prevents trans-
actions from reading from other live transactions, unless the transaction is guaranteed
not to further modify the variable in question. The difference between last-use opacity
and strong last-use opacity is that the latter considers aborts as operations that modify
the variable as well as write operations, whereas last-use opacity considers only writes.
Thus, strong last-use opacity defines its own variant of a closing write to be any write
operation execution that is not followed by another write on the variable, nor any (vol-
untary) abort. In this way, transactions that can start a cascading abort are prevented
from releasing early. This means that inconsistent views are excluded, while transactions
with early release are prevented from aborting.

5.2.2 Definition
Below we define the concept of a strongly closing write to some variable by a particular
transaction: we first define a strongly closing write operation invocation, and then extend
the definition to complete operation executions.

Definition 25 (Strongly Closing Write Invocation). Given a program P, a set of pro-
cesses Π executing P and a history H s.t. H |= E(P,Π), i.e. H ∈ HP,Π, an invocation
invi

[
w(x)v

]
is the closing write invocation on some variable x by transaction Ti in H, if

for any history H ′ ∈ HP,Π for which H is a prefix (i.e., H ′ = H ·R) there is no operation
invocation inv′ s.t. invi

[
w(x)v

]
precedes inv′ in H ′|Ti where (a) inv′ = invi

[
w(x)u

]
or

(b) inv′ = invi
[
tryA

]
.

The remainder of the definitions of strong last-use opacity are formed by analogy to
their counterparts in last-use opacity. Note that these definitions do not preclude some
other operation than tryA returning Ai after a strongly closing write.

The definition of a strongly closing write operation execution is analogous to that
of closing write operation execution Def. 21. The strongly closing write is used instead
of the closing write to define a transaction strongly decided on x in analogy to Def. 22.
Then, that definition is used to define

ˇ
T̂H , H

ˇ
|̂Tj , and H

�

�

|Tj by analogy to T̂H , H |̂Tj and

88 5 New Properties

Fig. Description Last-use Strongly
opaque last-use

opaque
5.2 Early release � �

5.3 Early release to aborting transaction � �

5.4 Early release with two aborting transactions � ×
5.5 Early release before closing write × ×
5.6 Early release with two aborting transactions before closing

write
× ×

5.7 Early release to a prematurely aborting transaction � �

5.8 Commit order not respected × ×
5.9 Reversed commit order in writer transactions � �

5.10 Freedom to read or ignore an aborted transaction � ×
5.11 Early release with overwriting × ×
5.12 Dependency cycle × ×

Table 5.1: Histories satisfied by different variants of last-use opacity.

H
�

|Tj . Next, those definitions are used to define SLVis by analogy to LVis. Finally, we
say a transaction Ti is strongly last-use legal in some sequential history S if SLVis(S, Ti)
is legal. This allows us to define strong last-use opacity as follows.

Definition 26 (Final-state Strong Last-use Opacity). A finite history H is final-state
strongly last-use opaque if, and only if, there exists a sequential history S equivalent to
any completion of H s.t.,

a) S preserves the real-time order of H,
b) every transaction in S that is committed in S is legal in S,
c) every transaction in S that is not committed in S is strongly last-use legal in S.

Definition 27 (Strong Last-use Opacity). A history H is strongly last-use opaque if,
and only if, every finite prefix of H is final-state strongly last-use opaque.

Theorem 2. Strong last-use opacity is a safety property.

Proof. By Def. 27, strong last-use opacity is trivially prefix-closed.
Given HL that is an infinite limit of any sequence of finite histories H0, H1, ..., s.t

every Hh in the sequence is strongly last-use opaque and every Hh is a prefix of Hh+1,
since each prefixHh ofHL is strongly last-use opaque, then, by extension, every prefixHh

of HL is also final-state strongly last-use opaque, so, by Def. 27, HL is strongly last-use
opaque. Hence, strong last-use opacity is limit-closed.

Since strong last-use opacity is both prefix-closed and limit-closed, then, by Def. 1, it
is a safety property.

5.2.3 Examples
In Table 5.1 we show whether the examples in Fig. 5.2–5.12 satisfy strong last-use opacity
alongside last-use opacity. Note that the properties allow and exclude histories in the
same way except for two: Fig. 5.4 and 5.10. In those histories an aborting transaction
releases a variable early, which means that each such transaction’s last write was not, in
fact, strongly closing, even though it was closing. This means that the write cannot be

5.2 Strong Last-use Opacity 89

H SLU opacity ⊃ H opacity
H SLU opacity ⊃ Hmarkability
H SLU opacity ⊃ H live opacity
H SLU opacity ⊃ H rigorousness
H SLU opacity ⊃ HTMS2

H SLU opacity ‖ H elastic opacity
H SLU opacity ‖ HVWC
H SLU opacity ‖ H strictness
H SLU opacity ‖ H cascadelessness
H SLU opacity ‖ HTMS1
H SLU opacity ‖ HCO

H SLU opacity ⊂ H serializability
H SLU opacity ⊂ H recoverability
H SLU opacity ⊂ HLU opacity

Figure 5.16: Strength of strong last-use opacity.

included in SLVis of the other transaction that read from the aborting transaction. In
effect, the reading transactions are not strongly legal, which causes the histories to fail
to satisfy strong last-use opacity.

5.2.4 Guarantees
Strong last-use opacity gives most of the same guarantees as last-use opacity: serializ-
ability, real-time order, recoverability, precluding overwriting, aborting early release (in
the case of forced aborts) and exclusive access. We forgo formal definitions and proofs of
these, since they are analogous to those in Section 5.1.4.

5.2.5 Strength
We compare the relative strength of strong last-use opacity with last-use opacity and
other properties from Chapter 3 and present the result of the comparison in Fig. 5.16.
The proofs are analogous to those for last-use opacity. We also discuss how strong last-use
opacity compares with last-use opacity in various abort models below.

In the commit-only model, the strong last-use opacity property is equivalent to last-
use opacity. This is trivial, since if there there are no tryA operations in any history, then
the definition of a strong closing write invocation is identical to the definition of a closing
write invocation.

In the arbitrary abort model, strong last-use opacity property is strictly stronger than
last-use opacity, because the definition of strong closing writes excludes histories that
last-use opacity allows, including those with cascading aborts initiated by a voluntary
abort.

In the restricted abort model, strong last-use opacity property is also strictly stronger
than last-use opacity, but it is too strong to be applicable to systems with early release.
In the first place, even though the histories that are excluded by strong last-use opacity
contain inconsistent views, these are harmless, because as we argue in Section 5.1.5,
transactions always release variables with “final” values. Since the tryA operation is
not available to the programmer, these final values cannot be reverted by a programmer-
initiated abort, so if the programmer sets up a closing write to a variable in a transaction,
the value that was written was expected to both remain unchanged and be committed.
Hence, it is acceptable for these values to be read by other transactions, even before the
original transaction commits.

Finally, both in the restricted and the arbitrary abort models (but especially the
former), if we assume that a TM system can inject a tryA operation into the transactional
code to respond to some outside stimuli, such as crashes. Such events are unpredictable,
so it may be possible for any transaction to abort at any time. Hence, it is necessary to
assume that a tryA operation can be produced as the next operation invocation in any
transaction at any time. In effect, as the definition of strong last-use opacity does not

90 5 New Properties

Property Application Def. 4 Def. 5 Def. 6 ⊆Serializable
Last-use opacity TM � × � �

Strong last-use opacity TM � × � �

Table 5.2: Summary of early release support in new properties: Def. 4 is early release support,
Def. 5 is overwriting support, and Def. 6 is aborting early release support.

allow a transaction to release a variable early if a tryA is possible in the future, strong
last-use opacity may prevent early release altogether in the restricted abort model.

In summary, strong last-use opacity is a useful variant of last-use opacity to exclude
inconsistent views in the arbitrary abort model (if workarounds suggested in Section 5.1.5
are insufficient solutions). However strong last-use opacity may be too strict for TMs
operating in the restricted and arbitrary abort models, where it may prevents early release
altogether, depending on whether the injection of a tryA invocation into a transaction’s
code can be predicted or not. Certainly, in systems where aborts are used as a response to
partial failures, strong last-use opacity prevents early release altogether. For that reason,
we believe last-use opacity to be the more practical property.

5.3 Summary

In Table 5.2 we present a summary of the properties discussed in this chapter by analogy
to the summary in Table 3.1. The table informs that a particular property is a TM safety
property and whether it satisfies the definitions for early release support, overwriting
support, and aborting early release support. Finally, the last column informs whether
each property is at least as strong as serializability.

The table shows that both of the introduced properties allow early release without a
requirement for transactions that release early not to abort. Nevertheless the properties
are strong enough to prevent most inconsistent views and make others inconsequential.
Specifically, neither property admits inconsistent views in the commit-only model and
the compromise restricted abort model. Last-use opacity allow a relatively narrow class
of inconsistent views in the arbitrary abort model, which can be mitigated by the pro-
grammer. On the other hand, the strong last-use opacity variant eliminates inconsistent
views in all models, although does so for the price of preventing transactions that in-
voke the tryA operation to release any variable early. We consider strong last-use opacity
and last-use opacity to be practical safety properties for TM systems that employ early
release.

6
New Algorithms

In this chapter we present new pessimistic TM concurrency control algorithms designed
with distributed systems and irrevocable operations in mind. Pessimistic TM is desir-
able in distributed systems, since aborts cause wasted effort on remote network nodes,
introduce additional network traffic, and complicate the usage of non-transactional mech-
anisms within transactions, like network communication (outside the TM system). The
goal of the algorithms is to achieve a high level of parallelism among conflicting transac-
tions, as well as non-conflicting transactions, to match that of optimistic TM. The goal,
however, should be achieved while maintaining the ability to execute transactions with
irrevocable operations safely, i.e. without aborting or re-executing such operations.

We base the new algorithms on versioning algorithms presented in Section 4.1.2, with
particular emphasis on SVA. We select these, because they are pessimistic, and so do
not cause inconsistencies regarding irrevocable operations. In addition, SVA employs an
early release mechanism that can be used to execute conflicting transactions partially
in parallel, and potentially allow more concise histories than 2PL systems would for
the same programs. They can also be implemented in a fully distributed fashion, with
relatively minor adjustments.

Versioning algorithms have a specific set of limitations that we set out to overcome
in the new algorithms. One drawback of versioning algorithms is that they use a global
lock to acquire versions when transactions start. This introduces a single point of failure
into the system, and limits the potential scalability of the system. The first section of
the chapter introduces the problem in more detail and we provide variants of versioning
algorithms that employ distributed locking schemes in place of the global lock.

Another drawback is that the versioning algorithms do not support an abort operation
(in other words, they operate in the commit-only model). This limits their applicability in
general, and specifically, makes them impractical for some classes of distributed systems,
where faults need to be tolerated. We explain this problem in detail and provide versions
of both BVA and SVA, which we call BVA+R and SVA+R, that operate in the more
general arbitrary abort system model. The algorithms appeared in [74] and [75, 78], where
they were implemented.

Finally, we tackle the biggest disadvantages versioning algorithms have. Since they
were designed for web-service like architectures, where operations on remote objects have
complex, and often unknown semantics, BVA+R and SVA+R (and their predecessors)
operate under the assumption that the operations’ semantics are unknowable, and that
any operation may potentially conflict with any other operation on the same object.

92 6 New Algorithms

Hence, they do not allow parallel executions of any type of operation on any type of object.
However, this assumption is overstrict in certain classes of systems, like distributed data
stores, where shared objects act like variables, and have known (and simple) operation
semantics. In such a system model, SVA+R will perform relatively badly in comparison
to other algorithms like 2PL, DTL2, or TFA, especially, if the ratio of read operations
to write operations in executed transactions is high (see Chapter 8).

Hence, we introduce OptSVA+R, a new algorithm that builds on the versioning and
early release mechanisms of SVA+R, but operates in the variable object model and
recognizes different types of operations, and employs a number of optimizations to execute
them in parallel to conflicting transactions. The approach taken, however, is different from
the one used in TM algorithms like DTL2, MS-PTM, etc., since the optimizations do
not require entire transactions to be read-only to trigger, but they can be employed on
a variable-by-variable basis. In addition, OptSVA+R transactions use additional parallel
threads to achieve local asynchrony, which means transactions effectively execute their
own operations in parallel. We extend this result further by introducing OptSVA-CF+R,
a variant of OptSVA+R that is intended for the homogeneous object system model, which
better fits the distributed environment and the CF model than the variable model. The
OptSVA+R and OptSVA-CF+R algorithms are novel and were introduced in [102, 82].

6.1 Distributed Version Acquisition

Before introducing new algorithms we present a modification we introduced to BVA and
SVA (see Section 4.1.2) that applies to all versioning algorithms.

In versioning algorithms, when each transaction Ti starts, it is assigned a private
version pvi(dxc) for each object dxc in its access set ASeti. A private version for dxc is
generated from its global version gv(dxc), which is initially 0, and is incremented with
each starting transaction. In order to maintain the guarantees of private versions, this
assignment must be done consistently. That is, the transaction must view a consistent
snapshot of global versions for its entire access set, and must update global versions
for its entire snapshot without interference. Hence, versioning algorithms specify that
transactions use a global lock in order to generate and assign their private versions (see
Fig. 4.10–4.11). Each transaction acquires the global lock at the beginning of the start
procedure, and releases it at the end of the start procedure.

However, using a global lock to synchronize the start procedure is overstrict, since
two transactions with disjoint access sets block each other from initializing. This limits
parallelism, as the start procedure is executed in sequence for the entire TM system. If the
algorithm is implemented in a non-distributed TM, the problem may not be evident, since
computations performed within the start procedure are relatively lightweight. However,
the problem is more pronounced when the algorithm is implemented in a distributed
system. First, the assignment of a private version requires network communication, so
executing the procedure is more costly. Thus, if a transaction waits for another to finish
acquiring versions, the wait time is more likely to impact overall efficiency. Second, two
transactions with disjoint access sets are likely executing operations on objects hosted
on completely different network nodes. Making them block each other during the start
procedure limits the overall scalability of the system. Finally, a global lock constitutes a
possible bottleneck which will need to service all of the clients in the system. This has the
dual drawbacks of introducing a single point of failure to the architecture, and detracting
from the scalability of the distributed system.

6.1 Distributed Version Acquisition 93

1 proc start(Transaction Ti) {
2 for dxc ∈ ASeti in order
3 lock lk(dxc)→ W
4 for dxc ∈ ASeti {
5 gv(dxc)← gv(dxc) + 1
6 pvi(dxc)← gv(dxc)
7 unlock lk(dxc)
8 }
9 }

10 proc access(Transaction Ti, Object dxc, Method m) {
11 wait until pvi(dxc) - 1 = lv(dxc)
12 execute m on dxc returning v
13 return v
14 }
15 proc commit(Transaction Ti) {
16 for dxc ∈ ASeti {
17 wait until pvi(dxc) - 1 = lv(dxc)
18 :dismiss(Ti, dxc)
19 }
20 return Ci

21 }
22 proc :dismiss(Transaction Ti, Object dxc) {
23 lv(dxc)← pvi(dxc)
24 }

1 proc start(Transaction Ti) {
2 for dxc ∈ ASeti in order
3 lock lk(dxc)→ W
4 for dxc ∈ ASeti {
5 gv(dxc)← gv(dxc) + 1
6 pvi(dxc)← gv(dxc)
7 unlock lk(dxc)
8 }
9 }

10 proc access(Transaction Ti, Object dxc, Method m) {
11 wait until pvi(dxc) - 1 = lv(dxc)
12 execute m on dxc returning v
13 aci(dxc)← aci(dxc) + 1
14 if aci(dxc) = supri(dxc)
15 :release(Ti, dxc)
16 return v
17 }
18 proc commit(Transaction Ti) {
19 for dxc ∈ ASeti {
20 wait until pvi(dxc) - 1 = ltv(dxc)
21 :dismiss(Ti, dxc)
22 ltv(dxc)← pvi(dxc)
23 }
24 return Ci

25 }
26 proc :release(Transaction Ti, Object dxc) {
27 lv(dxc)← pvi(dxc)
28 }
29 proc :dismiss(Transaction Ti, Object dxc) {
30 if pvi(dxc) - 1 = lv(dxc)
31 lv(dxc)← pvi(dxc)
32 }

(a) BVA. (b) SVA.

Figure 6.1: Versioning algorithms with FGL version acquisition.

Fine Grained Locking
Hence, we introduce a fine-grained locking (FGL) scheme for version acquisition. We
substitute the global lock in versioning algorithms with a set of locks such that each lock
lk(dxc) is associated with an individual shared object dxc (located so that location(dxc) =
location(lk(dxc))). Then, given that transactions in versioning algorithms know their
access sets a priori, during the start procedure each transaction only acquires locks for
the objects in its access set. This allows transactions with disjoint access sets to start
simultaneously. In order to prevent transactions from entering a deadlock, we eliminate
circular waiting by imposing a global order of acquiring locks. The order can be what-
ever, as long as it is uniformly applied among transactions. In the remainder of the
dissertation we assume one of the following locking orders apply: lk(dxc) < lk(dyc) <
lk(dzc) or lk(x) < lk(y) < lk(z). In contrast to the global lock solution where the lock
is released once all the private versions are acquired, transactions can release lk(dxc)
as soon as they acquire the private version for dxc. In effect, the mechanism employs a
simplified version of C2PL to acquire locks during transaction start. We show the pseu-
docode of BVA and SVA extended with this mechanism in Fig. 6.1. The optimization
does not otherwise impact the execution of the algorithms.

In practice, the overhead of acquiring a lock for each object in the access set may be
nevertheless prohibitive, and must be traded for the advantages it provides. In particu-
lar, a transaction acquiring a private version for dxc must send and receive additional
messages to the remote host to acquire and release lk(dxc). For transactions with large
access sets, this cost may become more apparent. Further, systems with low contention
the cost may be greater than the cost of transactions competing for a global lock.

94 6 New Algorithms

1 transaction {
2 execute withdraw(v) on dxc
3 execute get_balance on dxc returning u
4 if (u < 0)
5 abort
6 else
7 execute deposit(v) on dyc
8 }

(a) Abort.

1 transaction {
2 execute withdraw(v) on dxc
3 execute get_balance on dxc returning u
4 if (u < 0)
5 execute deposit(v) on dxc
6 else
7 execute deposit(v) on dyc
8 }

(b) Compensation.

1 transaction {
2 execute withdraw(v) on dxc
3 execute get_balance on dxc returning u
4 if (u < 0) {
5 execute deposit(v + u) on dxc
6 execute cancel_loan on dxc
7 } else
8 execute deposit(v) on dyc
9 }

(c) Complex compensation.

1 transaction {
2 local_copy← dxc
3 execute withdraw(v) on dxc
4 execute get_balance on dxc returning u
5 if (u < 0)
6 dxc ← local_copy
7 else
8 execute deposit(v) on dyc
9 }

(d) Manual buffering.

Figure 6.2: Aborting transaction and manual counterparts.

Coarse Grained Locking
The number of messages sent during version acquisition may be reduced if the granularity
of the locks is coarsened. Assuming objects are located on network nodes in groups,
rather than locking individual objects, transactions can acquire a single lock for each
node hosting objects. This reduces the potential parallelism, but requires fewer locks to
be acquired on average. We refer to this variant as the coarse-grained locking (CGL)
scheme, and we show an implementation of BVA and SVA employing this technique in
Appendix B.

In the remainder of the dissertation we employ FGL version acquisition the presented
algorithms, but note that a global lock or CGL version acquisition may be used in its
place to tailor them to particular applications or workloads without impacting their
correctness.

6.2 Versioning Algorithms in the Arbitrary Abort Model

The versioning concurrency control algorithms are pessimistic in nature, and do not need
to abort any transaction to ensure correct execution.

Even so, a way to manually abort transactions is useful to the programmer, since this
makes it easier to cancel a transaction mid-execution without having to manually scrub
its effects. Consider the example transaction in Fig. 6.2a. The logic of the transaction
is that of a bank transfer. The transaction attempts withdrawing some sum from the
account represented by object dxc and deposit the same sum on the account represented
by dyc. However, the operation cannot proceed, if the balance of account dxc does not
allow for it. Hence, after executing withdraw on dxc, the transaction checks the balance
of the account, and aborts it if it fell below 0. The abort operation erases the effects of
the operation completely, and in this way it is very intuitive, as well as expressive.

If an abort operation were not available, the programmer would roll the transaction
back manually. For instance, in Fig. 6.2b we show an example of how this can be achieved
by compensation. If the balance of dxc falls below 0, the programmer simply puts the
amount back into dxc and the transaction finishes. However, if this approach is to work in
general, for every operation m in the the object’s interface Mdxc there must be an operation

6.2 Versioning Algorithms in the Arbitrary Abort Model 95

1 proc start(Transaction Ti) {
2 for dxc ∈ ASeti in order
3 lock lk(dxc)→ W
4 for dxc ∈ ASeti {
5 gv(dxc)← gv(dxc) + 1
6 pvi(dxc)← gv(dxc)
7 unlock lk(dxc)
8 }
9 }

10 proc access(Transaction Ti, Object dxc, Method m) {
11 wait until pvi(dxc) - 1 = lv(dxc)
12 if sti(dxc) = ⊥
13 :checkpoint(Ti, dxc)
14 execute m on dxc returning v
15 return v
16 }
17 proc commit(Transaction Ti) {
18 for dxc ∈ ASeti {
19 wait until pvi(dxc) - 1 = lv(dxc)
20 :dismiss(Ti, dxc)
21 }
22 return Ci

23 }

24 proc abort(Transaction Ti) {
25 for dxc ∈ ASeti {
26 wait until pvi(dxc) - 1 = lv(dxc)
27 :dismiss(Ti, dxc)
28 if sti(dxc) 6= ⊥
29 :recover(Ti, dxc)
30 }
31 return Ai

32 }
33 proc :dismiss(Transaction Ti, Object dxc) {
34 lv(dxc)← pvi(dxc)
35 }
36 proc :checkpoint(Transaction Ti, Object dxc) {
37 sti(dxc)← dxc
38 }
39 proc :recover(Transaction Ti, Object dxc) {
40 dxc ← sti(dxc)
41 }

Figure 6.3: BVA+R.

or a sequence of operations that compensate for dxc. Furthermore, the programmer must
know the semantics of m sufficiently well to compensate for it. Such semantics may not be
obvious, for instance in Fig. 6.2c we show an example of a bank account object dxc that
sets up a debt if the withdraw operation exceeds the balance. In such a case compensation
might require more than simply depositing the amount back.

A more general solution shown in Fig. 6.2d would be to buffer the object before
executing any of the operations within the transaction and restore it from a copy if
the balance reaches 0. This is a manual implementation of the abort operation by the
transaction. However, note that in a distributed system this requires that the object be
copied across the network to a client. Assuming this is possible at all, the operation is
likely to be expensive. If the operation were to be implemented on the server-side, sending
the entire object via the network would not be necessary.

In addition to expressiveness, the implementation of such features as fault tolerance
with respect to partial failures requires that transactions withdraw their effects and force
the system into a consistent state. Since handling failures is, in practice, an unavoidable
element of distributed systems, then transaction aborts become a mainstay of distributed
TM, pessimistic or otherwise.

Hence, int this section we introduce variants of BVA and SVA that operate in the
arbitrary abort model.

6.2.1 Basic Versioning Algorithm with Rollback
The Basic Versioning Algorithm with Rollback (BVA+R) is an extension of the BVA
algorithm that allows it to operate in the arbitrary abort model. We give the complete
pseudocode of the algorithm in Fig. 6.3 (with new mechanisms highlighted) and discuss
it below.

The modification requires that transactions be provided an abort operation that im-
plements tryA. In BVA, this operation is analogous to the commit procedure: transactions
wait for each object in their access set to become available and release it, and finally the
procedure returns the value indicating abort. However, since BVA is an encounter-time
algorithm, the transaction might have modified each of the objects in its access set, so it
needs to revert the state of the objects to some consistent state from before the transac-
tion’s modifications. Thus, whenever some transaction Ti executes an operation on object

96 6 New Algorithms

1 proc start(Transaction Ti) {
2 for dxc ∈ ASeti in order
3 lock lk(dxc)→ W
4 for dxc ∈ ASeti {
5 gv(dxc)← gv(dxc) + 1
6 pvi(dxc)← gv(dxc)
7 unlock lkg

8 }
9 }

10 proc access(Transaction Ti, Object dxc, Method m) {
11 wait until pvi(dxc) - 1 = lv(dxc)
12 if sti(dxc) = ⊥
13 :checkpoint(Ti, dxc)
14 if ∃dyc ∈ ASeti: rvi(dyc) > cv(dyc)
15 return abort(Ti)
16 execute m on dxc returning v
17 aci(dxc)← aci(dxc) + 1
18 if aci(dxc) = supri(dxc)
19 :release(Ti, dxc)
20 return v
21 }
22 proc commit(Transaction Ti) {
23 for dxc ∈ ASeti {
24 wait until pvi(dxc) - 1 = ltv(dxc)
25 :dismiss(Ti, dxc)
26 }
27 if ∃dyc ∈ ASeti: rvi(dyc) > cv(dyc)
28 return abort(Ti)
29 for dxc ∈ ASeti

30 ltv(dxc)← pvi(dxc)
31 return Ci

32 }

33 proc abort(Transaction Ti) {
34 for dxc ∈ ASeti {
35 wait until pvi(dxc) - 1 = ltv(dxc)
36 :dismiss(Ti, dxc)
37 if aci(dxc) 6= 0 and rvi(dxc) < cv(dxc)
38 :recover(Ti, dxc)
39 ltv(dxc)← pvi(dxc)
40 }
41 return Ai

42 }
43 proc :dismiss(Transaction Ti, Object dxc) {
44 if aci(dxc) = 0 and rvi(dxc) = cv(dxc)
45 cv(dxc)← pvi(dxc)
46 if pvi(dxc) - 1 = lv(dxc)
47 lv(dxc)← pvi(dxc)
48 }
49 proc :checkpoint(Transaction Ti, Object dxc) {
50 sti(dxc)← dxc
51 rvi(dxc)← cv(dxc)
52 }
53 proc :recover(Transaction Ti, Object dxc) {
54 dxc ← sti(dxc)
55 cv(dxc)← rvi(dxc)
56 }
57 proc :release(Transaction Ti, Object dxc) {
58 cv(dxc)← pvi(dxc)
59 lv(dxc)← pvi(dxc)
60 }

Figure 6.4: SVA+R.

dxc for the first time, it executes the :checkpoint procedure which stores a copy dxc to
buffer sti(dxc). Then, when the transaction is aborting, it uses the stored copy of the
object to revert it to a consistent state. This is done by invoking the :recover procedure.

Nevertheless, since transactions retain exclusive access to every object in their access
set between the first access to that object and either commit or abort, the introduction of
the abort operation into the algorithm does not introduce inconsistent views. Hence, the
extended BVA+R algorithm preserves the original’s properties. Specifically, it is opaque,
and free from deadlocks.

Note that we also moved the assignment of private versions at the end of commit (and
also abort) to a separate procedure called :dismiss. We do this to indicate the semantics
of that assignment—an unreleased object is released at the completion of a transaction.
This is purely cosmetic at the moment and we do it for verisimilitude with algorithms
that follow.

6.2.2 Supremum Versioning Algorithm with Rollback
Supremum Versioning Algorithm with Rollback (SVA+R) is an extension of SVA that
allows it to operate in the arbitrary abort model. SVA+R was introduced in [74] (as SVA
with rollback) and implemented in Atomic RMI [75, 78]. We give the full pseudocode of
SVA+R in Fig. 6.4 and discuss the features of the new algorithm below.

Early Release
The main feature of SVA is that it employs an early release mechanism to execute con-
current transactions partially in parallel. The mechanism is illustrated in detail in Sec-
tion 4.1.2 and does not differ in SVA+R, so we only remind it here briefly.

The early release mechanism triggers for a given object at a point in time after a
transaction executes some operation on it and determines that it will execute no further

6.2 Versioning Algorithms in the Arbitrary Abort Model 97

Ti
starti
pvi(dxc)←1
ubi(dxc)=1

mi(dxc)→�

aci(dxc)←1
? ubi(dxc)=acj(dxc)

lv(dxc)←1

tryC i→Ci

Tj
startj
pvj(dxc)←2

mj(dxc)

? lv(dxc)=1

→� tryC j→Cj

Figure 6.5: Early release via upper bounds (SVA+R).

Ti
starti
pvi(dxc)←1

mi(dxc)→�

lv(dxc)←1

tryC i→Ci
ltv(dxc)←1

Tj
startj
pvj(dxc)←2

mj(dxc)→�

? lv(dxc)=1

tryC j

? ltv(dxc)=1

→Cj

Figure 6.6: Commitment order preservation (SVA+R).

operations on that object in the future. This is determined based on a priori knowledge
of each object’s supremum, the maximum number of times it can be executed within a
given transaction (e.g. as determined by analysis of a particular subprogram). The release
is implemented by having the transaction write its private version to the object’s local
version counter at the point when the supremum was reached (via the release procedure),
rather than waiting until the transaction commits (or aborts). When this is done, the
transaction with the next consecutive private version number for the same object can
satisfy the access condition and proceed to execute operations on the object (regardless
of whether the first transaction committed yet or not). The early release mechanism is
further illustrated in Fig. 6.5.

The early release feature is instrumental in increasing the degree of parallel execution
among conflicting transactions, and, therefore, in making its implementation performant
(see Section 8.1). However, the early release mechanism introduces additional complexity
if transactions are allowed to abort in comparison to BVA+R. First of all, this design
decision makes it necessary to enforce the order in which transactions commit to prevent
a situation where transaction Ti releases dxc early and subsequently aborts, but before Ti
does abort, Tj reads dxc and commits. That would mean that Tj committed having acted
on an invalid, inconsistent value of dxc, which is incorrect behavior (i.e., not serializable).

Commitment Order Preservation
In SVA+R we preclude this scenario by reflecting the order in which transactions access
objects in the order in which they commit or abort. Each shared object has an associated
local terminal version ltv(dxc) which holds the private version of the transaction that
either committed or aborted last. The local terminal version works by analogy to an
object’s local version, but transactions only write their private versions to the local
terminal counter on commit on abort, but never when executing early release. Then,
as the outset of executing the commit or abort procedure, each transaction Tj check
whether pvj(dxc)− 1 = ltv(dxc), which we call the commit condition. If the condition is
met, the transaction proceeds to commit or abort, and otherwise it must wait. In effect,
by analogy to accessing objects, if transaction Ti accesses dxc before Tj , it is ensured
that Ti commits or aborts before Tj . It means that the algorithm has the capability to
forcibly abort any transaction that views inconsistent state.

We show an example of commitment order preservation in Fig. 6.6. Initially the local

98 6 New Algorithms

version lv(dxc) is 0. Transaction Ti starts first and acquires the private version for dxc
of 1. Then, transaction Tj starts and gets a private version for dxc equal to 2. Then,
Ti attempts to execute an operation on dxc. Since it can satisfy the access condition
pvi(dxc) − 1 = lv(dxc), the access goes through. In addition, Ti determines that this
was the last operation execution on dxc, so Ti releases dxc. This means that, when
transaction Tj attempts to access dxc soon after it also satisfies the access condition
and the operation executes. Afterward, Tj attempts to commit, but in order to do so,
it must pass the commit condition pvj(dxc) − 1 = ltv(dxc), but it cannot do so until
Ti commits (or aborts) and sets ltv(dxc) to its pvi(dxc) of 1. Hence, Tj waits with its
commit operation until other transactions that accessed dxc before it also commit (or
abort).

Cascading Aborts
Furthermore, if some transaction potentially views the state of an object that was mod-
ified by another transaction, and the latter aborts, then the former cannot be allowed to
commit having possibly acted upon inconsistent state. Hence, the transaction must be
forced to abort.

To enforce aborts, SVA+R marks which version of an object is the most recent con-
sistent version via a current version counter cv(dxc) shared by all transactions. This
is used in conjunction with each transaction Ti’s own recovery version rvi(dxc), which
indicates the last consistent version viewed by Ti. The current version can be compared
to a transaction’s recovery version to check whether the transaction is using a consistent
(current) version of each object or not. Unlike other counters which are initially set to 0,
rv is initially set to −∞.

Specifically, whenever transaction Ti gains access to shared object dxc for the first
time, it runs the :checkpoint procedure which buffers dxc and stores it in its buffer
sti(dxc) (just like in BVA+R). In addition, the :checkpoint procedure sets its recovery
version rvi(dxc) to dxc’s current version cv(dxc).

The value of the current version for some object reflects the private version for this
object of such transaction that most recently committed or released this object early.
Thus, each transaction sets the current version for each object in its access set during
commit, and for specific objects during early release of those objects. A transaction which
aborts also updates the current version for each object in its access set while aborting,
however the value written to the current version is not the transactions private version,
but its recovery version—the last consistent version of the object that this transaction
viewed. Initially, current version counters for all variables are set to 0.

When transaction Ti updates the current version of some object dxc during abort
(via the dismiss procedure), the new value will be lower than that transaction’s private
version pvi(dxc). However, if Ti released that variable early, it would have previously set
the current version of the variable to be equal to its private version. Thus, if any other
transaction Tj accessed dxc between Ti released it and aborted, it would have acquired
a recovery version rvj(dxc) equal to cv(dxc), which was then equal to pvi(dxc). However
once Ti aborted, cv(dxc) would become lower than pvi(dxc), so lower than rvj(dxc).

Thus, a difference between rvj(dxc) and cv(dxc) where rvj(dxc) > cv(dxc) signals
to Tj that the version of dxc it accesses has become invalid, because some previous
transaction aborted and reverted it. Therefore, whenever a transaction tries to commit
or access a shared object, it must test the consistency of the object it operates on by
verifying that the current version of the object was not reverted to a lower value than
the transaction’s recovery version. If that is the case, the transaction is forced to abort
instead of executing the originally intended access or the commit operation. During
variable access, the condition for aborting is always checked for all objects in the access

6.2 Versioning Algorithms in the Arbitrary Abort Model 99

Ti
starti
pvi(dxc)←1

mi(dxc)→�

rvi(dxc)←0
lv(dxc)←1
cv(dxc)←1
sti(dxc)←dxc

tryAi→Ai

cv(dxc)←0
ltv(dxc)←1
dxc←sti(dxc)

Tj
startj
pvj(dxc)←2

mj(dxc)→�

? lv(dxc)=1
rvj(dxc)←1

? rvj(dxc)=1
stj(dxc)←dxc

tryC j

? ltv(dxc)=1

→Aj

? rvj(dxc) > 1

Figure 6.7: Forced abort (SVA+R).

set rather than just the one being accessed, in order to abort as quickly as possible, and
to prevent the transaction from operating on both consistent and invalidated variables
simultaneously.

Note that if the difference between rvj(dxc) and cv(dxc) but rvj(dxc) < cv(dxc) ,
transaction Tj does not need to abort, since that difference signifies that Tj released
dxc. The condition is also true if some other transaction whose private version for dxc is
higher than Tj ’s released it. It could also be true that some of these transactions aborted
and reverted dxc, but this does not impact Tj nor force it to abort, since Tj will have
released dxc by that time and (from its perspective) future invalid states are irrelevant.

We show an example of this in Fig. 6.7. Here, Ti and Tj access dxc and have private
values for dxc equal to 1 and 2, respectively. Hence Ti accesses dxc first. As this is executed
Ti sets its recovery version to 0, the value of the current version for dxc. Then, after the
operation on dxc finishes executing, Ti releases dxc by setting the local version to 1 and
sets the current version cv(dxc) to its own private version, i.e. 1. Subsequently Tj meets
the access condition and accesses dxc for the first time, setting its own recovery version
to 1 (as cv(dxc) = 1). Since rvj(dxc) = cv(dxc), the access is successful. However, as Tj
tries to commit, it is delayed because it cannot satisfy the commit condition. Meanwhile
transaction Ti aborts. As it does so, it sets the current version to its recovery version
equal to 0. Then, Ti sets the local terminal version to its own private version, allowing
Tj to resume committing. However, Tj satisfies the condition rvj(dxc) > cv(dxc) during
commit, since rvj(dxc) = 1 and cv(dxc) = 0, so Tj is forced to abort.

Inconsistent Views
While lifting BVA to its arbitrary abort variant BVA+R does not have consequences for
safety, lifting SVA to SVA+R does. This is because, unlike BVA/BVA+R, SVA/SVA+R
use the early release mechanism, which, by allowing transactions to view potential mod-
ifications done to objects by transactions that are still live, admits potential inconsistent
views. Originally, in SVA those potential inconsistent states do not result in transactions
seeing incorrect states of shared objects, because there are no aborting transactions. How-
ever, once transactions are allowed to abort, other transactions can view modifications
introduced by transactions that will later abort, which can result in some dangerous
situations (see Section 5.1.1).

Specifically, in SVA+R inconsistent views are limited to a particular situation. First,
there must be some transaction that Ti executes some operation on dxc, releases dxc
early (after last write) and subsequently aborts. In that case, some transaction Tj can
view an inconsistent state of dxc if where, given two transactions Ti and Ti that both
access dxc, transaction Ti executes some operation on dxc, releases dxc early (after last
write) and subsequently aborts, while Tj executes some operation on dxc after Ti releases
dxc but before Ti aborts. In the next section we discuss a solution that eliminates this
scenario for selected transactions, causing them never to be forced to abort.

100 6 New Algorithms

1 proc start(Transaction Ti) {
2 for dxc ∈ ASeti in order
3 lock lk(dxc)→ W
4 for dxc ∈ ASeti {
5 gv(dxc)← gv(dxc) + 1
6 pvi(dxc)← gv(dxc)
7 unlock lk(x)
8 }
9 }

10 proc access(Transaction Ti, Object dxc, Method m) {
11 if Ti ∈ R
12 wait until pvi(dxc) - 1 = ltv(dxc)
13 else
14 wait until pvi(dxc) - 1 = lv(dxc)
15 if sti(dxc) = ⊥
16 :checkpoint(Ti, dxc)
17 execute m on dxc returning v
18 aci(dxc)← aci(dxc) + 1
19 if aci(dxc) = supri(dxc)
20 :release(Ti, dxc)
21 return v
22 }
23 proc commit(Transaction Ti) {
24 for dxc ∈ ASeti {
25 wait until pvi(dxc) - 1 = ltv(dxc)
26 :dismiss(Ti, dxc)
27 }
28 if ∃dyc ∈ ASeti: rvi(dyc) > cv(dyc)
29 return abort(Ti)
30 for dxc ∈ ASeti

31 ltv(dxc)← pvi(dxc)
32 return Ci

33 }

34 proc abort(Transaction Ti) {
35 for dxc ∈ ASeti {
36 wait until pvi(dxc) - 1 = ltv(dxc)
37 :dismiss(Ti, dxc)
38 if aci(dxc) 6= 0 and rvi(dxc) < cv(dxc)
39 :recover(Ti, dxc)
40 ltv(dxc)← pvi(dxc)
41 }
42 return Ai

43 }
44 proc :dismiss(Transaction Ti, Object dxc) {
45 if aci(dxc) = 0 and rvi(dxc) = cv(dxc)
46 cv(dxc)← pvi(dxc)
47 if pvi(dxc) - 1 = lv(dxc)
48 lv(dxc)← pvi(dxc)
49 }
50 proc :checkpoint(Transaction Ti, Object dxc) {
51 sti(dxc)← dxc
52 rvi(dxc)← cv(dxc)
53 }
54 proc :recover(Transaction Ti, Object dxc) {
55 dxc ← sti(dxc)
56 cv(dxc)← rvi(dxc)
57 }
58 proc :release(Transaction Ti, Object dxc) {
59 cv(dxc)← pvi(dxc)
60 lv(dxc)← pvi(dxc)
61 }

Figure 6.8: RSVA+R.

Because inconsistent views are limited to the aforementioned cases SVA+R is last-
use opaque—we demonstrate and discuss this in detail in Section 7.2. Since it arranges
both accesses and commits in the order dictated by private versions it trivially preserves
commitment order. Like all versioning algorithms, SVA+R is deadlock-free by nature of
concurrency control through versioning.

Reluctant Transactions
Given that a cascading abort may occur, SVA+R may be forced to abort transactions
that contain irrevocable operations. If the transaction aborted voluntarily, then the pro-
grammer takes responsibility. However, it may happen that a transaction with irrevocable
operations is forced to abort in a cascading abort scenario.

To solve this problem we introduce a variant of RSVA+R called Reluctant SVA+R
(or just RSVA+R). In RSVA+R we assume there to be a class of reluctant transactions
R, a subclass of all transactions T that use a more conservative access condition, which
prevents them from being drawn into a cascading abort. Specifically, reluctant transac-
tions refuse to access objects that were potentially modified by uncommitted transactions
by waiting until the transaction that modified it most recently commits. That is when
executing a method on some object x, reluctant transaction Ti checks the commit con-
dition pvi(dxc)− 1 = ltv(dxc) rather than the access condition pvi(dxc)− 1 = lv(dxc).
Hence, by the time Ti executes its method on dxc, dxc is definitely consistent, and, since
inconsistent views are the only source of forced aborts, then Ti is never forced to abort.
Thus, unless Ti aborts voluntarily, it is irrevocable.

We give RSVA+R’s pseudocode in Fig. 6.8 with the changed access condition high-
lighted. In order for the condition to operate, the transaction must know (a priori)
whether it is reluctant. Reluctant transactions can be designated manually, or detected
via automatic means, like static analysis to find irrevocable operations within.

6.3 Optimized Supremum Versioning Algorithm 101

Ti
starti
pvi(dxc)←1
ubi(dxc)=1

mi(dxc)→�

sti(dxc)←dxc
aci(dxc)←1

? ubi(dxc)=acj(dxc)
lv(dxc)←1

tryAi→Ai

dxc←sti(dxc)
ltv(dxc)←1

Tj
startj
Tj ∈ R
pvj(dxc)←2
ubj(dxc)=1

mj(dxc)

? ltv(dxc)=1

→�

acj(dxc)←1
? ubj(dxc)=acj(dxc)

lv(dxc)←2

tryC j→Cj

Tk
startk
pvk(dxc)←3

mk(dxc)

? lv(dxc)=2

→� tryCk→Ck

Figure 6.9: Early release with a reluctant transaction (RSVA+R).

The solution trades parallelism for safety of irrevocable operations, which may be
deferred for a longer time than they would have been otherwise, but does so without
limiting the early release capability of ordinary transactions. As such, it is a compromise
between SVA+R and BVA+R and if R = T, then all transactions wait for preceding
transactions to commit, so RSVA+R behaves exactly like BVA+R. However, if the set
of reluctant transactions is limited, the solution retains a reasonable level of possible
parallelism, since, nothing stops reluctant transactions from releasing early themselves.
This contrasts our solution from algorithms like PLE and MS-PTM (Section 4.3.1–4.3.2)
and irrevocable transactions in [92], where irrevocable transactions execute sequentially,
for the most part.

We show an example of a reluctant transaction executing in Fig. 6.9. The history is
analogous to Fig. 6.7, but here Tj is reluctant, meaning that when Ti releases early, Tj
still waits, and only starts performing its operation in earnest when Ti aborts. This means
that Tj does not execute operations on the inconsistent state of x, so it does not need to
abort. Meanwhile, Tj can release dxc early after its operation is executed, meaning the
next transaction (non-reluctant) Tk can benefit from improved concurrency.

RSVA+R retains all of the properties of SVA+R.

6.3 Optimized Supremum Versioning Algorithm

The versioning algorithms presented thus far all operate in the heterogeneous object
model where they assume that the semantics of a particular operation executed on each
object cannot be known. Hence, these algorithms treat all operations uniformly and
conservatively: each operation is treated as if it both potentially views and modifies the
object it is executed on. This approach applies to particular distributed application like
web service orchestration, where transactional memory’s shared objects are entire stateful
services with complex and heterogeneous interfaces, sometimes dynamically changing
interfaces among which the TM algorithm must maintain consistency. In systems as
these treating all operations the same is a practical general approach.

On the other hand, in systems like distributed data stores, as well just non-distributed
TM, where the homogeneous object model and the variable model apply, versioning al-
gorithms are not capable of as much parallelism as other TM algorithms. The reason for
this is that versioning algorithms do not take advantage of known semantics of opera-
tions, so they assume potential conflicts where they do not occur in practice. Hence, for
instance, two read-only transactions will block each other, which is not true for most TM
algorithms.

102 6 New Algorithms

In this section we describe the Optimized Supremum Versioning Algorithm with Roll-
back (OptSVA+R) introduced in [102], a variant of SVA+R that operates in the variable
model and takes advantage of the known semantics of operations to introduce a number of
far-reaching optimizations that aim to eliminate its predecessors limitations and improve
the degree to which conflicting transactions execute in parallel, and, in effect, efficiency
of execution. Specifically, OptSVA+R uses buffering in order to make local operations
invisible outside the transaction they are executed in. This allows to OptSVA+R trans-
actions to expedite early release, which happens after the last non-local write operation
on some variable (rather than once all operations are executed). In addition, OptSVA+R
transactions defer the moment of checking the accesses condition to a given variable to
the first non-local read operation or the last non-local write operation.

Furthermore, OptSVA+R delegate specific concurrency-control–related tasks to sep-
arate threads to achieve transaction-local asynchrony. That is, when a transaction has
to wait for the access condition or the commit condition to be satisfied, it can delegate
the waiting to a separate thread, and perform other computations in the meantime. This
allows a transaction to perform local computations and non-conflicting operations while
waiting to serialize conflicting operations with other transactions. This feature is espe-
cially valuable in distributed systems, where network communication introduces delays.

OptSVA+R is specified in full in Fig. 6.10 and we describe it in detail below. Given
that the versioning concurrency control, commitment ordering, and forced abort portions
of the algorithm are inherited from SVA+R, we do not discuss them again, instead fo-
cusing on the novel optimizations OptSVA+R introduces. These use the combination of
the explicit distinction between read and write operations, buffering, and asynchronous
execution of specific synchronization-related tasks to optimize accesses to read-only vari-
ables, to delay synchronization of the initial operation upon an initial write, and to
expedite early release to the last (closing) write. We then summarize the entire algo-
rithm.

Further, we show through formal analysis that OptSVA+R can produce tighter in-
terleavings than SVA+R due to the increased level of parallelism, and, therefore, is more
likely to produce tighter schedules than its predecessor.

Finally, we present two variants of OptSVA+R: one that allows a class of reluctant
transactions which are never forced to abort, and one that precludes voluntary aborts.
These variants trade parallelism or generality in return for precluding inconsistent views.

6.3.1 Read-only Variables
Since originally versioning algorithms did not distinguish between reads and writes, they
did not allow read-only transactions to be executed in parallel to other read-only trans-
actions. This is a run-of-the-mill optimization found in all but a small number of TMs,
so it is also introduced in OptSVA+R. However, OptSVA+R goes a step further, and
allows partial parallelization of transactions whenever a variable in a transaction is only
read from and not written to, without requiring that all the variables in a transaction
are not written to.

First, while OptSVA+R inherits the early release mechanism based on a priori knowl-
edge, the information provided a priori is different. Each transaction still knows the
suprema for each variable, but unlike in SVA+R, the suprema are divided into the max-
imum number of times the transaction will respectively read and write each individual
variable. These suprema for reads and writes are denoted for transaction Ti and x as,
respectively, rubi(x) and wubi(x).

Whenever transaction Ti accesses x in such a way that it reads from x but does not
write to x (i.e., rubi(x) > 0 and wubi(x) = 0), we will refer to x as being a read-only

1 proc start(Transaction Ti) {
2 // Acquire private versions.
3 for x ∈ ASeti in order
4 lock lk(x)→ W
5 for x ∈ ASeti {
6 gv(x)← gv(x) + 1
7 pvi(x)← gv(x)
8 unlock lk(x)
9 }

10 // Asynchronously buffer read−only variables.
11 for x ∈ ASeti: wubi(x) = 0
12 async run :read_buffer(Ti, x)
13 when pvi(x) - 1 = lv(x)
14 return oki

15 }
16 proc read(Transaction Ti, Variable x) {
17 // Wait for read−only variable to be bufferred.
18 if wubi(x) = 0
19 join with :read_buffer(Ti, x)
20 // Copy value of variable to buffer on first read.
21 else if wci(x) = 0 and rci(x) = 0 {
22 wait until pvi(x) - 1 = lv(x)
23 :checkpoint(Ti,x)
24 bufi(x)← sti(x)
25 }
26 // Abort on inconsistent view.
27 if ∃y: rvi(y) 6= cv(y)
28 return abort(Ti)
29 rci(x)← rci(x) + 1
30 // Return bufferred value.
31 return bufi(x)
32 }
33 proc write(Transaction Ti, Variable x, Value v) {
34 // Abort on inconsistent view.
35 if ∃y: rvi(y) 6= cv(y)
36 return abort(Ti)
37 // Write to buffer.
38 bufi(x)← v
39 wci(x)← wci(x) + 1
40 // Asynchronous release on last write.
41 if wci(x) = wubi(x)
42 async run :write_buffer(Ti,x)
43 when pvi(x) - 1 = lv(x)
44 return oki

45 }
46 proc :read_buffer(Transaction Ti, Variable x) {
47 // Buffer and release a read−only variable.
48 rvi(x)← cv(x)
49 bufi(x)← x
50 :release(Ti,x)
51 async run :read_commit(Ti, x)
52 when pvi(x) - 1 = ltv(x)
53 }
54 proc :read_commit(Transaction Ti, Variable x) {
55 // Commit a read−only variable early.
56 if ∃y: rvi(y) > cv(y)
57 return abort(Ti)
58 ltv(x)← pvi(x)
59 }
60 proc :write_buffer(Transaction Ti, Variable x) {
61 if sti(x) = ⊥
62 :checkpoint(Ti,x)
63 if ∃y: rvi(y) 6= cv(y)
64 return abort(Ti)
65 x ← bufi(x)
66 :release(Ti,x)
67 }

68 proc commit(Transaction Ti) {
69 for x ∈ ASeti {
70 // Synchronize with extant read thread.
71 if wubi(x) = 0
72 join with :read_comit(Ti,x)
73 else {
74 // If released, synchronize with write thread.
75 if wci(x) = wubi(x)
76 join with :write_buffer(Ti,x)
77 else {
78 // Catch up: get access and update variable.
79 wait until pvi(x) - 1 = lv(x)
80 if sti(x) = ⊥
81 :checkpoint(Ti, x)
82 if ∃y: rvi(y) 6= cv(y)
83 return abort(Ti)
84 if wci(x) > 0
85 x ← bufi(x)
86 }
87 // Maintain commitment order.
88 wait until pvi(x) - 1 = ltv(x)
89 :dismiss(T, x)
90 }
91 }
92 // Abort on inconsistent view.
93 if ∃y: rvi(y) > cv(y)
94 return abort(Ti)
95 for x ∈ ASeti

96 ltv(x)← pvi(x)
97 return Ci

98 }
99 proc abort(Transaction Ti) {

100 for(x ∈ ASeti) {
101 // Maintain commitment order.
102 wait until pvi(x) - 1 = ltv(x)
103 // Restore if consistent backup and modified.
104 if (wci(x) > 0 and pvi(x) - 1 > lv(x)
105 and rvi(x) = cv(x)) {
106 if wci(x) = wubi(x)
107 join with :write_buffer(Ti,x)
108 :recover(Ti, x)
109 }
110 :dismiss(Ti, x)
111 ltv(x)← pvi(x)
112 }
113 return Ai

114 }
115 proc :dismiss(Transaction Ti, Variable x) {
116 if pvi(x) - 1 = lv(x)
117 lv(x)← pvi(x)
118 if (wci(x) + rci(x)> 0 and rvi(x) = cv(x)
119 and pvi(x) - 1 > lv(x))
120 cv(x)← pvi(x)
121 }
122 proc :checkpoint(Transaction Ti, Variable x) {
123 sti(x)← x
124 rvi(x)← cv(x)
125 }
126 proc :recover(Transaction Ti, Variable x) {
127 x ← sti(x)
128 cv(x)← rvi(x)
129 }
130 proc :release(Transaction Ti, Variable x) {
131 cv(x)← pvi(x)
132 lv(x)← pvi(x)
133 }

Figure 6.10: OptSVA+R.

104 6 New Algorithms

Ti
starti
pvi(x)←1

wi(x)1→oki
lv(x)←1

tryC i→Ci
ltv(x)←1

Tj
startj
pvj(x)←2

rj(x)→1 rj(x)→1 tryC j→Cj

? lv(x)=1 bufj(x)←1
lv(x)←2

? ltv(x)=1

ltv(x)←2

Tk
startk
pvk(x)←3

rk(x)

? lv(x)=2

→1 wk(x)2→okk tryCk→Ck
? ltv(x)=2

Figure 6.11: Read-only variable optimization (OptSVA+R).

variable in Ti. In the case of such variables, OptSVA+R can optimize the accesses by
buffering the variable and reading the buffer instead of the actual variable. In addition,
since all the reads will be done using the buffer, and the upper bounds indicate that no
writes will follow, the variable can be released after it is buffered, irrespective of what
operations the transaction will execute later.

Obviously, it is best for parallelism to release any variable as soon as it is no longer
needed by a transaction, because it allows other transactions to start acting sooner.
Since read-only variables are not needed after they are buffered, they can be released
immediately after this happens. The variable must be buffered before or during the first
read operation on it is executed, but it could be buffered before that point, even during
transaction start. However, in order to buffer a variable, its state must be viewed, so, for
the sake of consistency, buffering within versioning concurrency control must be done only
after the transaction passes the access condition. Since waiting at the access condition
would prevent the transaction from executing operations on other variables or performing
local computations, it is best for parallelism for the transaction not to start waiting until
it is absolutely necessary.

The algorithm finds balance between buffering as soon as possible and delaying syn-
chronization much as necessary by executing it asynchronously. This is achieved by using
the async run P when C construct which relegates the execution of procedure P to some
separate thread. However, before the thread starts executing P it waits until condition
C is satisfied. This allows the transaction to wait at condition C without preventing the
procedure from delaying other operations that could be executing in the mean time. On
the other hand, P will be executed as soon as C is satisfied, so as soon as it is safe.

OptSVA executes buffering via procedure :read_buffer. This procedure is relegated
to asynchronous execution at lines 12–13, and will execute once the access condition
is satisfied. Within the :read_buffer procedure, the transaction Ti saves the value of
some variable x to its buffer bufi(x) (line 49), and releases it immediately afterward by
executing :release (line 50). Since it is possible that the transaction that wrote the value
of x that is being buffered will subsequently abort, Ti also updates its recovery value (line
48), but it does not need to make a checkpoint for x, since the transaction will not modify
x. Once read-only variable x is buffered, read operations can use the buffer to retrieve
that value, without accessing the variable (line 31), so without waiting. However, a read
on a read-only variable cannot be executed until buffering is finished (line 19), which we
indicate using the join with P construct.

Since a transaction does not modify a read-only variable, if it aborts, it does not need
to force other transactions to abort to maintain consistency. Hence, the transaction tries
to immediately perform all commit-related operations for a read-only variable immedi-

6.3 Optimized Supremum Versioning Algorithm 105

Ti
starti
pvi(x)←1

wi(x)1→oki
rvi(x)←0
lv(x)←1
cv(x)←1

tryAi→Ai

ltv(x)←1
cv(x)←0

Tj
startj
pvj(x)←2

rj(x)→1 tryAj→Aj

? lv(x)=1 rvj(x)←1
bufj(x)←1
lv(x)←2

? ltv(x)=1

ltv(x)←2
? rvj(x)>0

Tk
startk
pvk(x)←3

rk(x)

? lv(x)=2

→1

rvk(x)←1

wk(x)2→okk tryCk→Ak

? ltv(x)=2
? rvk(x) > 0

Figure 6.12: Aborts and read-only variable optimization (OptSVA+R).

ately after buffering it. This involves waiting for the local terminal version of the object,
so by analogy to buffering, the procedure is executed asynchronously, so as not to block
other operations. The procedure that executes the commit for variable x is :read_commit
and it is started asynchronously at line 52. The procedure executes a simplified version of
commit for just x. Hence, once commit is executed by the transaction for other variables,
it can be skipped for x, and the transaction simply waits for :read_commit to finish
executing.

We show an example of an execution of a transaction Tj with a read-only variable x
in Fig. 6.11. Transaction Tj asynchronously waits for the access condition on x to be met
right after Tj starts, but before any reads actually occur. A parallel line below transaction
(such as the one below Tj) indicates procedures executed asynchronously with respect
to the thread executing the transaction. Meanwhile Tj can perform local operations or
operations on other variables without obstacle. Once Ti releases x, Tj immediately buffers
x, and releases it. Then Tj asynchronously tries to commit x, which requires that it waits
for the appropriate local terminal version of x. Meanwhile Tk can now access x in parallel
to Tj and even write to it, without interfering with Tj ’s consistency. Once Ti commits, Tj
can then asynchronously commit x, which then allows Tk to commit earlier than it would
have otherwise. Since Tj treats x as read-only and hence releases it earlier, transaction
Tk is able to execute its operations much sooner, and thus shorten the total execution
time of the three transactions.

Note, that in Fig. 6.11, since Ti eventually commits, the value of x read by Tk is
always consistent, regardless of whether Tj aborts, because Tj never modifies x (or any
other variable read by Tk). Hence, if does Tj abort, it does not force Tk to abort and the
history is nevertheless consistent. On the other hand, if the history is analogous, but Ti
eventually aborts, as we show in Fig. 6.12, both Tj and Tk read inconsistent values, so
both must be aborted. This will happen, because when Ti first accesses x it sets its rvi(x)
to 0, and as it releases x, Ti sets cv(x) to 1, i.e. Ti’s private version. Then both Tj and
Tk will both set their own recovery versions, rvj(x) and rvk(x) respectively, to 1. This is
because transactions do not set a new value of cv for read-only variables. Then, when Ti
eventually aborts, it reverts x to some earlier state and sets cv(x) to its recovery version
rvi(x) which is 0. Whenever transactions execute operations they must check one of the
following conditions, rvj(x) > cv(k)x or rvj(x) 6= cv(k)x, and are forced to abort if they
fulfill any of them. Since both Tj and Tk’s recovery versions for x equal 1, and the current
version of x equals 0, then both transactions fulfill those conditions. So, from this point
on, whenever the transactions check those conditions, they will be forced to abort. In
the case of Tj the condition is first fulfilled when the thread handling read-only variables

106 6 New Algorithms

Ti
starti
pvi(x)←1

ri(x)→→0

? lv(x)=0

wi(x)1→oki
lv(x)←1

tryC i→Ci

Tj
startj
wubj(x)=1
pvj(x)←2

wj(x)2→okj
bufj(x)←2
wcj(x)←1

? wcj(x)=wubj(x)

rj(x)→2 tryC j→Cj

? lv(x)=1 x←2

Figure 6.13: Delayed synchronization on first write (OptSVA+R).

tries to execute procedure :read_commit, which causes that thread to end and force the
main thread of the transaction to execute the abort procedure (which we mark in the
diagram as tryAj→Aj , but this is not a voluntary abort). If an operation in the main
thread fulfilled the condition in Tj , then it would have returned Aj and the main thread
would terminate all other threads instead. Transaction Tk checks the condition when
it finally attempts to commit, but since the condition is fulfilled, it is forced to abort
instead. Thus, Tj ’s abort forces both Tj and Tk to abort and consistency is maintained.

From the examples above it is apparent, that the read-only variable optimization
moves the point at which such a variable is acquired, released, and committed forward in
time. The earlier a shared variable is released by a transaction, the earlier another trans-
action can start using it, increasing the possibility of acting in parallel, and, therefore,
shortening the schedule of execution.

6.3.2 Delayed Synchronization on First Write
If the first (or only) operation that a transaction executes on a particular shared variable
is a write operation, then all read operations on that variable are local, i.e., they only need
to view what the current transaction wrote, and can ignore writes by other transactions.
Hence, there is no need for the transaction to synchronize on this variable with other
transactions for the sake of those operations. The synchronization is only needed to
prevent the current transaction from writing a value to the variable in the middle of
another transaction’s operations on it. But if the write is saved to a buffer, rather than
immediately updating the state of the variable, the synchronization can be delayed until
after the write itself, or even after any of the successive read operations.

Since it is beneficial to synchronize as late as possible while performing other tasks
beforehand, OptSVA then never checks access conditions on writes (see procedure write):
either the transaction started with a write, and no synchronization is necessary, or there
was a preceding read that already did all the necessary synchronization. Instead, the
operation is performed on a buffer (line 38). Then, since all the written values are only
visible to the current transaction, the transaction must at some point update the state of
the actual variable. This is done either upon executing the last write or during commit.
In the former case, when the upper bound on writes is reached (line 41), the transaction
asynchronously starts procedure :write_buffer (line 43), which executes when the access
condition is met, and updates the state of the variable (line 65). If the upper bound is not
reached during execution, the transaction will instead catch up by update the variable
(line 85), also after waiting at the access condition (line 79).

We illustrate this optimization further in Fig. 6.13. Here transaction Ti can pass
access condition for x first, but nevertheless Tj performs a write simultaneously, since it
writes to the buffer rather than wait at the access condition. Transaction Tj only waits

6.3 Optimized Supremum Versioning Algorithm 107

Ti
starti
wubi(x)=1
pvi(x)←1

ri(x)→0 wi(x)1→oki
bufi(x)←1
wci(x)←1

? wci(x)=wubi(x)

ri(x)→1 tryC i→Ci

lv(x)=1
x←1

Tj
startj
pvj(x)←2

rj(x)

? lv(x)=1

→1 wj(x)2→okj tryC j→Cj

Figure 6.14: Early release on last write (OptSVA+R).

at the access condition when it had performed all of its write operations (of which there
is one) and starts a separate thread (indicated by the line below) to write the changes to
the variable once the access condition is passed. The thread passes the access condition
once Ti releases x. Then, Tj applies the value from the buffer to x.

6.3.3 Early Release on Last Write
Various TMs with early release determine the point at which variables are released var-
iously. For instance, DATM (see Section 4.4.1) releases variables after each operation,
erring on the side of efficiency and guaranteeing only conflict-serializability. SVA, on the
other hand, errs on the side of caution and only allows early release after last access to
some variable, which it must do because it treats read and write operations uniformly.
OptSVA improves on this, since it distinguishes between reads and writes, so early release
is done after last write not last access. In effect all reads following last write are executed
as if privatized. We argue in [79] that this approach is a solid compromise for TMs with
early release.

The early release happens if at some point in the execution of transaction Ti, the
upper bound on the number of writes for some variable x is reached when performing a
write (line 41). The transaction asynchronously executes :write_buffer in that instance
for the purpose of applying the changes from the buffer to the actual shared variable.
After this is done, x will no longer be accessed directly by the transaction, so Ti also
executes :release (at line 66), which sets lv(x) to pvi(x), which allows other transactions
to pass the access condition. Nevertheless, since x was buffered during writes, subsequent
reads still have access to a local, consistent value of x (retrieved from the buffer at line
31).

This is illustrated in Fig. 6.14. Here, Ti knows a priori that it will write to x at most
once, since wubi(x) = 1. Hence, after the one write to x, a separate thread is started
which releases x by setting lv(x) to 1. Since Ti passes the access condition, this happens
almost instantaneously (the figure shows a wait time merely for the reason of aesthetics).
Once x is released in this fashion, Tj , whose private version for x is 2, can execute its
own read and write operations on x freely. Nevertheless, Ti can continue to execute reads
on x after releasing x, and since the value of x is read from T ′is buffer, Tj ’s operations
do not interfere.

6.3.4 Summary
OptSVA+R operates on the basis of the versioning mechanism, using private, local,
and local terminal version counters to ensure that accesses to objects and commits are

108 6 New Algorithms

performed in the order defined by private versions. The individual operations are handled
as follows:

Start
When an OptSVA+R transaction Ti starts it acquires a private version pvi(x) for each
shared variable in its access set. If any of these variables are read-only (its supremum for
writes equals 0), the transaction also starts separate threads that clone such variables
into buffers bufi(x) and release them afterward.

Read
Whenever transaction Ti attempts to execute a read operation on some variable x, its be-
havior primarily depends on whether the variable is read-only. If it is, the read operation
waits until the separate read-only thread finishes buffering the variable, and executes the
read operation on the buffer bufi(x).

Otherwise, the transaction checks whether the variable was previously accessed. If
not, then the transaction must wait until the access condition to x is satisfied and makes
a checkpoint by copying the state of the shared variable to buffer sti(x). Buffer sti(x) is
a copy buffer like bufi(x), but it is never modified and only used to restore the variable in
the event of an abort. Next, the transaction checks if any variable (for which Ti acquired
a recovery version) was invalidated so far, and if so forcibly aborts. If any variable from
the access set was invalidated at any point, the transaction is doomed to abort eventually,
so by checking for all the variables we force it to do so as early as we can detect. This
is also vital in enforcing safety: transactions should not execute any operations or local
computations using stale values of variables. If there are not invalidated variables, the
transaction returns the value of the buffer bufi(x).

Write
When write operations are executed, the transaction first checks whether any variable for
which it has a recovery version was invalidated, and aborts if that is the case. Otherwise,
the write may proceed and transaction Ti simply writes a new value to its buffer bufi(x).
If the transaction determines this was the closing write on x, i.e. there will be no further
writes on x within this transaction, Ti releases x by starting a separate thread. The
thread will wait at the access condition and subsequently: make a checkpoint to sti(x)
(if none was made before), copy the value from the buffer bufi(x) to the original variable
x, re-check consistency of all variables in the access set, and release x. Meanwhile, the
transaction’s main thread proceeds.

Commit
When the transaction commits it waits for extant threads to finish in the case such
threads are still running for read-only variables and variables that are being released
after last write. Afterward, the transaction waits until the commit condition is satisfied
for all variables in its access set. Then, if the transaction did not access a particular vari-
able at any time, it makes a checkpoint. If it only ever executed writes on an variable,
the transaction applies the log buffer to the variable. If the variable was not released,
the transaction releases it. Afterward, the transaction checks whether any variable was
invalidated, and aborts if that is the case. Otherwise, the transaction updates the lo-
cal terminal versions of all variables and finishes execution. No further actions may be
performed by the transaction after the commit finishes executing.

6.3 Optimized Supremum Versioning Algorithm 109

Abort
When the transaction aborts, just like with commit, it waits for the appropriate threads
to finish, and for the commit condition to be satisfied. Then, each variable in the trans-
action’s access set is restored from sti(x), unless some other transaction that previously
aborted already restored it to an older version beforehand. Then, the transaction updates
the local terminal versions of all variables and finishes execution. No further actions may
be performed by the transaction after the abort finishes executing.

6.3.5 Interleaving Comparison
In this section we compare the histories admitted by OptSVA+R to those admitted by
SVA+R.

Definitions
In order to compare the interleavings of the two algorithms, let us first provide definitions
of the relevant concepts.

As program P is being evaluated by some TM implementation, by a set of processes
Π, it takes time to evaluate each statement. Hence, each event e in a trace T ` E(P,Π)
appears at a specific point in time, which we denote τT (e). Since each process pk executes
statements in Pk in sequence, then, given two events e1, e2 s.t. e1 ≺T e2, it is true that
τT (e1) < τT (e2). Given a complete operation execution op consisting of an invocation
event e1 and a response event e2, the point of time at which op starts executing is
τ `T (op) = τT (e1) and the time at which op finishes executing is τ aT (op) = τT (e2). The
execution time of trace T ` E(P,Π), denoted τT , is equal to the largest execution time
for all events in T .

The release time of variable x in transaction Ti in T , denoted τ rT (Ti, x), is the point
in time at which Ti updates lv(x). The completion time of variable x in transaction Ti
in T , denoted τ cT (Ti, x), is the point in time at which Ti updates ltv(x).

Execution Time
In this section, we show that the execution time of OptSVA+R histories is lower than
that of SVA+R histories resulting from the execution of the same program by the same
processes.

Let ES(P,Π) denote a complete execution of program P by processes Π accord-
ing to the SVA+R concurrency control algorithm, and EO(P,Π), an otherwise identi-
cal execution, but according to OptSVA+R. Then, there are traces TS ` ES(P,Π) and
TO ` EO(P,Π), and histories HS = Hist(TS) and HO = Hist(TO). We denote the set of
all transactions in HO and HS as T. The histories contain corresponding transactions:
Ti ∈ HS if, and only if, Ti ∈ HO. Note that corresponding transactions execute the same
sequence of operations in both histories, i.e., for any Ti ∈ T, HS|Ti = HO|Ti. We also
assume the variable model for both SVA+R and OptSVA+R, so Obj = Var .

For the purpose of the comparison we assume that the events in histories are instan-
taneous. We also do not account for the time it takes to execute concurrency control
code. This means that if some operation execution op does not wait for either the access
condition nor the commit condition, we consider op to be of constant length between
SVA+R or OptSVA+R, i.e, τ aHS

(op) = τ `HS
(op) + ∆S

op, τ aHO
(op) = τ `HO

(op) + ∆O
op, and

∆S
op = ∆O

op. Finally, we assume that apart from the details of the concurrency control,
the execution proceeds the same, regardless of whether it is SVA+R or OptSVA+R.
This means that transactions start executing at the same time in both SVA+R and

110 6 New Algorithms

OptSVA+R histories: for each Ti ∈ T, τ `HS
(starti → oki) = τ `HO

(starti → oki). It
also means that the time between operation executions is constant within a transac-
tion (although the time between an invocation event of an operation execution and the
response event of that operation execution may differ between algorithms). More for-
mally, for any Ti ∈ T, if HS|Ti = HO|Ti =

[
op1, op2, ...opn

]
, then for any k = 2, 3, ..., n,

τ `HS
(opk) = τ aHS

(opk−1) + δSk−1, τ `HO
(opk) = τ aHO

(opk−1) + δOk−1, and δOk−1 = δSk−1.
We say transaction Ti is initial if for every x ∈ ASeti, pvi(x) = 1. Note that initial

transactions instantaneously satisfy the access and commit conditions for all the variables
in their access sets. We say transaction Ti waits for transaction Tj (on variable x) if for
some variable x ∈ ASeti ∩ ASetj , pvi(x) = pvj(x) + 1. Intuitively, if Ti waits for Tj
then Tj is the older transaction, since it started earlier. Note that in both SVA+R and
OptSVA+R, if Ti waits for Tj , then for every variable y ∈ ASeti ∩ ASetj , it is true that
pvi(y) > pvj(x).

The main lemma of this demonstration will be proved by induction, after we introduce
some helper lemmas. In the first step we show that in the case of initial transactions
an OptSVA+R transaction executes operations at the same time as the corresponding
SVA+R transaction (which implies that the OptSVA+R transaction executes operations
no later than the corresponding SVA+R transaction).

Lemma 29 (Initial Early Operation Execution). For any initial Ti ∈ T, and any oper-
ation execution op in HO|Ti and HS|Ti, τ aHO

(op) = τ aHS
(op).

Proof. Since Ti is initial it does not wait at any access conditions or commit conditions.
Then, any operation execution op in HO|Ti and HS|Ti is constant in both SVA+R and
OptSVA+R, so:

τ aHS
(op) = τ `HS

(op) + ∆op,

τ aHO
(op) = τ `HO

(op) + ∆op.

Then, since local computations performed by transactions are constant between SVA+R
and OptSVA+R, and since τ `HS

(starti → oki) = τ `HO
(starti → oki), then trivially:

τ aHO
(op) = τ aHS

(op).

Next, we show that an OptSVA+R transaction releases variables, commits, and aborts
(i.e., update lv and ltv counters) no later than the corresponding initial SVA+R trans-
action.

Lemma 30 (Initial Early Release). For any initial Ti ∈ T and x ∈ ASeti, τ rHO
(Ti, x) ¬

τ rHS
(Ti, x).

Proof. An SVA+R transaction releases x by updating lv(x) on commit, on abort, and
during the last operation execution on x. An OptSVA+R transactions does so on commit,
on abort, during the last write operation execution on x, and after buffering a read-only
variable.

a) If x is a read-only variable an SVA+R transaction releases x no sooner than the last
operation execution on x, so given any read operation execution ri(x)→� ∈ HS|Ti:

τ rHS
(Ti, x) τ aHS

(ri(x)→�).

On the other hand, OptSVA+R releases x as soon as possible. That is during
starti → oki at the earliest and no later than any ri(x)→v ∈ HO|Ti at the latest.
Thus:

τ aHO
(starti → oki) ¬ τ rHO

(Ti, x) ¬ τ aHO
(ri(x)→�).

6.3 Optimized Supremum Versioning Algorithm 111

From Lemma 29:
τ aHO

(ri(x)→�) = τ aHS
(ri(x)→�).

In that case:
τ rHO

(Ti, x) ¬ τ rHS
(Ti, x).

b) Alternatively, if the last operation execution in HS|Ti|x is ri(x)→� and assuming
tight suprema, an SVA+R transaction releases x during ri(x)→�, so:

τ rHS
(Ti, x) = τ aHS

(ri(x)→�).

On the other hand, if the last operation execution in HO|Ti|x is ri(x)→� and if
the suprema are tight, then an OptSVA+R transaction releases x no sooner than
any wi(x)�→oki in HO|Ti and no later than ri(x)→�. Hence:

τ aHO
(ri(x)→�) τ rHO

(Ti, x) τ aHO
(wi(x)�→oki).

From Lemma 29:
τ aHO

(ri(x)→�) = τ aHS
(ri(x)→�).

Therefore:
τ rHO

(Ti, x) ¬ τ rHS
(Ti, x).

c) Otherwise, if the last operation execution on x in Ti is ri(x)→� but suprema are
not tight, then both OptSVA+R and SVA+R release x either during commit, or
abort. Thus:

τ rHS
(Ti, x) = τHS(resi

[
Ci
]
) or τ rHS

(Ti, x) = τHS(resi
[
Ai

]
), and

τ rHO
(Ti, x) = τHO(resi

[
Ci
]
) or τ rHO

(Ti, x) = τHO(resi
[
Ai

]
).

From Lemma 29, for any op in Ti:

τ aHO
(op) = τ aHS

(op).

This implies that:

τHO(resi
[
Ci
]
) = τHS(resi

[
Ci
]
) or τHO(resi

[
Ai

]
) = τHS(resi

[
Ai

]
).

Therefore:
τ rHO

(Ti, x) = τ rHS
(Ti, x).

d) Finally, if the last operation execution in Ti is wi(x)�→ oki, both SVA+R and
OptSVA+R transactions will release x during wi(x)� → oki if the suprema are
tight or otherwise during commit or abort. In the former case, from Lemma 29:

τ aHO
(wi(x)�→oki) = τ aHS

(wi(x)�→oki).

Thus:
τ rHO

(Ti, x) = τ rHS
(Ti, x).

In the latter case, by analogy to c:

τ rHO
(Ti, x) = τ rHS

(Ti, x).

Thus, for any initial transaction Ti and any x ∈ ASeti, τ rHO
(Ti, x) ¬ τ rHS

(Ti, x).

112 6 New Algorithms

Lemma 31 (Initial Early Completion). For any initial Ti ∈ T and x ∈ ASeti, τ cHO
(Ti, x) ¬

τ cHS
(Ti, x).

Proof. An SVA+R transaction updates ltv(x) on commit or on abort, so:

τ cHS
(Ti, x) = τHS(resi

[
Ci
]
) or τ cHS

(Ti, x) = τHS(resi
[
Ai

]
).

An OptSVA+R transaction updates ltv(x) on commit, on abort, or after releasing a
read-only variable. The latter-most potentially precedes a commit, so:

τ cHO
(Ti, x) ¬ τHO(resi

[
Ci
]
) or τ cHO

(Ti, x) ¬ τHO(resi
[
Ai

]
).

From Lemma 29, for any op in Ti:

τ aHO
(op) = τ aHS

(op).

This implies that:

τHO(resi
[
Ci
]
) = τHS(resi

[
Ci
]
) and τHO(resi

[
Ai

]
) = τHS(resi

[
Ai

]
).

Therefore for any initial Ti ∈ T:

τ cHO
(Ti, x) ¬ τ cHS

(Ti, x).

We then demonstrate that any OptSVA+R transaction Ti executes operations no
later than the corresponding SVA+R transaction, provided that each transaction Tj for
which Ti waits releases variables, commits, and aborts no later than the corresponding
SVA+R transaction.

Lemma 32 (Consecutive Early Operation Execution). For any Ti ∈ T and any operation
execution op in HO|Ti and in HS|Ti it is true that τ aHO

(op) ¬ τ aHS
(op), given that if Ti

waits for any older transaction Tj on some variable x, then τ rHO
(Tj , x) ¬ τ rHS

(Tj , x) and
τ cHO

(Tj , x) ¬ τ cHS
(Tj , x).

Proof. The case for pvi(x) = 1 is trivial. If pvi(x) > 1 then there exists Tj ∈ T s.t.
pvj(x) + 1 = pvi(x). We first assume for convenience that op is not preceded in Ti by
operations on variables other than x.

I If op is a read operation execution, op can return a value and be a non-local read
operation execution, or a local one, or the operation can return Ai.

a) If op = ri(x)→v is a non-local read operation execution in both SVA+R and
OptSVA+R, then there is some non-local opr = ri(x)→ v (possibly opr =
op) such that opr is the first operation in HS|Ti|x and HO|Ti|x. Operation
execution opr will not finish before the access condition is satisfied. If the
access condition is met before opr starts, then trivially from V (below):

τ aHO
(opr) = τ aHS

(opr).

Otherwise, the operation will finish executing as soon as the access condition
can be satisfied, so:

τ aHS
(opr) = τ rHS

(Tj , x),

τ aHO
(opr) = τ rHO

(Tj , x).

Then, since Ti waits for Tj , then from the Lemma’s assumption:

τ rHO
(Tj , x) ¬ τ rHS

(Tj , x),

6.3 Optimized Supremum Versioning Algorithm 113

Therefore:
τ aHO

(opr) ¬ τ aHS
(opr).

Then, since either opr = op or opr precedes op, and since any non-local read
operation executions on x following opr already satisfy the access condition:

τ aHO
(op) ¬ τ aHS

(op).

b) If op = ri(x)→v is a local read operation execution, then, by definition, local
reads follow a write operation execution, so there is some opw = wi(x)�→oki
in Ti s.t. opw ≺HO op and opw = wi(x)v → oki ∈ HS|Ti s.t. opw ≺HS op.
We assume without loss of generality that opw immediately precedes op in Ti.
Since local computation time is equal in both HS and HO, if we denote the
length of time between the write operation returns and the read operation is
invoked in either history as δ, then:

τ `HS
(op) = τ aHS

(opw) + δ,

τ `HO
(op) = τ aHO

(opw) + δ.

In addition, given that in SVA+R the access condition will already have been
passed by the time op executes, and given that the access condition is not
checked in OptSVA+R for non-local reads, then op executes in constant time
in both algorithms. Thus:

τ aHS
(op) = τ `HS

(op) + ∆op = τ aHS
(opw) + δ + ∆op,

τ aHO
(op) = τ `HO

(op) + ∆op = τ aHO
(opw) + δ + ∆op.

From II (below):
τ aHO

(opw) ¬ τ aHS
(opw).

Hence, it follows that:
τ aHO

(op) ¬ τ aHS
(op).

c) If op = ri(x) → Ai, then in both SVA+R and OptSVA+R the operation
execution waits until ltv(y) = pvi(y) − 1 is true for all y ∈ ASeti. So, for
each y, there is some transaction Tk s.t. pvi(y) − 1 = pvk(y). Every such Tk
must update ltv(y) to pvk(y) before Ti can abort. If this happens before the
invocation event of op, then the execution of the abort depends only on the
execution of preceding operations in Ti. Thus from Ia, Ib, IIa, IIb, III, and V:

τ aHO
(op) ¬ τ aHS

(op).

Otherwise, the operation will finish executing as soon as the last transaction
Tk s.t. pvi(y)− 1 = pvk(y) updates ltv(y) to pvk(y). Thus:

τ aHS
(op) = max

∀Tk,y
τ cHS

(Tk, y), where pvi(y)− 1 = pvk(y),

τ aHO
(op) = max

∀Tk,y
τ cHO

(Tk, y) where pvi(y)− 1 = pvk(y).

Since Ti necessarily waits for each such Tk, then, from the Lemma’s assump-
tions:

τ cHO
(Tk, y) ¬ τ cHS

(Tk, y),

114 6 New Algorithms

Therefore:
τ aHO

(op) ¬ τ aHS
(op).

Thus, if op is a read operation execution, τ aHO
(op) ¬ τ aHS

(op).
II If op is a write operation execution, op can return oki and be preceded by a non-

local read operation execution. Alternatively, it can return oki and be preceded by
no operations or by a write (and possibly by non-local read operation executions).
Otherwise the write operation execution can return Ai.

a) If op = wi(x)�→ oki is preceded by some non-local opr = ri(x)→� in Ti,
in both SVA+R and OptSVA+R then we assume without loss of generality
that op immediately follows opr in Ti. In that case, since local computation
time is equal in both HS and HO, if we denote the length of time between the
read operation returns and the write operation is invoked in either history as
δ, then:

τ `HS
(op) = τ aHS

(opr) + δ,

τ `HO
(op) = τ aHO

(opr) + δ.

In addition, given that in SVA+R the access condition will already have been
passed by the time op executes, and given that the access condition is not
checked in OptSVA+R for non-local reads, then op executes in constant time
in both algorithms. Thus:

τ aHS
(op) = τ `HS

(op) + ∆op = τ aHS
(opr) + δ + ∆op,

τ aHO
(op) = τ `HO

(op) + ∆op = τ aHO
(opr) + δ + ∆op.

From Ia:
τ aHO

(opr) ¬ τ aHS
(opr).

Therefore:
τ aHO

(op) ¬ τ aHS
(op).

b) If op = wi(x)�→oki is not preceded by non-local read operation executions,
then there is such opw = wi(x)�→ oki (possibly opw = op) such that opw
is the first operation in HS|Ti|x and HO|Ti|x. In addition, opw is necessarily
preceded by ops = starti → oki, so:

τ aHS
(opw) > τ aHS

(ops),

τ aHO
(opw) > τ aHO

(ops).

In SVA+R the first write waits for the access condition, so:

τ aHS
(op) max(τ rHS

(Tj , x), τ aHS
(ops)).

In OptSVA+R such writes do not wait for the access condition at all, so:

τ aHO
(op) τ aHO

(ops), regardless of τ rHO
(Tj , x).

From V:
τ aHO

(ops) = τ aHS
(ops).

Then, since either opw = op or opw precedes op:

τ aHO
(op) ¬ τ aHS

(op).

6.3 Optimized Supremum Versioning Algorithm 115

c) If op = wi(x)�→Ai, then, by analogy to Ic:

τ aHO
(op) ¬ τ aHS

(op).

Thus, if op is a write operation execution, τ aHO
(op) ¬ τ aHS

(op).
III If op = tryC i → �, then in both SVA+R and OptSVA+R transactions wait until

ltv(y) = pvi(y)− 1 is true for all y ∈ ASeti before returning from op. This means
that each transaction Tk s.t. pvk(y) + 1 = pvi(y) must update ltv(y) to pvk(y)
before Ti can commit or abort. If this happens before the invocation event of
op, then the execution of the commit depends only on the execution of preceding
operations in Ti. Thus from Ia, Ib, IIa, IIb, and V:

τ aHO
(op) ¬ τ aHS

(op).

Otherwise, the operation will finish executing as soon as the last transaction Tk s.t.
pvi(y)− 1 = pvk(y) updates ltv(y) to pvk(y). Thus:

τ aHS
(op) = max

∀Tk,y
τ cHS

(Tk, y), where pvi(y)− 1 = pvk(y),

τ aHO
(op) = max

∀Tk,y
τ cHO

(Tk, y), where pvi(y)− 1 = pvk(y).

Since Ti necessarily waits for each such Tk, then, from the Lemma’s assumptions:

τ cHO
(Tk, y) ¬ τ cHS

(Tk, y),

Therefore:
τ aHO

(op) ¬ τ aHS
(op).

IV If op = tryAi → Ai, then, by analogy to III:

τ aHO
(op) ¬ τ aHS

(op).

V If op = starti → oki, then, trivially:

τ aHO
(op) = τ aHS

(op).

Let us now assume that op is preceded by operations on variables other than x in
HS|Ti and in HO|Ti. In that case, there is some operation execution op′ on variable y
that precedes op in HS|Ti and in HO|Ti and that is not preceded by operation executions
on variables other than y. It then follows from I-V that:

τ aHO
(op′) ¬ τ aHS

(op′).

Since the time it takes to execute local computations is constant between OptSVA+R
and SVA+R, then trivially, for any operation execution in op′′ that follows op′ in HS|Ti
and in HO|Ti it is also true that:

τ aHO
(op′′) ¬ τ aHS

(op′′).

Therefore, for any operation execution op in Ti given that for any Tj , s.t. Ti waits (on
x), it is true that τ rHO

(Ti, x) ¬ τ rHS
(Ti, x) and τ cHO

(Ti, x) ¬ τ cHS
(Ti, x):

τ aHO
(op) ¬ τ aHS

(op).

116 6 New Algorithms

We also demonstrate that any OptSVA+R transaction Ti releases variables, commits,
and aborts no later than the corresponding SVA+R transaction if each transaction Tj for
which Ti waits executes operations no later than its corresponding SVA+R transaction.

Lemma 33 (Consecutive Early Release). For any Ti ∈ T and x ∈ ASeti, τ rHO
(Ti, x) ¬

τ rHS
(Ti, x) given that if Ti waits for any older transaction Tj on some variable y, then

τ rHO
(Tj , y) ¬ τ rHS

(Tj , y) and τ cHO
(Tj , y) ¬ τ cHS

(Tj , y).

Proof. An SVA+R transaction releases x by updating lv(x) on commit, on abort, and
during the last operation execution on x. An OptSVA+R transactions does so on commit,
on abort, during the last write operation execution on x, and after buffering a read-only
variable.

a) If x is a read-only variable, an SVA+R transaction releases x no sooner than the last
operation execution on x, so given any read operation execution ri(x)→� ∈ HS|Ti:

τ rHS
(Ti, x) τ aHS

(ri(x)→�).

On the other hand, OptSVA+R releases x as soon as possible. That is during
starti → oki at the earliest and no later than any ri(x)→v ∈ HO|Ti at the latest.
Thus:

τ aHO
(starti → oki) ¬ τ rHO

(Ti, x) ¬ τ aHO
(ri(x)→�).

From Lemma 32:
τ aHO

(ri(x)→�) ¬ τ aHS
(ri(x)→�).

In that case:
τ rHO

(Ti, x) ¬ τ rHS
(Ti, x).

b) Alternatively, if the last operation execution in HS|Ti|x is ri(x)→� and assuming
tight suprema, an SVA+R transaction releases x during ri(x)→�, so:

τ rHS
(Ti, x) = τ aHS

(ri(x)→�).

On the other hand, if last operation execution in HO|Ti|x is ri(x)→� and if the
suprema are tight, then an OptSVA+R transaction releases x no sooner than any
wi(x)�→oki in HO|Ti and no later than ri(x)→�. Hence:

τ aHO
(ri(x)→�) τ rHO

(Ti, x) τ aHO
(wi(x)�→oki).

From Lemma 32:
τ aHO

(ri(x)→�) ¬ τ aHS
(ri(x)→�).

Therefore:
τ rHO

(Ti, x) ¬ τ rHS
(Ti, x).

c) Otherwise, if the last operation execution on x in Ti is ri(x)→� but suprema are
not tight, then both OptSVA+R and SVA+R release x either during commit, or
abort. Thus:

τ rHS
(Ti, x) = τHS(resi

[
Ci
]
) or τ rHS

(Ti, x) = τHS(resi
[
Ai

]
), and

τ rHO
(Ti, x) = τHO(resi

[
Ci
]
) or τ rHO

(Ti, x) = τHO(resi
[
Ai

]
).

From Lemma 32, for any op in Ti:

τ aHO
(op) ¬ τ aHS

(op).

6.3 Optimized Supremum Versioning Algorithm 117

This implies that:

τHO(resi
[
Ci
]
) ¬ τHS(resi

[
Ci
]
) or τHO(resi

[
Ai

]
) ¬ τHS(resi

[
Ai

]
).

Therefore:
τ rHO

(Ti, x) ¬ τ rHS
(Ti, x).

d) Finally, if the last operation execution in Ti is wi(x)�→ oki, both SVA+R and
OptSVA+R transactions will release x during wi(x)� → oki if the suprema are
tight or otherwise during commit or abort. In the former case, from Lemma 32:

τ aHO
(wi(x)�→oki) ¬ τ aHS

(wi(x)�→oki).

Thus:
τ rHO

(Ti, x) ¬ τ rHS
(Ti, x).

In the latter case, by analogy to c, also:

τ rHO
(Ti, x) = τ rHS

(Ti, x).

Therefore, given Ti as defined above, τ rHO
(Ti, x) ¬ τ rHS

(Ti, x).

Lemma 34 (Consecutive Early Completion). For any Ti ∈ T and x ∈ ASeti, τ cHO
(Ti, x) ¬

τ cHS
(Ti, x) given that if Ti waits for any older transaction Tj on some variable y, then

τ rHO
(Tj , y) ¬ τ rHS

(Tj , y) and τ cHO
(Tj , y) ¬ τ cHS

(Tj , y).

Proof. An SVA+R transaction updates ltv(x) on commit, or on abort, so:

τ cHS
(Ti, x) = τHS(resi

[
Ci
]
) or τ cHS

(Ti, x) = τHS(resi
[
Ai

]
).

An OptSVA+R transaction updates ltv(x) on commit, on abort, or after releasing a
read-only variable. The latter-most potentially precedes a commit, so:

τ cHO
(Ti, x) ¬ τHS(resi

[
Ci
]
) or τ cHO

(Ti, x) ¬ τHS(resi
[
Ai

]
).

From Lemma 32, for any op in Ti:

τ aHO
(op) ¬ τ aHS

(op).

Therefore, for any such Ti ∈ T:

τ cHO
(Ti, x) ¬ τ cHS

(Ti, x).

Finally, we show by induction that any OptSVA+R transaction executes any opera-
tion no later than the corresponding SVA+R transaction, which means that the execution
time of an OptSVA+R history will be equal to or shorter than that of an SVA+R history
generated from the same execution.

Lemma 35 (Early Operation Execution). For any Ti ∈ T, and any operation execution
op in HO|Ti and HS|Ti, τ aHO

(op) ¬ τ aHS
(op).

Proof. Induction:

I For any initial Ti ∈ T:

a) From Lemma 29, for any operation execution op in Ti, τ aHO
(op) ¬ τ aHS

(op),
b) From Lemma 30, for any variable x ∈ ASeti, τ rHO

(Ti, x) ¬ τ rHS
(Ti, x), and

118 6 New Algorithms

c) From Lemma 31, for any variable x ∈ ASeti, τ cHO
(Ti, x) ¬ τ rHS

(Ti, x).

II For any transaction Ti ∈ T, if for each Tj ∈ T s.t. Ti waits for Tj :

a) For any operation execution op in Tj , τ aHO
(op) ¬ τ aHS

(op),
b) For any variable x ∈ ASetj , τ rHO

(Tj , x) ¬ τ rHS
(Tj , x), and

c) For any variable x ∈ ASetj , τ cHO
(Tj , x) ¬ τ cHS

(Tj , x).

Then:

a) From Lemma 32, for any operation execution op in Ti, τ aHO
(op) ¬ τ aHS

(op),
b) From Lemma 33, for any variable x ∈ ASeti, τ rHO

(Ti, x) ¬ τ rHS
(Ti, x), and

c) From Lemma 34, for any variable x ∈ ASeti, τ cHO
(Ti, x) ¬ τ rHS

(Ti, x).

It follows from induction that for any Ti ∈ T, and any operation execution op in HO|Ti
and HS|Ti, τ aHO

(op) ¬ τ aHS
(op).

Corollary 18 (Lower Execution Time). τHO ¬ τHS .

Hence, the execution time of OptSVA+R is no worse than SVA+R. Intuitively,
OptSVA+R is likely perform better in almost all cases though, and especially, if high con-
tention causes many transactions to wait to access the same object—then, the expedited
release times and delayed synchronization come into play.

6.3.6 Properties
Despite achieving a higher level of parallelism, OptSVA+R retains the property of last-
use opacity, just like SVA+R. We provide a proof and a discussion of the proof technique
employed in Section 7.3. OptSVA+R is also trivially deadlock free. However, OptSVA+R
does not preserve commitment order, like SVA+R does (see Fig. 6.11). We consider
commitment order a guarantee of secondary important for TM though. On the other
hand, commitment order preservation can be trivially ensured in OptSVA+R, if the
read_commit procedure is not executed asynchronously at the end of the read_buffer
procedure, but instead, executed synchronously during commit.

6.3.7 Reluctant Transactions
Given that a cascading abort may occur, OptSVA+R may be forced to abort transactions
that contain irrevocable operations. Hence, we present a reluctant variant of OptSVA+R.
ROptSVA+R operates by analogy to RSVA+R: a class of reluctant transactions R may
be designated (manually by the programmer or through static analysis), that use a more
conservative access condition, and all transactions within that class refuse to access vari-
ables that were potentially modified by uncommitted transactions by waiting until the
transaction that modified it most recently commits or aborts. As with RSVA+R, this
is accomplished by checking the commit condition pvi(dxc) − 1 = ltv(dxc) rather than
the access condition pvi(dxc) − 1 = lv(dxc) when accessing variables. Reluctant trans-
actions never encounter inconsistent views, and therefore may be treated as irrevocable.
The drawback of this solution is that such transactions may wait longer to access shared
objects, but, in return, they never forcibly abort. Nevertheless, the programmer retains
the power to electively abort such transactions, e.g. due to some business logic require-
ment. We give RSVA+R’s pseudocode in Fig. 6.15 with the changed access condition
highlighted.

1 proc start(Transaction Ti) {
2 // Acquire private versions.
3 for x ∈ ASeti in order
4 lock lk(x)→ W
5 for x ∈ ASeti {
6 gv(x)← gv(x) + 1
7 pvi(x)← gv(x)
8 unlock lk(x)
9 }

10 // Asynchronously buffer read−only variables.
11 for x ∈ ASeti: wubi(x) = 0
12 if Ti ∈ R
13 async run :read_buffer(Ti, x)
14 when pvi(x) - 1 = ltv(x)
15 else
16 async run :read_buffer(Ti, x)
17 when pvi(x) - 1 = lv(x)
18 return oki

19 }
20 proc read(Transaction Ti, Variable x) {
21 // Wait for read−only variable to be bufferred.
22 if wubi(x) = 0
23 join with :read_buffer(Ti, x)
24 // Copy value of variable to buffer on first read.
25 else if wci(x) = 0 and rci(x) = 0 {
26 if Ti ∈ R
27 wait until pvi(dxc) - 1 = ltv(dxc)
28 else
29 wait until pvi(dxc) - 1 = lv(dxc)
30 :checkpoint(Ti,x)
31 bufi(x)← sti(x)
32 }
33 // Abort on inconsistent view.
34 if ∃y: rvi(y) 6= cv(y)
35 return abort(Ti,x)
36 rci(x)← rci(x) + 1
37 // Return bufferred value.
38 return bufi(x)
39 }
40 proc write(Transaction Ti, Variable x, Value v) {
41 // Abort on inconsistent view.
42 if ∃y: rvi(y) 6= cv(y)
43 return abort(Ti)
44 // Write to buffer.
45 bufi(x)← v
46 wci(x)← wci(x) + 1
47 // Asynchronous release on last write.
48 if wci(x) = wubi(x)
49 if Ti ∈ R
50 async run :write_buffer(Ti,x)
51 when pvi(x) - 1 = ltv(x)
52 else
53 async run :write_buffer(Ti,x)
54 when pvi(x) - 1 = lv(x)
55 return oki

56 }
57 proc :read_buffer(Transaction Ti, Variable x) {
58 // Buffer and release a read−only variable.
59 rvi(x)← cv(x)
60 bufi(x)← x
61 :release(Ti,x)
62 async run :read_commit(Ti, x)
63 when pvi(x) - 1 = ltv(x)
64 }
65 proc :read_commit(Transaction Ti, Variable x) {
66 // Commit a read−only variable early.
67 if ∃y: rvi(y) > cv(y)
68 return abort(Ti)
69 ltv(x)← pvi(x)
70 }
71 proc :write_buffer(Transaction Ti, Variable x) {
72 if sti(x) = ⊥
73 :checkpoint(Ti,x)
74 if ∃y: rvi(y) 6= cv(y)
75 return abort(Ti)
76 x ← bufi(x)
77 :release(Ti,x)
78 }

79 proc commit(Transaction Ti) {
80 for x ∈ ASeti {
81 // Synchronize with extant read thread.
82 if wubi(x) = 0
83 join with :read_comit(Ti,x)
84 else {
85 // If released, synchronize with write thread.
86 if wci(x) = wubi(x)
87 join with :write_buffer(Ti,x)
88 else {
89 // Catch up: get access and update variable.
90 wait until pvi(x) - 1 = lv(x)
91 if sti(x) = ⊥
92 :checkpoint(Ti, x)
93 if ∃y: rvi(y) 6= cv(y)
94 return abort(Ti)
95 if wci(x) > 0
96 x ← bufi(x)
97 }
98 // Maintain commitment order.
99 wait until pvi(x) - 1 = ltv(x)

100 :dismiss(T, x)
101 }
102 }
103 // Abort on inconsistent view.
104 if ∃y: rvi(y) > cv(y)
105 return abort(Ti)
106 for x ∈ ASeti

107 ltv(x)← pvi(x)
108 return Ci

109 }
110 proc abort(Transaction Ti) {
111 for(x ∈ ASeti) {
112 // Maintain commitment order.
113 wait until pvi(x) - 1 = ltv(x)
114 // Restore if consistent backup and modified.
115 if (wci(x) > 0 and pvi(x) - 1 > lv(x)
116 and rvi(x) = cv(x)) {
117 if wci(x) = wubi(x)
118 join with :write_buffer(Ti,x)
119 :recover(Ti, x)
120 }
121 :dismiss(Ti, x)
122 ltv(x)← pvi(x)
123 }
124 return Ai

125 }
126 proc :dismiss(Transaction Ti, Variable x) {
127 if pvi(x) - 1 = lv(x)
128 lv(x)← pvi(x)
129 if (wci(x) + rci(x)> 0 and rvi(x) = cv(x)
130 and pvi(x) - 1 > lv(x))
131 cv(x)← pvi(x)
132 }
133 proc :checkpoint(Transaction Ti, Variable x) {
134 sti(x)← x
135 rvi(x)← cv(x)
136 }
137 proc :recover(Transaction Ti, Variable x) {
138 x ← sti(x)
139 cv(x)← rvi(x)
140 }
141 proc :release(Transaction Ti, Variable x) {
142 cv(x)← pvi(x)
143 lv(x)← pvi(x)
144 }

Figure 6.15: ROptSVA+R.

120 6 New Algorithms

1 proc start(Transaction Ti) {
2 // Acquire private versions.
3 for x ∈ ASeti in order
4 lock lk(x)→ W
5 for x ∈ ASeti {
6 gv(x)← gv(x) + 1
7 pvi(x)← gv(x)
8 unlock lk(x)
9 }

10 // Asynchronously buffer read−only variables.
11 for x ∈ ASeti: wubi(x) = 0
12 async run :read_buffer(Ti, x)
13 when pvi(x) - 1 = lv(x)
14 return oki

15 }
16 proc read(Transaction Ti, Variable x) {
17 // Wait for read−only variable to be bufferred.
18 if wubi(x) = 0
19 join with :read_buffer(Ti, x)
20 // Copy value of variable to buffer on first read.
21 else if wci(x) = 0 and rci(x) = 0 {
22 wait until pvi(x) - 1 = lv(x)
23 bufi(x)← x
24 }
25 rci(x)← rci(x) + 1
26 // Return bufferred value.
27 return bufi(x)
28 }
29 proc :read_buffer(Transaction Ti, Variable x) {
30 // Buffer and release a read−only variable.
31 bufi(x)← x
32 :release(Ti,x)
33 async run :read_commit(Ti, x)
34 when pvi(x) - 1 = ltv(x)
35 }
36 proc :read_commit(Transaction Ti, Variable x) {
37 ltv(x)← pvi(x)
38 }
39 proc :write_buffer(Transaction Ti, Variable x) {
40 x ← bufi(x)
41 :release(Ti,x)
42 }

43 proc write(Transaction Ti, Variable x, Value v) {
44 // Write to buffer.
45 bufi(x)← v
46 wci(x)← wci(x) + 1
47 // Asynchronous release on last write.
48 if wci(x) = wubi(x)
49 async run :write_buffer(Ti,x)
50 when pvi(x) - 1 = lv(x)
51 return oki

52 }
53 proc commit(Transaction Ti) {
54 for x ∈ ASeti {
55 // Synchronize with extant read thread.
56 if wubi(x) = 0
57 join with :read_comit(Ti,x)
58 else {
59 // If released, synchronize with write thread.
60 if wci(x) = wubi(x)
61 join with :write_buffer(Ti,x)
62 else {
63 // Catch up: get access and update variable.
64 wait until pvi(x) - 1 = lv(x)
65 if wci(x) > 0
66 x ← bufi(x)
67 }
68 // Maintain commitment order.
69 wait until pvi(x) - 1 = ltv(x)
70 if pvi(x) - 1 = lv(x)
71 :release(T, x)
72 }
73 ltv(x)← pvi(x)
74 }
75 }
76 proc :release(Transaction Ti, Variable x) {
77 lv(x)← pvi(x)
78 }

Figure 6.16: An abort-free variant of OptSVA.

6.3.8 Commit-only Model
OptSVA+R is designed to operate in the arbitrary abort model. We submit that this
model is the most practical for distributed applications, where partial failures may ne-
cessitate that some transaction perform an abort in order to maintain the consistency
of the system as a whole. However, the abort mechanism introduces a lot of additional
complexity into OptSVA+R. Since the algorithm is pessimistic, the aborts are not nec-
essary for the purpose of concurrency control, and as such the mechanisms for restoring
variables after an abort can be excluded from it completely if the abort operation is
missing from the transactional API.

Hence, we introduce an abort-free variant of OptSVA for the commit-only system
model, where the transaction cannot issue a tryA operation. This allows us to remove
the checkpoint and forced abort mechanisms completely (see Sections 6.2.1 and 6.2.2
respectively). We present the algorithm in Fig. 6.16.

The algorithm is last-use opaque by analogy to OptSVA+R. We conjecture that it
also produces histories equivalent to opaque by analogy to SVA. Finally, transactions
never abort or deadlock.

6.4 OptSVA in Control Flow Distributed TM 121

6.4 OptSVA in Control Flow Distributed TM

Initially, versioning algorithms were conceived as operation-type agnostic, which made
them suitable for use with heterogeneous objects used in the CF model. These objects
have arbitrary interfaces, whose operations (methods) execute arbitrary computations
on state that can be composed of multiple discrete variables (fields). Such operations
may not be limited to reading or writing the state of the object, but may do both, or
neither, or cause side-effects in the process. Furthermore, each object may have a different
interface. It is therefore practical to treat such objects as black boxes with respect to
their state and operations they execute.

Contrast this to variables, used commonly in TM, where each object has a single
read operation that reads the state of the object, and a single write operation which
supersedes the previous state of the object with a new state. Both operations are simple,
completely transparent, and contain no side effects, which allows to better orchestrate
their execution.

An apt example is that of operation locality. According to [33], a local read is a read
that is preceded during transaction execution by a write on the same shared variable—
because it only depends on state written by that write operation, so it does not depend
on what other transactions write. A local write is a write that is followed by a write on
the same variable—because whatever that first write writes is superseded by the value
written by the second. Local operation executions do not impact the system outside of
their transaction. Thus, buffering can be used to make them invisible to the outside
world. A local write modifies a transaction-local buffer, rather than the actual object.
This means that local writes de facto do not operate on shared objects, so they do not
need to pass the access condition to be executed. As we showed with OptSVA+R, using
such optimizations with this model means that transactions execute more in parallel, and
produce tighter schedules as a result, which improves system throughput.

On the other hand, the simplification of heterogeneous objects to variables restricts
the flexibility of such a system model and limits its applicability in distributed systems.
This is especially true in the CF model, where a complex object can be used not only
to store and retrieve data, but also to delegate more involved, possibly long-running
computations to a remote host. Once the arbitrary nature of interfaces and operation
semantics is removed, the latter is lost and the system model loses its expressiveness, as
well as the room for optimization.

Hence, in this section we introduce the distinction between read and write opera-
tions in the heterogeneous object model with arbitrary interfaces. We then list explain
how OptSVA-CF+R extends the buffering system used in OptSVA+R to accommodate
heterogeneous object operation executions. Next, we show how the optimizations intro-
duced in OptSVA+R are lifted into the new model, and discuss the changes between
OptSVA+R and OptSVA-CF+R executions. Finally, we summarize OptSVA-CF+R in
full and discuss its properties as well as variants with irrevocable operation support. The
algorithm was introduced and implemented in [82].

6.4.1 Heterogeneous Objects
OptSVA-CF+R requires that given some object dxc each operation m ∈ Mdxc be classified
as one of the following:

a) a read operation is any operation that executes any code (including code with side
effects) and may read the shared object’s state and return a value, but during

122 6 New Algorithms

execution the state is never modified,
b) a write operation is any operation that executes any code and may modify the state

of the shared object, but the state is not read and a value is not returned,
c) an update operation is any operation that executes any code and may both modify

and read the object’s state and return a value.

This classification allows us to mimic the optimizations used within the variable model
when synchronizing operations in the heterogeneous object model, but without knowing
the details of each operation’s semantics. We introduce the update operation, because
we expect a typical operation on a complex object to modify its state based on the
existing state of the object, hence to behave both like a read and write. However, such
an operation is difficult to make invisible and parallelize. On the other hand, “pure”
writes, can be expected to be rare, but they do not need to view the state to execute,
so more optimizations apply to them. Specifically, they can also be made to execute on
an “empty” buffer without prior synchronization, just like writes in OptSVA. Thus, we
keep them apart from updates. Note that the complex shared object may still contain
composite state, consisting of some number of independent variables, and read, write, and
update operations are not required to read and/or modify the state holistically. Whether
or not a particular operation will only read state written locally or whether it requires
synchronization depends largely on how objects buffering is implemented.

Not also that the operation types presented here can be used with reference to homo-
geneous objects. A read operation in the heterogeneous object model is equivalent with
a read operation in the homogeneous model, and either the update or a write operations
may be selected to represent a write operation in the homogeneous object, depending on
the semantics of the operation.

6.4.2 Buffering
When creating buffers for variable-like objects, given the semantics of the two available
operations, it is simply a matter of copying a value from a shared variable to some local
variable. Such a buffer can also be locally written to without knowledge of its state, since
the new value of the variable supersedes the old. Thus, local writes can simply write to
uninitialized local variables.

Given the composite state of complex objects and arbitrary semantics of operations,
two types of buffers are needed. The first, a copy buffer, is one that copies the entire state
of a shared object, and can be used to both locally read and modify the object. Such a
buffer can be used to read a released object or restore an object during abort. For the
first purpose we use a buffer denoted bufi(dxc) (for some transaction Ti and some object
dxc), and for the latter we use a buffer denoted sti(dxc). However, since the state of
the original object is copied, in order to create a copy buffer the transaction must check
fulfill the access condition before doing so. Such a copy buffer is not universal, since it
cannot be used to execute local writes without prior synchronization.

Thus, we introduce a second buffer type. A log buffer is an object that maintains the
interface of the original shared object but none of its state. When a method is executed on
the object, the buffer logs the method and its parameters. The method may be executed
completely, assuming that it does not need any state other than local data to do so. In
that case, any changes the method does to the state are tracked and stored. If this is
impossible, the method will not execute, apart from being logged. The log buffer can be
applied to the original object to update the state of the latter. If some method was pre-
executed before applying the log, its effects are applied to the state of the original object.
If a method was not previously executed, it is executed on the original object at the time

6.4 OptSVA in Control Flow Distributed TM 123

the log is being applied. Given the log buffer does not use the object’s state, it can be used
to execute write operations without prior synchronization. Since write operations modify
the object’s state without viewing it, write operations are always capable of executing
methods on the log buffer in place, and do not need to commute the execution to the
point when the buffer is applied.

Since the CF semantics require that computations are performed wherever the shared
object is located in the distributed system, either type of buffer resides on the same host
in a distributed system as the original object. Otherwise, not only would the assumptions
of the CF model be violated, but if the execution of operations caused any side effects,
the side effects would be removed from the location of the original node.

6.4.3 Asynchronous Buffering
If a transaction only ever executes read operations on a shared object (although it may
execute writes and updates on other objects), we will refer to such an object as a read-
only object with respect to this transaction. OptSVA-CF+R handles read-only objects
similarly to how OptSVA+R handles variables. In the case of such an object, synchro-
nization needs to be done when the first read is executed, but all subsequent reads only
need to use the buffer to execute. Hence, once the buffer is created, the reads execute as
if they were local and the read-only object can be released. Other transactions benefit
from the object being released as soon as possible, and it is possible for a read-only ob-
ject to be released even before the first read operation occurs. I.e., first write does not
need to access the actual object either, as long as the state of the object is buffered. The
only condition that must be satisfied to store the state of some object in the buffer is
that it must pass the access condition, but otherwise it can be done at any point in the
transaction. Hence, OptSVA-CF+R transactions attempt to buffer a read-only object as
soon as they retrieve private versions at start. But, since waiting at the access condition
may block the executing of operations that precede the first read on the read-only object
in the code of the transaction, the buffering procedure is executed asynchronously: the
transaction delegates it to a separate thread and proceeds to execute other operations
as normal. The separate thread waits until the access condition for the object is met,
following which the thread buffers, and immediately releases the object. Then, all reads,
including the first read, execute the operation on the buffer. In effect, early release of
read-only objects is potentially expedited.

Similar asynchrony is used in the case of a final modification of an object. The pro-
cedure is more complex and more conservative in OptSVA-CF+R than in OptSVA+R,
since there are more operation and buffer types. When a transaction executes its last
write or update operation on some shared object, the object is immediately buffered
afterward and released. This allows all following read operations to only use the buffer,
and therefore be invisible to outside transactions. The final update can only be executed
if the access condition is passed, since it may need to view the state of the object to
execute. However, a write may execute using the log buffer instead and do it without
synchronization, since it does not view the state. Then, in the specific case of a write
operation that is the only write operation on an object, or in case of a write operation
preceded only by other write operations on that object, the transaction may not have
attempted to satisfy the access condition yet. In such a case, the final write can be split
into a write that executes using the log buffer without synchronization, and a proce-
dure that subsequently updates the state of the actual object. This procedure can only
be executed if the access condition is passed, but it can release the object immediately
after it finishes updating the object’s state. The procedure is executed asynchronously
with respect to the main body of the transaction, since it has no impact on following

Ti
starti
pvi(dxc)←1

readi(dxc)→0

lv(dxc)=0?

writei(dxc)1→oki
lv(dxc)←1

tryC i→Ci

Tj
startj
wubj(dxc)=2
pvj(dxc)←2

writej(dxc)2→okj
execute writej on logj(dxc)
wcj(dxc)←1

? wubj(dxc)= wcj(dxc)

writej(dxc)3→okj
execute writej on logj(dxc)
wcj(dxc)←3

? wubj(dxc)= wcj(dxc)

updatej(dyc)→okj readj(dxc)→2 tryC j→Cj

? lv(dxc)=1 dxc←logj(dxc)
bufj(dxc)←dxc
lv(dxc)←2

Tk
startk
pvk(dxc)←3

readk(dxc)

? lv(dxc)=2

→3 writek(dxc)→okk tryCk→Ck

Figure 6.17: Asynchronous release (OptSVA-CF+R).

6.4 OptSVA in Control Flow Distributed TM 125

operations—all following operations on this object, if any, will be reads, and will read
from the local buffer. In this way, the last write avoids blocking the entire transaction to
wait for the access condition. In addition, the point at which the transaction must wait
for the access condition for this object can be delayed to any point between the last write
and the end of the transaction.

We illustrate this optimization further in Fig. 6.17. Here, transaction Ti can pass
access condition for dxc first and execute a read and a write on dxc. Nevertheless Tj
performs operations on dxc simultaneously. First, Tj executes a write, and can do so
without waiting at the access condition, since it works on the log buffer rather than
directly on dxc. Meanwhile Ti can execute operations on the actual object. Then Tj
executes another write operation, using the log buffer. Since this is the last operation
execution on dxc in Tj (which the transaction knows because wubj(dxc) = wcj(dxc)), Tj
may write the changes from the log buffer into the object. Hence, a separate thread starts
at the end of the write operation and it starts waiting at the access condition. When the
access condition is satisfied, the thread updates the state of dxc using the log buffer and
releases it, which allows Tk to start accessing dxc. The thread also creates a copy buffer
from the updated object, which is sufficient for future local reads to use. Note, however,
that Tj can immediately start doing other operations, while the separate thread is still
waiting at the access condition to dxc. Hence Tj can execute an update operation on dyc,
which can be executed regardless of the access condition to dxc. Then, Tj can continues
to execute read operations on dxc using the copy buffer, and does so in parallel to Tk. If
buffers were not used, none of these operations could be executed in parallel by several
transactions. In addition, if a separate thread were not used to synchronize and release
dxc, but if instead this were done as part of the last write, the operation on dyc in Tj
would be significantly, but needlessly delayed.

6.4.4 Consequences of Model Generalization
OptSVA-CF+R is based on the optimizations introduced in OptSVA+R, but applies
them to a different, more universal system model. The complex object model is more
general, since a variable-like object can be implemented as a reference cell, a complex
object with one field, a read operation returning its value, and a write operation setting
the old value to a new one.

Given such a specification, OptSVA-CF+R will execute the same way as OptSVA+R
with one significant exception. Given a transaction that executes a write operation on
some object dxc followed by a read operation on dxc, OptSVA-CF+R will execute the
write without synchronization, but must synchronize before the read executes. This is
because the changes in the log buffer must be applied to the actual object and copy
buffer before the read proceeds. Hence, the read might be forced to wait until the access
condition for dxc is satisfied. In contrast, OptSVA+R will allow the read to proceed
without synchronization, since it is a local operation, and therefore completely dependent
on the preceding write.

We show an example of this in Fig. 6.18. The figure shows the execution of the same
transactional code under the same circumstances using OptSVA+R in Fig. 6.18a and
OptSVA-CF+R in Fig. 6.18b. The object dxc is meant to represent a reference cell, a
simple object with effectively the same interface and semantics as x. In both histories Ti
starts first, but executes a write operation writing 2 to x (or dxc) much later. In the mean
time Tj executes its own write to x (dxc), writing 1 to it. Since this is the initial write
OptSVA+R executes it on buffer bufj(x) and OptSVA-CF+R executes it on log buffer
logj(dxc), so in neither algorithm is Tj forced to wait for Ti. Then, Tj executes a read
operation on x (or dxc). In OptSVA+R the read operation can proceed without waiting

Ti
starti
wubi(x)=1
pvi(x)←1

wi(x)2→oki
lv(x)←1

tryC i→Ci

Tj
startj
wubj(x)=1
pvj(x)←2

wj(x)1→okj
bufj(x)←1

? wubj(x)= wcj(x)

rj(x)→1 rj(y)→0 tryC j→Cj

? lv(x)=1 x←bufj(x)

(a) OptSVA+R.

Ti
starti
wubi(dxc)=1
pvi(dxc)←1

writei(dxc)2→oki
lv(dxc)←1

tryC i→Ci

Tj
startj
wubj(dxc)=1
pvj(dxc)←2

writej(dxc)1→okj
execute writej on logj(dxc)

? wubj(dxc)= wcj(dxc)

readj(dxc)

join with :write_buffer

→1

execute readj on bufj(dxc)

readj(dyc)→0 tryC j→Cj

? lv(dxc)=1 dxc←logj(dxc)
bufj(dxc)←dxc

(b) OptSVA-CF+R.

Figure 6.18: Local read operation handling in OptSVA-CF+R and OptSVA+R.

6.4 OptSVA in Control Flow Distributed TM 127

since it is executed using bufj(x), but in OptSVA-CF+R the read cannot proceed, since
the read cannot be executed on logj(dxc). Instead, in OptSVA-CF+R, Tj must first
synchronize with Ti to retrieve a consistent version of dxc on which it can apply the log
buffer. Only then can Tj finish reading from dxc in OptSVA-CF+R. Therefore, Tj in
OptSVA-CF+R waits longer than in OptSVA+R.

In effect, we can see that given reference cells, there are certain executions that will be
allowed by OptSVA+R that are not allowed by OptSVA-CF+R. Since these OptSVA+R
executions are tighter than their equivalent executions in OptSVA-CF+R, OptSVA+R
admits a higher level of parallelism. Therefore, OptSVA-CF+R trades generality for
performance.

6.4.5 Summary
OptSVA-CF+R operates on the basis of the versioning mechanism, using private, local,
and local terminal version counters to ensure that accesses to objects and commits are
performed in the order defined by private versions. The individual operations are handled
as follows:

Start
When an OptSVA-CF+R transaction Ti starts it acquires a private version for each
shared object in its access set. If any of these objects are read-only with respect to
Ti, the transaction also starts separate threads that clone the objects into copy buffers
bufi(dxc) and release them afterward.

Read
Whenever transaction Ti attempts to execute a read operation on some object dxc, its be-
havior primarily depends on whether the object is read-only, and whether it was released
or not. If the object is read-only with respect to Ti, the read operation waits until the
separate read-only thread finishes buffering the object, and executes the read operation
on the buffer.

Otherwise, if the object was not previously accessed, then the transaction checks if
there were preceding reads or updates. If not, the transaction must wait until the access
condition to dxc is satisfied and makes a checkpoint by copying the state of the shared
object to buffer sti(dxc). Buffer sti(dxc) is a copy buffer like bufi(dxc), but it is never
modified and only used to restore the object in the event of abort.

In addition, if only preceding operations were writes, then they were performed using
the log buffer logi(dxc), so the transaction applies the log buffer to dxc before proceeding.
Next, the transaction checks if any object was invalidated so far, and if so forcibly aborts.
If any object was invalidated at any point, the transaction is doomed to abort eventually,
so by checking for all the objects we force it to do so as early as we can detect. If the
transaction is not aborted, it then executes the code of the read operation on dxc. If this
is the last operation (of any kind) on dxc, the transaction subsequently releases dxc.

If the object was previously released, the read waits until the thread responsible for
releasing the object is finished. Once this is the case, the transaction executes the code
of the read operation on dxc using the copy buffer bufi(dxc) (created at release).

Update
In the case of an update operation, the transaction checks whether any reads or updates
were executed on the same object before. If that is the case, the transaction waits until the

1 proc start(Transaction Ti) {
2 // Acquire private versions.
3 for dxc ∈ ASeti in order
4 lock lk(dxc)→ W
5 for dxc ∈ ASeti {
6 gv(dxc)← gv(dxc) + 1
7 pvi(dxc)← gv(dxc)
8 unlock lk(dxc)
9 }

10 // Asynchronously buffer read−only variables.
11 for dxc ∈ ASeti: wubi(dxc) = 0
12 async run :read_buffer(Ti, dxc)
13 when pvi(dxc) - 1 = lv(dxc)
14 return oki

15 }
16 proc read(Transaction Ti, Object dxc, Method m) {
17 // Read−only object.
18 if dxc is read-only {
19 join with :read_buffer(Ti,dxc)
20 if ∃dyc: rvi(dyc) 6= cv(dyc)
21 return abort(Ti)
22 execute m on bufi(dxc) returning v
23 rci(dxc)← rci(dxc) + 1
24 return v
25 }
26 // Object not previously released.
27 if (wci(dxc) < wubi(dxc)
28 or uci(dxc) < uubi(dxc)) {
29 if wci(dxc) = 0 and uci(dxc) = 0 {
30 wait until pvi(dxc) - 1 = lv(dxc)
31 :checkpoint(Ti,dxc)
32 if (wci(dxc) > 0)
33 apply logi(dxc) to dxc
34 }
35 if ∃dyc: rvi(dyc) 6= cv(dyc)
36 return abort(Ti)
37 execute m on dxc returning v
38 rci(dxc)← rci(dxc) + 1
39 if (rci(dxc) = rubi(dxc)
40 and wci(dxc) = wubi(dxc)
41 and uci(dxc) = uubi(dxc))
42 :release(Ti,dxc)
43 return v
44 }
45 // Object previously released.
46 if wci(dxc) = wubi(dxc)
47 and uci(dxc) = uubi(dxc)) {
48 if write_buffer(Ti,dxc) is running
49 join with :write_buffer(Ti,dxc)
50 if ∃dyc: rvi(dyc) 6= cv(dyc)
51 return abort(Ti)
52 execute m on bufi(dxc) returning v
53 rci(dxc)← rci(dxc) + 1
54 return v
55 }
56 }
57 proc update(Transaction Ti, Object dxc, Method m) {
58 if rci(dxc) = 0 and uci(dxc) = 0 {
59 wait until pvi(dxc) - 1 = lv(dxc)
60 :checkpoint(Ti,dxc)
61 if (wci(dxc) > 0
62 apply logi(dxc) to dxc
63 }
64 if ∃dyc: rvi(dyc) 6= cv(dyc)
65 return abort(Ti)
66 execute m on dxc returning v
67 uci(dxc)← uci(dxc) + 1
68 if (wubi(dxc) = wci(dxc)
69 and uubi(dxc) = uci(dxc)) {
70 bufi(dxc)← dxc
71 :release(Ti,dxc)
72 }
73 return v
74 }

75 proc write(Transaction Ti, Object dxc, Method m) {
76 // No preceding reads or updates.
77 if rci(dxc) = 0 and uci(dxc) = 0 {
78 execute m on logi(dxc)
79 wci(dxc)← wci(dxc) + 1
80 if wci(dxc) = wubi(dxc)
81 async run :write_buffer(Ti,dxc)
82 when pvi(dxc) - 1 = lv(dxc)
83 }
84 // Some preceeding reads or updates.
85 if rci(dxc) > 0 or uci(dxc) > 0 {
86 if ∃dyc: rvi(dyc) 6= cv(dyc)
87 return abort(Ti)
88 execute m on dxc
89 wci(dxc)← wci(dxc) + 1
90 if wci(dxc) = wubi(dxc) {
91 bufi(dxc)← dxc
92 :release(Ti, dxc)
93 }
94 }
95 }
96 proc commit(Transaction Ti) {
97 for(dxc ∈ ASeti) {
98 if wubi(dxc) = 0
99 join with read_comit(Ti,dxc)

100 else {
101 if (wci(dxc) = wubi(dxc)
102 and rci(dxc) = uci(dxc) = 0)
103 join with write_buffer(Ti,dxc)
104 else {
105 if wci(dxc) + rci(dxc) = uci(dxc) = 0
106 wait until pvi(dxc) - 1 = lv(dxc)
107 if (wci(dxc) > 0
108 and rci(dxc) = uci(dxc) = 0) {
109 :checkpoint(Ti,dxc)
110 if ∃dyc: rvi(dyc) 6= cv(dyc)
111 return abort(Ti)
112 apply logi(dxc) to dxc
113 }
114 }
115 wait until pvi(dxc) - 1 = ltv(dxc)
116 if pvi(dxc) - 1 = lv(dxc)
117 lv(dxc)← pvi(dxc)
118 if (rci(dxc) + wci(dxc) + uci(dxc) > 0
119 and rvi(dxc) = cv(dxc)
120 and pvi(dxc) - 1 > lv(dxc))
121 cv(dxc)← pvi(dxc)
122 }
123 }
124 if ∃dyc: rvi(dyc) > cv(dyc)
125 return abort(Ti)
126 for dxc ∈ ASeti

127 ltv(dxc)← pvi(dxc)
128 return oki

129 }
130 proc abort(Transaction Ti) {
131 for dxc ∈ ASeti {
132 wait until pvi(dxc) - 1 = ltv(dxc)
133 if (rci(dxc) + wci(dxc) + uci(dxc) > 0
134 and pvi(dxc) - 1 > lv(dxc)
135 and rvi(dxc) = cv(dxc)
136 and wubi(dxc) + uubi(dxc) > 0) {
137 if wci(dxc) = wubi(dxc)
138 join with :write_buffer(Ti,dxc)
139 :recover(Ti,dxc)
140 }
141 if pvi(dxc) - 1 = lv(dxc)
142 lv(dxc)← pvi(dxc)
143 ltv(dxc)← pvi(dxc)
144 }
145 return Ai

146 }

Figure 6.19: OptSVA-CF+R.

6.4 OptSVA in Control Flow Distributed TM 129

147 proc :read_buffer(Transaction Ti, Object dxc) {
148 rvi(dxc)← cv(dxc)
149 bufi(dxc)← dxc
150 :release(Ti,dxc)
151 async run :read_commit(Ti,dxc)
152 when pvi(dxc) - 1 = ltv(dxc)
153 }
154 proc :read_commit(Transaction Ti, Object dxc) {
155 if ∃dyc: rvi(dyc) > cv(dyc)
156 return abort(Ti)
157 ltv(dxc)← pvi(dxc)
158 }
159 proc :write_buffer(Transaction Ti, Object dxc) {
160 :checkpoint(Ti,dxc)
161 apply logi(dxc) to dxc
162 bufi(dxc)← dxc
163 :release(Ti,dxc)
164 }

165 proc :checkpoint(Transaction Ti, Object dxc) {
166 sti(dxc)← dxc
167 rvi(dxc)← cv(dxc)
168 }
169 proc :recover(Transaction Ti, Object dxc) {
170 dxc ← sti(dxc)
171 cv(dxc)← rvi(dxc)
172 }
173 proc :release(Transaction Ti, Object dxc) {
174 cv(dxc)← pvi(dxc)
175 lv(dxc)← pvi(dxc)
176 }

Figure 6.19: OptSVA-CF+R.

access condition is satisfied and then makes a checkpoint. In addition, the transaction
will also apply the log buffer logi(dxc) to dxc if there were preceding writes (but no
preceding reads or updates). In any case, the transaction subsequently checks whether
any objects were invalidated, and aborts if that is the case. Afterward, the code of the
operation is executed on dxc. If there are no further updates or writes to be performed
on dxc, the transaction makes a copy of dxc in bufi(dxc) and releases it.

Write
Pure write operations are executed in one of two ways, depending on whether there were
any read or update operations executed prior (by the same transaction). This is because
updates and reads both wait on the access condition, meaning that then the object
can be operated on directly. Otherwise, the write can be performed using a log buffer.
Specifically, if there were no preceding reads or updates, the transaction simply executes
the operation on the log buffer. If this is the final write and there will also not be update
operations on this object in the transaction, the transaction then starts a thread, which
will wait at the access condition and subsequently: make a checkpoint to sti(dxc), apply
the log buffer logi(dxc) to the original object dxc, copy the modified object to the copy
buffer bufi(dxc), and release dxc. Meanwhile, the transaction’s main thread proceeds.

If there were preceding reads or updates, the transaction operates using the up-to-date
object that is already under its control. Making a checkpoint would be redundant, but the
transaction checks whether any objects were invalidated, and if so, aborts. Otherwise, it
executes the code of the operation on the object, and if this was the last write or update
operation on dxc, then dxc is cloned to sti(dxc) and released. The last step is not done
in a separate thread, since the transaction already has access to dxc.

Commit
When the transaction commits it waits for extant threads to finish in the case such
threads are still running for read-only objects and objects that are being released after
last write. Afterward, the transaction waits until the commit condition is satisfied for all
objects in its access set. Then, if the transaction did not access a particular object at any
time, it makes a checkpoint. If it only ever executed writes on an object, the transaction
applies the log buffer to the object. If the object was not released, the transaction releases
it. Afterward, the transaction checks whether any object was invalidated, and aborts if
that is the case. Otherwise, the transaction updates the local terminal versions of all

130 6 New Algorithms

objects and finishes execution. No further actions may be performed by the transaction
after the commit finishes executing.

Abort
When the transaction aborts, just like with commit, it waits for the appropriate threads to
finish, and for the commit condition to be satisfied. Then, each object in the transaction’s
access set is restored from sti(dxc), unless some other transaction that previously aborted
already restored it to an older version beforehand. Then, the transaction updates the
local terminal versions of all objects and finishes execution. No further actions may be
performed by the transaction after the abort finishes executing.

6.4.6 Properties
OptSVA-CF+R is last-use opaque, which we discuss in Chapter 7. We briefly demonstrate
the liveness, and progress properties of OptSVA-CF+R below.

Theorem 3. OptSVA-CF+R is deadlock-free.

Proof. There are two types of occurrence where an operation can wait. The first is waiting
on an access condition, or the similar condition when a transaction attempts to commit
or abort. In this case, the condition is satisfied in the order enforced by transactions’
private versions for specific objects. Since private versions are consecutive integers and
since they are acquired atomically by the transaction, it is impossible for a circular wait
to occur. The other case of waiting is during transaction start, when private versions are
acquired. In order for this to be done atomically, transactions lock a series of locks before
getting private versions, and release the locks afterward. These locks are always acquired
in accordance to an arbitrary global order, regardless of transaction. That eliminates
the possibility that a circular wait occurs during start. Since circular wait cannot occur
among transactions, OptSVA-CF+R is deadlock free.

Theorem 4. OptSVA-CF+R is strongly progressive.

Proof. Any transaction in OptSVA-CF+R can either abort manually or forcibly. In order
for a transaction Ti to abort forcibly, there must be some transaction Tj that forces Ti
to abort, i.e., such Tj that accessed some object dxc and released it before Ti accessed
dxc, and Tj must have aborted after Ti accessed dxc. Thus for every forcibly aborted
transaction, there must be another aborted transaction. Hence, given any set of conflicting
transactions, there will be at least one transaction that will not be forcibly aborted (but
it will be manually aborted). Therefore, OptSVA-CF+R is strongly progressive [33].

6.4.7 Reluctant Transactions
The versioning mechanism is pessimistic: it delays operations rather then aborting trans-
actions on conflict. Transactions only abort if the abort operation is invoked program-
matically, or as a result of a cascade. Further, cascading aborts start only due to a trans-
action being aborted manually. Hence, if no transaction in the system manually aborts,
no transaction ever aborts. Then, it is to execute any irrevocable operations within any
transaction. However, if any transaction manually aborts, it is possible that it will force
some other transaction into a cascade. In order for transaction Ti to participate in a
cascading abort, a preceding transaction Tj must release an object early and then abort
after the Ti executed an operation directly on that object. These conditions rarely occur

6.5 Summary 131

in practice, so cascading aborts are also infrequent. However, they do introduce a chance
of unsafe executions of irrevocable operations.

Hence, by analogy to RSVA+R and ROptSVA+R we introduce ROptSVA-CF+R.
In this variant of the algorithm in order to exclude the possibility of abort completely
for transactions with irrevocable operations, such transactions can be labeled reluctant.
ROptSVA-CF+R prevents reluctant transactions from ever becoming part of a cascade,
by replacing all access condition checks with termination condition checks. This means
that irrevocable transactions never “accept” objects released early. The drawback is that
such transactions may wait longer to access shared objects, but in return they never
forcibly abort.

We give the pseudocode of ROptSVA+R in Appendix B. It is almost identical to
OptSVA-CF+R.

6.4.8 Commit-only Model
It is also possible to derive a variant of OptSVA-CF that operates in the commit-only
model. Given that OptSVA-CF is pessimistic, it does not need to abort unless arbitrary
aborts are introduced, so OptSVA-CF in the commit only model is completely abort-free.
This means that it becomes impractical for certain classes of distributed systems, but
also completely safe for irrevocable operations. We give this algorithm in Appendix B in
full. It is similar to OptSVA-CF+R but lacks mechanisms for aborting transactions and
reverting objects to previous states, which makes it simpler.

6.5 Summary

We present a summary of the characteristics of versioning algorithms in Table 6.1. All
of the algorithms are pessimistic and blocking, as well as deadlock-free, so we omit this
from the table.

Using the original versioning algorithms as a base (primarily SVA), we introduced
three classes of novel TM algorithms that aim to take advantage of the versioning con-
currency control and early release mechanisms. First, we extended pessimistic algorithms
into the arbitrary abort model. This allows versioning algorithms to be used in a broader
range of systems, including in distributed systems with a possibility of partial failure.
Since SVA uses early release, the introduction of the abort operation into SVA+R re-
quired the introduction of additional mechanism to contain inconsistent views and retain
strong safety properties. These mechanisms are novel and are not needed for other pes-
simistic systems with the ability to abort (BVA+R, 2PL). However, the drawback of
these algorithms is that they are agnostic of the semantics of the objects on which they
execute operations, hence their performance falls short in comparison to traditional op-
timistic TM in systems where the semantics of operations are known. (We show this
experimentally in Section 8.1.)

The second class of versioning algorithms are aimed to alleviate the problem by
applying the versioning control mechanism in the variable model. OptSVA+R is the rep-
resentative of that class that introduces a number of optimizations to the basic modus
operandi of its predecessor: heavy use of buffering and commit-time updates rather than
encounter-time modifications, read operation parallelization, early release of shared ob-
jects on last write instead of last operation of any kind, and transaction-local operation
asynchrony which allows transactions to delegate some tasks that require waiting to sep-
arate thread and proceed with other computation in the mean time. These optimizations

Algorithm Updates Aborts A priori Objects Safety Early release Irrevocable
BVA encounter-time commit-only, abort-free ASet heterogeneous opaque no Ti ∈ T
BVA+R encounter-time arbitrary abort ASet heterogeneous opaque no Ti ∈ T
SVA encounter-time commit-only, abort-free ASet, supr heterogeneous opaque-equivalent yes Ti ∈ T
SVA+R encounter-time arbitrary abort, cascade ASet, supr heterogeneous last-use opaque yes ∅

RSVA+R encounter-time arbitrary abort, cascade ASet, supr, R heterogeneous last-use opaque yes Ti ∈ R
OptSVA commit-time commit-only, abort-free ASet, wub, rub, variable last-use opaque* yes Ti ∈ T
OptSVA+R commit-time arbitrary abort, cascade ASet, wub, rub, variable last-use opaque yes ∅

ROptSVA+R commit-time arbitrary abort, cascade ASet, wub, rub, R variable last-use opaque yes Ti ∈ R
OptSVA-CF commit-time commit-only, abort-free ASet, wub, rub, operation types any last-use opaque* yes Ti ∈ T
OptSVA-CF+R commit-time arbitrary abort, cascade ASet, wub, rub, operation types any last-use opaque yes ∅

ROptSVA-CF+R commit-time arbitrary abort, cascade ASet, wub, rub, R, operation types any last-use opaque yes Ti ∈ R

Table 6.1: Summary comparison of versioning algorithms.

6.5 Summary 133

reduce the amount of scenarios where one transaction has to wait for another and in this
way improve the transactional throughput, while maintaining the string safety properties
of SVA+R. We show this improvement theoretically and conclude that OptSVA+R is an
algorithm with high potential for parallelism. To the best of our knowledge OptSVA+R
is the first algorithm to use transaction-local asynchrony to execute transparently exe-
cute transactional operations in parallel with local computations and operations on other
variables.

However, the system model used in OptSVA+R is not as well-suited to practical
applications in distributed TM. Hence, we introduce a third class of versioning algorithms
which allow the generalization of the introduced algorithms to any system model, while
maintaining a high degree of parallel execution of conflicting transactions. We show
experimentally in Section 8.2 that an implementation of these algorithms can outperform
quality optimistic distributed TM systems.

In each class of algorithms we introduce variants that prevent specific reluctant trans-
actions from aborting, making them completely safe for irrevocable operations, and leav-
ing the decision whether a particular transaction can be allowed to abort to the program-
mer, who can determine this based on business logic and the code of the transaction and
decide whether it pays off to trade consistency for efficiency. We also include commit-only
variants of the algorithms which can be applied to systems where programmers are not
allowed to execute programmatic aborts, which makes the system completely abort free.
We conjecture that such systems are equivalent to opaque systems in terms of safety in
the commit-only model (we denote this in Table 6.1 by an asterisk). This also means
that all transactions safely execute irrevocable operations.

7
Safety

In this chapter we discuss the safety properties of selected algorithms from Chapter 6.
Specifically, in the first section we discuss the relationship between SVA and opacity.
SVA is not opaque, since it admits histories with early release, which are forbidden by
opacity. However, opacity prevents early release specifically to prevent inconsistent views,
and SVA histories do not allow inconsistent views. This is because SVA is pessimistic
and operates in the commit-only model, which means neither forced nor voluntary aborts
occur. Hence, we attempt to draw an equivalency between histories produced by SVA
and opaque histories, by showing the former are observationally indistinguishable from
the latter. The technique presented in this section were introduced in [80].

Next, we discuss the safety of SVA+R and demonstrate that SVA+R is last-use
opaque. We first provide a proof sketch showing the intuition and describing the method,
and give the complete proof in Appendix A. The proof was originally presented in [79].

Then, we demonstrate the last-use opacity of OptSVA+R. Since OptSVA+R makes
heavy use of buffering and largely detaches operations from their actual effects on mem-
ory, the proof is not straightforward. For this reason, we introduce trace harmony, a
proof technique that allows to prove last-use opacity (and can be extended to opacity)
of algorithms that operate on buffers. Trace harmony decomposes last-use opacity into
several simpler criteria. If a history can be shown to satisfy those criteria, then it follows
that it is last-use opaque (we demonstrate this formally in Appendix A). Hence, we show
that OptSVA+R histories are harmonious, and therefore last-use opaque. The proof and
trace harmony were presented in [102].

Finally, we show that the proof for last-use opacity of OptSVA-CF+R follows from
the proof of OptSVA+R, after [82].

7.1 Opacity of SVA

Opacity introduces the requirement that transactions never read from live transactions,
since this could lead to situations where inconsistent views cause unexpected and danger-
ous situations to occur, like infinite loops and division by zero errors. However opacity
precludes early release, an important programming technique, where two transactions
technically conflict but nevertheless both commit correctly, and still produce a history
that is intuitively correct. This is particularly true with pessimistic concurrency control,

136 7 Safety

Ti
starti wi(x)1→oki tryC i→Ci

Tj
startj rj(x)→1 tryC j→Cj

Figure 7.1: A history with early release and no inconsistent views.

where transactions, as a rule, do not abort. If they do not abort, then viewing the fi-
nal state of a variable does not cause inconsistencies, even if the value is read from a
live transaction. On the other hand, systems that employ early release gain a significant
improvement in performance.

SVA is one such pessimistic concurrency control algorithm. SVA allows transactions
to read from other live transactions under the condition that the live transactions being
read from will not attempt to modify the objects in question. Since SVA transactions
also never abort, then they never experience inconsistent views, and are otherwise free
of all the dangerous situations opacity is meant to exclude. Nevertheless SVA does not
meet the requirements of opacity.

Here, we present a technique that can show that opacity can be fulfilled by transform-
ing the original history with early release to a different form called a decomposed history.
The transformation can be performed only under stringent assumptions with respect to
the original history, but the decomposed form can then be proven to be opaque. Since
we also show that the decomposed history is a refinement of the original history, this
suffices to acknowledge that the original history provides the same safety guarantees as
opacity. In this way, we can show TM systems with early release need not necessarily
relax consistency in trade for efficiency.

7.1.1 History Decomposition
In Section 3.2.6 we showed that a history with an instance of early release cannot be
opaque. However, the history shown in Fig. 7.1 is an intuitively correct execution, since
all operations are legal, the real-time order is preserved, and no inconsistent views are
introduced. Indeed, the history is even final-state opaque and only its prefix created by
removing both commit operation executions is not (proof in Appendix A).

This intuition that the history is correct would be especially true if history H1 were
generated by a pessimistic TM system or any system in the commit only model, where
aborts do not occur. In the particular case of these systems, forming a completion by
defaulting an execution of an uncommitted transaction to an abort is too conservative
and leads to perfectly legal histories being unable to satisfy opacity. On the other hand,
the assumption that all transactions will eventually commit is not one that can be in-
corporated into the definition of opacity without compromising its meaningfulness for
optimistic TMs.

Therefore, rather than modifying the definition of opacity to allow for non-aborting
pessimistic TMs with early release, in this section we propose a simple technique called
decomposition. The technique allows to create a decomposed history by splitting trans-
actions with early release into sequences of atomic single-operation transactions (given
certain stringent assumptions about their execution). This history will prevent transac-
tions with early release from violating the consistency requirements of opacity, but will
nevertheless be commensurate with the original history on the basis of observational
refinement.

7.1 Opacity of SVA 137

However, please note that this is a transformation done “on paper” rather than a
technique that is used during the actual execution of operations by a particular TM
system, i.e., the state changes are done by the system as if all transactions were atomic.

Intuition
Intuitively, the idea behind decomposition is to redefine any non-aborting transaction
that releases early as a sequence of smaller transactions, each of which performs a single
complete operation (i.e., an invocation and a response) and immediately commits. Such
a decomposed transaction preserves the semantics and operations of the original transac-
tion, but, since it is executed piecemeal, it no longer meets the definition of early release.
This allows a transaction that originally had early release to satisfy opacity.

An example of this is given in Fig. 7.2 where Fig. 7.2b shows history H ′ which
decomposes H from Fig. 7.2a. Here, Ti from H is emptied, and the original operations
comprising Ti are executed as separate sequential transactions Ti,1, Ti,2, Ti,3, and Ti,4.
This can be thought of essentially as nesting transactions Ti,1, Ti,2, Ti,3, and Ti,4 within
Ti and using them to execute code within Ti.

The decomposed history may be considered interchangeable with the original his-
tory because decomposed histories behave exactly like the original histories from which
they were produced. That is, the decomposed history observationally refines the original
history.

Definition
Let H be a TM history with unique writes. Let Ter be a set of transactions s.t., Ter ⊆ T
and Ti ∈ Ter if, and only if, Ti is guaranteed to eventually commit and Ti releases some
object early. We say a transaction eventually commits if the semantics of the TM ensure
that it never aborts.

Given two transactions Ti and Tj (Ti, Tj ∈ T) and some invocation or response event
ei executed by transaction Ti, let reassignj(ei) be an event executed by Tj and defined
as,

reassignj(ei) =
{

invj
[
op(x)w

]
if ei = invi

[
op(x)w

]
,

resj
[
u
]

if ei = resi
[
u
]
.

Intuitively, reassignj(ei) is the same event as ei, only executed by transaction Tj rather
than Ti.

Given some transaction Ti and an event e, let openi(e) and closei(e) denote sequences
defined as follows:

openi(e) = [starti → oki] · [e], and
closei(e) = [e] · [tryC i → Ci].

Note that using open on the first event and close on the last event of some sequence of
events “envelops” them in a transaction.

Then, we define history decomposition as follows:

Definition 28. Given a history H, let its decomposition Hd = Decomp(H) be identical
to H except that every transaction Ti ∈ H s.t., Ti ∈ Ter is transformed as follows:

a) every complete operation execution in Ti that consists of an invocation event e′i and
a response event e′′i , e′i is replaced in Hd by openj(reassignj(e′i)) and e′′i is replaced
in Hd by closej(reassignj(e′′i)), where j is fresh, i.e. there is no Tj in H,

Ti
starti ri(x)→0 wi(x)1→oki ri(y)→0 wi(y)1→oki tryC i→Ci

Tj
startj rj(x)→1 wj(x)2→okj tryC j→Cj

(a) Original history.

Ti
starti tryC i→Ci

Ti,1
starti,1 ri,1(x)→0 tryC i,1→Ci,1

Ti,2
starti,2 wi,2(x)1→oki,2 tryC i,2→Ci,2

Ti,3
starti,3 ri,3(y)→0 tryC i,3→Ci,3

Ti,4
starti,4 wi,4(y)1→oki,4 tryC i,4→Ci,4

Tj
startj rj(x)→1 wj(x)2→okj tryC j→Cj

(b) Decomposed history.

Figure 7.2: Decomposition example.

7.1 Opacity of SVA 139

b) every pending operation execution in Ti that only consists of an invocation event
e′i, e′i is replaced in Hd by openj(reassignj(e′i)), where j is fresh, i.e. there is no Tj
in H.

Note that decomposition produces a set of new transactions for each transaction Ti ∈
Ter. We call such a transaction Ti a decomposed transaction. The set of all transactions
produced by decomposition to execute the events of a decomposed transaction Ti is
denoted Tid. This set explicitly contains the decomposed transaction Ti. We will refer to
any transaction Tj ∈ Tid s.t. Tj 6= Ti as a product of decomposition.

Next, let us show the opacity of a decomposed history, as follows.

Lemma 36. Given H, a final-state opaque history, and Hd = Decomp(H), Hd is final-
state opaque.

Proof. Let S be a sequential history fulfilling Def. 12 for H. Since H is final-state opaque
then, by Def. 12, every transaction Ti in S is legal in S because Vis(S, Ti) is legal.

Let Sd be a sequential history identical to S except that for every event ei in some
transaction Ti in S,

a) if ei in H was replaced in Hd by openj(reassignj(ei)) (given some Tj), then it is
also replaced in Sd by openj(reassignj(ei)),

b) if ei in H was replaced in Hd by closej(reassignj(ei)) (given some Tj), then it is
also replaced in Sd by closej(reassignj(ei)),

c) otherwise it remains ei.

In addition every decomposed transaction directly precedes all of its product transactions.
For every transaction Tk in Sd exactly one of the following is true:

a) Tk is neither a decomposed transaction nor a product transaction. In that case,
if Vis(Sd, Tk) = Vis(S, Tk), then, since every transaction Tk in S is legal in S

because Vis(S, Ti) is legal, so, by extension, Tk in Sd is legal in Sd. Alternatively, if
Vis(Sd, Tk) 6= Vis(S, Tk), then Vis(Sd, Tk) contains operations executed by product
transactions of one or more decomposed transaction Ti, where Vis(S, Tk) contains
operations executed by Ti. The definition of Sd implies that Sd contains the same
read and write operation executions as S, but some of the operations are executed
by product transactions. Since the sequential specification Seq(x) of any variable x
ignores which transaction executes the operation as long as the written and read
values are correct, then, if Vis(S, Tk) is legal, then Vis(Sd, Tk) is also legal. Hence,
Tk in Sd is legal in Sd.

b) Tk is a decomposed transaction in Sd. Then, from Def. 28, transaction Tk does not
contain any read or write operation executions. Therefore, Tk in Sd is legal in Sd if
there is no other transaction Ti s.t., Ti ≺Sd

Tk. This is because Vis(Sd, Tk) contains
no read or write operations, so it is in Seq(x) for any x, and thus Vis(Sd, Tk) is legal.
Otherwise, transaction Tk is preceded in Sd by any transaction Tj (Tj ≺Sd

Tk). For
the sake of simplicity, let Tj be such a transaction that there is no other transaction
Ti, s.t. Ti ≺Sd

Tk and Tj ≺Sd
Ti. Then, Vis(Sd, Tk) contains the same read and write

operation executions as Vis(Sd, Tj). Hence, if Vis(Sd, Tj) is legal, then Vis(Sd, Tk)
is also legal. Thus, if the preceding transaction Tj in Sd is legal in Sd, then Tk in
Sd is legal in Sd. Since we show in (a) and (c) that other types of transactions in
Sd are legal in Sd and since Tk in Sd is legal in Sd if no transaction precedes Tk,
then, trivially, Tk in Sd is legal in Sd.

c) Tk is a product transaction such that Tk 6∈ S and Tk ∈ Tdj for some decomposed
transaction Tj . In that case Vis(Sd, Tk) is the same as Vis(Sd, Tj) with the exception

140 7 Safety

that Vis(Sd, Tk) also contains the operations executed by product transactions
Ti ∈ Tid of the decomposed transaction Tj , but only if i = k or Ti ≺Sd

Tk. Let Tr
be a special case of a product transaction of Tj for which there is no other product
transaction Ti ∈ Tid s.t., Ti ≺Sd

Tk. Then, note that the definition of Sd implies
that Sd|Tr contains the same read and write operation executions as S|Tj , with the
exception that some of the operations are executed by product transactions. By
analogy to (a), since the sequential specification Seq(x) of any variable x ignores
which transaction executes the operation as long as the written and read values are
correct, then, if Vis(S, Tj) is legal, then Vis(Sd, Tr) is also legal. Hence, Tr in Sd
is legal in Sd. Since Seq(x) is prefix closed, then if Vis(Sd, Tr) is legal, then every
prefix of Vis(Sd, Tr) is also legal. Since Tk precedes Tr in Sd then Vis(Sd, Tk) is a
prefix of Vis(Sd, Tr). Therefore Vis(Sd, Tk) is legal, and thus Tk in Sd is legal in
Sd.

Thus, all transactions in Sd are legal in Sd. Trivially, Sd preserves the real-time order of
Hd and Sd ≡ Hd. Since Sd preserves the real-time order of H and every Ti in Sd is legal
in Sd, then, by Def. 12, Hd is final-state opaque.

Theorem 5. Given H, a final-state opaque history, and Hd = Decomp(H), Hd is opaque.

Proof. Since H is final-state opaque, then, from Lemma 36, Hd = Decomp(H) is final-
state opaque.

Given Hd = Decomp(H), Def. 28 ensures that if any transaction Ti releases early in
H, then it is decomposed in Hd, so all of its write operation executions are reassigned in
Hd to a product transaction Tj , s.t. Tj ∈ Tdi and each write is directly followed in Hd by
a successful commit operation executed by Tj . Consequently, if any transaction Tj writes
value v to variable x, and any transaction Tk reads v from x, then Tj always commits in
Hd before Tk reads v from x.

Let P be any finite prefix of Hd. The prefix potentially contains some transactions
which are not completed, and therefore are aborted in the completion Pc = Compl(P).
Note, from the above, that if any transaction Tj is aborted in Pc, then there is no trans-
action that reads from Tj , because either any read operation reading from Tj execution
would follow Tj ’s commit operation due to T ′js decomposition, or Tj would not release
early.

Hence, there can exist a sequential history Sc ≡ Pc wherein any Tk in Sc is legal in
Sc. Since Hd is final state opaque and P preserves the real time order of Hd, then Sc also
preserves the real time order of Pc. If any a completion of any Pc is final-state opaque,
then Hd is opaque. Thus, Hd is opaque.

Observational Refinement of Decomposed Histories
Observational refinement [42, 5], intuitively, is a notion that given two programs and an
observer who only sees the results of executing these two programs, if both programs
always produce the same results, then, effectively, the programs are indistinguishable,
and, therefore, interchangeable. The definition depends on what is considered observable
behavior, which we assume to be the state of all variables during the execution of a
program.

Given the set Var of all variables Var = {x1, x2, ..., xw}, let state S be a set of
variables paired with their values, i.e. S = {(x1, v1), (x2, v2), ..., (xw, vw)}. Let the initial
state S0 be a state s.t., for any xj ∈ Var and (xj , vj) ∈ S0, vj = v0. Let P(S) be a
powerset of S and E be the set of all possible invocation and response events. Then let
eval : P(S) × E 7→ P(S) be a function representing the semantics of a TM system. It

7.1 Opacity of SVA 141

is out of scope of this dissertation to define the complete semantics of TM, so we limit
ourselves to presenting the following assumptions about eval.

Intuitively, we expect operations to behave deterministically based on the initial state,
regardless of transaction. We also expect successful initialization and execution of com-
mitment operations not to modify the state. More formally, given some states S and S ′,
processes pk and pq variable x, value v, transactions Ti and Tj , we assume the following:

Assumption 1. If (e1, e2) = rki (x)→ v and (e′1, e′2) = rqj (x)→ v then eval(S, e1) =
eval(S, e′1) and eval(S ′, e2) = eval(S ′, e′2).

Assumption 2. If (e1, e2) = wki (x)v→oki and (e′1, e′2) = wqj (x)v→okj then eval(S, e1) =
eval(S, e′1) and eval(S ′, e2) = eval(S ′, e′2).

Assumption 3. If (e1, e2) = startki → oki then eval(S, e1) = S and eval(S ′, e2) = S ′.

Assumption 4. If (e1, e2) = tryCk
i → Ci then eval(S, e1) = S and eval(S ′, e2) = S ′.

We say that history H = [e1, e2, ..., em] is observed-state equivalent to history H ′ =
[e′1, e′2, ..., e′n], which we denote H / H ′, when there exists such an injection f : H 7→ H ′,
that for each el ∈ H there exists er ∈ H ′ s.t., if eval(Sl−1, el) = Sl and eval(Sr−1, er) =
Sr, then Sl−1 = Sr−1 and Sl = Sr. Furthermore, it is necessary that if f(el) = er and
f(el−1) = eq, then q < r. The intuition behind this definition is that if the events in both
histories were evaluated side-by-side, they would cause the same changes to the state of
the system, although one of the histories would contain some operations that were not
present in the other history. However, these operations would not modify the state.

We say that transactional memory system M observationally refines transactional
memory system M ′ if for any history H allowed by M there exists some history H ′

allowed by M ′ s.t., H / H ′.
Finally, we can say that the decomposition is indistinguishable from the original

history, and can be used in its place for the purpose of establishing opacity, because the
decomposed history reflects exactly the operations, their order, and the effect they have
on the state of the system. As such, observing the execution of the original history does
not differ from observing the execution of the decomposed history.

Theorem 6. Given any complete final-state opaque history H with unique writes and
its decomposed counterpart Hd = Decomp(H), H / Hd.

Proof. From Def. 28, for every event ei in H (for any transaction Ti in H), history Hd

contains either the same event ei, or (for some Tj , s.t. H|Tj = ∅) either the sequence
openj(reassignj(ei)) = [startj → okj]·[reassignj(ei)], or the sequence closej(reassignj(ei)) =
[reassignj(ei)] · [tryC j → Cj]. Note that from Assumption 3 and Assumption 4, evalu-
ation of any event e′j in [startj → okj] or in [tryC j → Cj] does not impact state, i.e.,
eval(S, e′j) = S. Note also that Assumption 1 and Assumption 2 imply that eval(S, ei) =
eval(S, reassignj(ei)). Hence we can derive from Decomp(H) a function f : H 7→ Hd that
for any event ei returns reassignj(ei) if Decomp(H) transforms ei to either openj(reassignj(ei))
or closej(reassignj(ei)), or ei otherwise.

Note that this function is an injection from H to Hd, and that if some event ei is not
in the range of f , it is part of a transaction initialization or transaction commitment,
so eval(S, ei) = S. Furthermore, note that for any event ei in H|Ti function f returns
either the same event ei or some other event ej that represents the invocation of or
response to the same operation, just executed by a different transaction Tj which is a
product transaction of the decomposition of Ti. In that case, from Assumption 1 and
Assumption 2 given some state S, for any ei it is true that eval(S, ei) = eval(S, f(ei)).

Finally, since function Decomp preserves the order of events from H in Hd, then for
two events e1 and e2 in H, s.t. e1 precedes e2 in H, f(e1) precedes f(e2) in Hd. Thus,
since f exists, then by definition of observed-state equivalency, H / Hd.

142 7 Safety

Corollary 19. Given a TM system M and a (hypothetical) TM system Md that for
every history H allowed by M produces a history Hd = Decomp(H), since H / Hd, then
M observationally refines Md.

7.1.2 SVA Opacity Through Decomposition
Lemma 37. A determined finite SVA history is final-state opaque through decomposition.

Proof. Since all SVA transactions Ti ∈ T access any variable x ∈ Var only when it is
in the appropriate version (denoted pvx(i)), and since the versions of variables increase
monotonically, then they have exclusive access to x. That is, an SVA transaction Ti can
access x in history H only after a preceding transaction Tj releases x after last use or
commits. Then, for each x ∈ Var , given set Tx that contains all transactions which access
x, there exists a total order ≺Tx on Tx s.t., given transactions Ti, Tj ∈ Tx , Tj ≺Tx Ti iff
pvj(x) < pvi(x). By extension, given any SVA history H, there exists a partial order �H
on H that agrees with ≺Tx for each x ∈ Var (i.e. ≺Tx⊆�H , for each x ∈ Var).

Let H be any finite SVA history that is determined (i.e. one for which Compl(H) =
H). Let S be a sequential history equivalent to H s.t. transactions in S are ordered in
accordance to �H . Then, trivially, S follows the real-time order of H.

Note that given a determined SVA history H, no transaction aborts in H. Note also
that given two transactions Ti, Tj ∈ H, s.t. Ti, Tj ∈ Tx , if Ti accesses x after Tj , then Ti
accesses x after Tj releases x or commits. Since SVA transactions release objects after last
use, then any transaction always views a consistent state of the system and is the only
transaction that executes operations on a given variable between its first and last access
of that variable. Hence, each transaction in H behaves as if it were executed sequentially.
So each transaction in any sequential history S s.t. H ≡ S conforms to a sequential
specification of each variable. Therefore, every transaction Ti in S is legal in S.

Since we can construct a sequential history S equivalent to H that preserves the real
time order of H and every transaction Ti in S is legal in S, therefore H is final-state
opaque.

Theorem 7. Every SVA history is opaque through decomposition.

Proof. Let H be any finite determined SVA history. Let Hd = Decomp(H). Since H
is final-state opaque (Lemma 37), then, by Theorem 5, Hd is opaque. Then, since Hd

observationally refines H (Theorem 6), H is indistinguishable from an opaque history
Hd.

Let H ′ be any SVA history that is not determined. Trivially, there exists such a
determined SVA history H, that H ′ is a prefix for H. Since every determined history is
final state opaque (Lemma 37), there exists a decomposed history Hd = Decomp(H) that
is opaque (Theorem 5). Then, there must exist a H ′d = Decomp(H ′) that is a prefix of
Hd. Since all prefixes of Hd are final-state opaque, then H ′d is final-state opaque (Def. 13).
Also, since all prefixes of Hd are final-state opaque, then all prefixes of H ′d are final-state
opaque, and in consequence H ′d is opaque. Then, since H ′d observationally refines H ′
(Theorem 6), H ′ is indistinguishable from an opaque history.

7.2 Last-use Opacity of SVA+R

As we mention in Section 4.1.2, since SVA and SVA+R allow transactions to access
objects that could have been modified by still-live transactions, it becomes impossible to

7.2 Last-use Opacity of SVA+R 143

demonstrate opacity directly. As we discuss in Section 7.1 in detail, However, it can be
shown that since SVA does not abort, any history produced by SVA is equivalent in its
effects to an opaque history. We discuss this in detail in Section 7.1. This means that in
SVA, the theoretical inconsistent views do not have practical consequences.

However, once we lift the algorithm into the arbitrary abort model, it becomes possible
for transactions to view inconsistent state not only from live transactions, but also from
ones that will eventually abort, which may lead to cascading aborts. Then, not only is
opacity impossible to demonstrate directly, but some histories produced by SVA+R will
diverse from what is expected by opacity.

Nevertheless, even though cascading aborts are admitted in some histories, SVA+R
carefully limits the inconsistent views that can occur. In particular, it specifically pro-
hibits overwriting and orders commits and aborts to reflect the order in which transaction
access objects. Hence SVA+R is still able to provide strong guarantees, and thus satisfies
the properties of last-use opacity

In the following sections we present a proof sketch showing that SVA+R is last-use
opaque. A complete proof (including demonstrations of the observations we make about
the algorithm) is in Appendix A.

7.2.1 Observations
First, we make the following straightforward observations about SVA+R.

Observation 1 (Version Order). Given the set Tx
H of all transactions that access x in H

there is a total order called a version order ≺x on Tx
H s.t. for any Ti, Tj ∈ Tx

H , Ti ≺x Tj
if pvi(x) < pvj(x).

Observation 2 (Access Order). If Ti ≺x Tj and Ti performs operation opi on x, and
Tj performs operation opj on x, then opi is completed in H before opj.

Observation 3 (No Bufferring). Since transactions operate on variables rather than
buffers, any read operation op = ri(x)→ v in any transaction Ti is preceded in H by
some write operation wj(x)v→okj in some Tj (possibly i = j).

Observation 4 (Read from Released). If transaction Ti executes a read operation or a
write operation op on x in H, then any transaction that previously executed a read or
write operation on x is either committed, aborted, or decided on x before op.

Observation 5 (Do Not Read Aborted). Assuming unique writes, if transaction Ti
executes wi(x)v → u and aborts in H, then x will be reverted to a previous value. In
consequence, no other transaction can read v from x.

Observation 6 (Commit Order). If transaction Ti accesses x in H and commits or
aborts in H, any transaction that previously executed a read or write operation on x is
either committed or aborted before Ti commits or aborts.

Observation 7 (Forced Abort). If transaction Ti reads x from Tj and Tj subsequently
aborts, then Ti also aborts.

7.2.2 Last-use Opacity
Then, the main lemma follows, showing that SVA+R produces final-state opaque his-
tories. For convenience, we assume that the SVA+R program always writes values to
variables that are unique and in the domain of the variable.

Lemma 38. Any SVA+R history H is final-state last-use opaque.

144 7 Safety

Proof sketch. Let HC = Compl(H) be a completion of H if for every Ti ∈ H, if Ti is live
or commit-pending in H, then Ti is aborted in HC . Given HC we can construct ŜH , a
sequential history s.t. ŜH ≡ HC , where for any two transactions Ti, Tj ∈ HC :

a) if Ti ≺HC
Tj , then Ti ≺ŜH

Tj ,
b) if Ti ≺x Tj for any variable x, then Ti ≺ŜH

Tj .

Note that if some transaction Ti commits in H, then it commits in ŜH (and vice versa).
Otherwise Ti aborts in ŜH .

Let Ti be any transaction committed in H. Thus, Ti also commits in ŜH . From
Observation 3, any read operation execution opi = ri(x)→v in H|Ti is preceded in H by
opj = wj(x)v→ okj . If opi is local, then i = j, so opj is in a committed transaction. If
opi is not local, then i 6= j. In that case, from Observation 5, Tj cannot be aborted before
opi in H. Consequently, Tj is either committed before opi in H, live in H, or committed
or aborted after opi. In the former case Ti reads from a committed transaction. In the
latter case, since Ti is committed, then from Observation 4 and Observation 6 we know
that Tj commits or aborts in H before Ti commits. In addition, from Observation 7 we
know that Tj cannot abort in H, because it would have caused Ti to also abort. Thus,
any committed Ti reads only from committed transactions.

From Observation 2, if Ti reads from the value written by an operation in Tj then the
write in Tj completes before the read in Ti, which implies Tj ≺x Ti. Hence, Tj ≺ŜH

Ti.
Thus, if Ti is committed in ŜH and reads from some Tj , then any such Tj is committed
and precedes Ti, so ŜH |Tj ⊆ Vis(ŜH , Ti). Since all reads in committed transactions read
from preceding committed transactions, then for each read in Vis(ŜH , Ti) reading v from
x there will be a write operation execution writing v to x in Vis(ŜH , Ti). Since, from
Observation 2, all accesses on x operations follow ≺x , then Vis(ŜH , Ti) is legal for any
committed Ti. Thus, any Ti that is committed in ŜH is legal in ŜH .

Let Ti be a transaction that is live or aborts in H, so it aborts in ŜH . From Ob-
servation 3 any read operation execution opi = ri(x)→ v in H|Ti is preceded in H by
opj = wj(x)v→okj . If opi is local, then i = j, so opj is always in Vis(ŜH , Ti) where opj
precedes opi. If opi is not local, then i 6= j. In that case, from Observation 5, Tj cannot
be aborted before opi in H. Consequently, Tj is either committed before opi in H, live
in H, or committed or aborted after opi. In the former case Ti reads from a committed
transaction. In the latter case, from Observation 4 we know that either Tj commits in
H or Tj is decided on x in H. Thus, any committed Ti reads x only from committed
transactions or transactions that are decided on x.

From Observation 2, if Ti reads from the value written by an operation in Tj then the
write in Tj completes before the read in Ti, which implies Tj ≺x Ti. Hence, Tj ≺ŜH

Ti.
Thus, if Ti is aborted in ŜH and reads from some Tj , then any such Tj is either committed
and precedes Ti, so ŜH |Tj ⊆ LVis(ŜH , Ti), or Tj is decided on any x if Ti reads from x,
so ŜH

�

|Tj ⊆ LVis(ŜH , Ti). Since all reads in aborted transactions read x from preceding
committed transactions or transactions decided on x, then for each read in LVis(ŜH , Ti)
reading v from x there will be a write operation execution writing v to x. Since, from
Observation 2 all accesses on x operations follow ≺x , then LVis(ŜH , Ti) is legal for any
aborted Ti. Thus, any Ti that is aborted in ŜH is last-use legal in ŜH .

Since any committed Ti in ŜH is legal in ŜH , and any aborted Ti in ŜH is last-use
legal in ŜH , and since ŜH trivially follows the real time order of H, then from Def. 23 H
is final-state last-use opaque.

Full proof for Lemma 38 is given in Appendix A.

Theorem 8. Any SVA+R history H is last-use opaque.

7.3 Last-use Opacity of OptSVA+R 145

Proof. Since by Lemma 38 any SVA+R history H is final-state last-use opaque, and any
prefix P of H is also an SVA+R history, then every prefix of H is also final-state last-use
opaque. Thus, by Def. 24, H is last-use opaque.

7.3 Last-use Opacity of OptSVA+R

In this section, we demonstrate that OptSVA+R meets the same correctness guarantees
as SVA+R, by presenting a proof for last-use opacity. In addition to OptSVA+R’s cor-
rectness this shows that the optimizations used by OptSVA+R to increase parallelism
do not sacrifice or otherwise relax correctness.

Given that OptSVA+R divorces the operations performed on shared variables within
the code of the transaction from the actual accesses to memory that are executed, and
since last-use opacity is defined on operations on shared variables, showing correctness
is not straightforward. This is further exacerbated by the fact that last-use opacity is
defined explicitly as prefix closed, meaning that it must be demonstrated for all prefixes
of a given transactional schedule, not just the schedule itself. Hence, proving it for a
complex system is troublesome, just as it is troublesome for opacity, from which the
definition was obtained. In fact, markability [52] and graph representation of opacity
[33], are both techniques trying to work around the basic definition of opacity. Hence,
apart from the proof itself, we contribute trace harmony, a proof technique that shows
last-use opacity based on interrelationships among memory accesses (and can be easily
extended to show related properties like opacity).

Thus, in this section, we first present the preliminary material that defines how op-
erations on memory are represented within traces. Then, we use this abstraction to give
the definitions making up trace harmony. Each definition is relatively simple and evalu-
ates a particular single aspect of the relationships between transactions, operations, and
memory accesses within a trace. If some trace satisfies all of them in aggregate, it is
harmonious. We then claim that any harmonious trace implies a last-use opaque history
in general (we provide a demonstration of this proposition in Appendix A). This means
that given some trace, it is enough to prove that it satisfies each of the individual defi-
nitions making up trace harmony to show that the trace is last-use opaque. Given this,
we demonstrate that OptSVA+R traces are harmonious in Section 7.3.4, and so, that
OptSVA+R is last-use opaque.

7.3.1 Events
Events are the results of transactions directly interacting with the memory representing
shared variables. When during the execution of some program, some transaction accesses
a variable’s state (either viewing it or updating it), it issues an update event that is
logged in the trace resulting from the execution.

A view event gi(x)v is any event that represents some transaction Ti viewing the state
of variable x (i.e. reading the memory location where the value of x is stored) and getting
the value of v. An update event si(x)v is any event that represents a modification of the
state of variable x by transaction Ti, setting it to the value of v.

Some operations can abort the transaction, rather than doing what they are intended
to do. For instance, a write operation may fail with an abort rather than setting a new
value of some variable. In such cases the transaction will execute specific code that is
meant to clean up after the transaction and revert any variables the transaction modified

146 7 Safety

to a previous (consistent) state. We will refer to this code as the recovery procedure. Any
update events executed as part of a recovery procedure are called recovery (update)
events. In contrast, all update events that are not recovery events are called routine
(update) events. For distinction, we denote a routine update ◦si(x)v and a recovery
update ◊si(x)v.

Given a view event gi(x)v (for some Ti), v is specified by the most recent preceding
update event on x in a given trace. I.e., if the most recent preceding update event on x
is some sj(x)v′ (for some Tj), then v = v′. Note, that this distinction does not depend
on how the events appear in the trace, but is intrinsic to the code that executes them.

Event e = si(x)v is the ultimate update event on x in T iff there is no e′ = sj(x)v′
s.t. e ≺T e′. Event e = si(x)v is the ultimate routine update event on x in T iff e is
routine and there is no e′ = sj(x)v′ s.t. e ≺T e′ and e′ is routine.

Given a view event ev = gi(x)� in some Ti and an update event e = sj(x)� in some
Tj , e prefaces ev in trace T , denoted elT ev iff e ≺T ev and there is no update event
e′ = sk(x)� in any Tk s.t. e ≺T e′ ≺T ev. Given a read operation execution opr ∈ T

s.t., opr = ri(x)→v and opr that consists of an invocation event ei and a response event
er, and a view event ev = gi(x)v′, opr depends on ev (denoted opr ;ev) iff v′ = v
and ev lT er. Given a write operation execution opw ∈ T s.t., opw = wi(x)v → oki
and opw consists of an invocation event ei and a response event er, and an update event
eu = gi(x)v′, opw instigates eu (denoted opw ; eu) iff v′ = v and ei lT eu.

Transaction Ti views transaction Tj , denoted Ti ¨;Tj , if ∃eu, ev ∈ T s.t. ev = gi(x)v
and eu = ◦sj(x)v and eu lT ev. Transaction Ti virtually views transaction Tj , denoted
Ti
...;Tj , if ∃eu, ev ∈ T s.t. ev = gi(x)v and eu = ◦sj(x)v and eu ≺T ev.
Event access set ESeti for some transaction Ti ∈ T is such a set of variables such

that x ∈ ESeti ⇐⇒ ∃e ∈ T |Ti s.t. e = ◦si(x)v or e = gi(x)v.
Given Ti ∈ T , s.t. ev = gi(x)v ∈ T |Ti and ev is initial in T |Ti, let ψT (Ti, x) be

such longest sequence of transactions that: a) if ∃Tj ∈ T s.t. ea = ◊sj(x)v ∈ T |Tj and
ea lT ev then ψT (Ti, x) = ψT (Tj , x) · Ti, otherwise b) ψT (Ti, x) = ∅ · Ti.

Let a view chain ξ(T , Ti, Tj) be a sequence of transactions s.t. Ti is the first element,
and Tj is the last element, and for each pair of consecutive transactions Tk, Tl, it is true
that Tl ...;Tk. Let H|ξ(T , Ti, Tj) be the longest subsequence of T s.t. e ∈ H|ξ(T , Ti, Tj)
iff e ∈ T |Ti and Ti ∈ ξ(T , Ti, Tj).

7.3.2 Trace Harmony
Since OptSVA+R limits events within a transaction to at most a single routine update
event, at most a single recovery update event, and at most a single view event per variable,
we limit the method presented below to such a case. This is represented by the definition
of minimalism below. (However, the method can be extended to allow multiple routine
update events and multiple view events per transaction.)

Definition 29 (Minimalism). Given transaction Ti ∈ T , for each x, T |Ti contains:

a) either none or one view event gi(x)�,
b) either none or one routine update event ◦si(x)�,
c) either none or one recovery update event ◊si(x)�.

Trace isolation stipulates, that once a transaction starts accessing the memory of
some variable, it has exclusive access to it until it is done performing routine updates
and view events on it. Hence a transaction is not interfered with by other transaction
when it is performing memory accesses, unless an abort is required. Furthermore, if one
transaction accesses the memory of one variable before another transaction, then that
other transaction cannot access any other variable before the first transaction does.

7.3 Last-use Opacity of OptSVA+R 147

Definition 30 (Trace Isolation). Trace T is isolated, iff given any two transactions
Ti and Tj in T for every x ∈ ESeti ∩ ESetj, it is true that given any event ei s.t.
ei = gi(x)v ∈ T |Ti or ei = ◦si(x)v′ ∈ T |Tj, and any event ej s.t. ej = gj(x)v′ ∈ T |Tj
or a routine update event ej = ◦sj(x)v′ ∈ T |Tj, ei ≺T ej.

Isolation order imposes an order on transactions in a trace that respects the order of
executing update and view events on variables. Given an isolated trace, there exist the
following orders:

Definition 31 (Variable Isolation Order). Two transactions Ti and Tj are isolation-
ordered in trace T with respect to x, which we denote Ti≺̇x

T Tj, if given any event ei s.t.
ei = gi(x)v ∈ T |Ti or ei = ◦si(x)v′ ∈ T |Tj, and any event ej s.t. ej = gj(x)v′ ∈ T |Tj
or a routine update event ej = ◦sj(x)v′ ∈ T |Tj, and ei ≺T ej.

Definition 32 (Direct Isolation Order). Two transactions Ti and Tj are directly isolation-
ordered Ti≺̈T Tj if for every x ∈ ESeti ∩ ESetj, Ti≺̇x

T Tj.

Definition 33 (Isolation Order). Two transactions Ti and Tj are isolation-ordered
Ti≺̇T Tj, if there exists a sequence of transactions ε = Ti · ... · Tj, where for every pair of
consecutive transactions Tn, Tm ∈ ε, Tn≺̈T Tm.

Note that if Ti ≺T Tj and x ∈ ESeti ∩ ESetj , then Ti≺̇T Tj , so the isolation order
preserves real-time order.

Consonance describes when a particular event or operation involves a value that can
be considered correct, which is determined by other events or operations that either
precede or follow the one in question. Specifically, a view event is consonant if it retrieves
the value that was written there by a preceding event, or the initial value, if no events
preceded. A consonant read operation must then return a value that was retrieved by a
view event beforehand. On the other hand, a routine update event must be caused by
some write operation. Whereas a consonant recovery update event is one that cleans up
after a routine update and reverts the state of a variable to a value that was retrieved
by a view event that view the unmodified state of the variable in question.

Definition 34 (View Consonance). Given some Ti ∈ T , a view event ev = gi(x)v is
consonant in T iff either:

a) v = 0 and @eu ∈ T , s.t. eu = sj(x)v′ for any Tj, and eu ≺T er,
b) v 6= 0 and ∃eu ∈ T , s.t. eu = ◦sj(x)v for some Tj, i 6= j, eu lT er, and eu is the

ultimate routine update on x in T |Tj, or
c) ∃eu ∈ T , s.t. eu = ◊sj(x)v for some Tj, i 6= j, eu lT er.

Definition 35 (Routine Update Consonance). Given some Ti ∈ T , a routine update
event eu = ◦si(x)v is consonant in T iff eu is instigated in T by a consonant write
operation execution.

Definition 36 (Recovery Update Consonance). Given some Ti ∈ T , event ea = ◊si(x)v
is consonant in T iff:

a) ea is conservative in T , i.e. there exists a consonant non-local view event ev in
T |Ti that is initial in T |Ti,

b) ea is needed in T , i.e. ∃eu = ◦si(x)v′ ∈ T |Ti, s.t. eu ≺T |Ti
ea,

c) ea is dooming in T , i.e. @r ∈ T , s.t. r = resi
[
Ci
]
, ea ≺T |Ti

r,
d) ea is ending in T , i.e. @e ∈ T , s.t. e = gi(x)v′ or e = si(x)v′, ea ≺T |Ti

e,
e) ea is clean in T , i.e. given view ev that justifies that ea is conservative, there is

no event e′a = ◊sj(x)v′ in any Tj s.t. Tj≺̇x
T Ti and ev ≺T e′a ≺T ea.

148 7 Safety

Definition 37 (Non-local Read Consonance). A non-local read operation execution is
consonant in trace T iff it depends in T on a consonant non-local view event.

Definition 38 (Local Read Consonance). Given some Ti ∈ T , a local read operation
execution opr = ri(x)→v is consonant in trace T iff there exists opw = wi(x)v→oki ∈
T |Ti, s.t. opw lT |Ti

opr, and opw is consonant.

Definition 39 (Write Consonance). A write operation execution wi(x)v→oki in some
Ti is consonant in trace T iff v 6= 0 and v is within the domain of x.

Definition 40 (Trace Consonance). Trace T is consonant iff all operation executions,
update events, and view events in trace T are consonant.

Obbligato ensures that update events required by write operations happen on time, so
that the values written to variables by operation executions are actually set in memory by
the time the transaction relinquishes control of each variable. This means that a routine
update event is required after a write operation by the time a transaction commits
(committed write obbligato), one is required after a closing write operation, before any
other transaction attempts to access that variable (closing write obbligato), and one is
required if a non-aborted transaction executed write operations and another transaction
accesses the variables in question (view write obbligato).

Definition 41 (Committed Write Obbligato). Given Ti ∈ T , if ∃opw ∈ T |Ti s.t.
opw = wi(x)v→oki, opw is non-local, and ∃r ∈ T |Ti s.t. r = resi

[
Ci
]
∈ T |Ti, then opw

is in obbligato iff ∃es ∈ T |Ti, s.t. es = ◦si(x)v and opw ; es and es ≺T |Ti
r.

Definition 42 (Closing Write Obbligato). Given Ti ∈ T , if ∃opw ∈ T |Ti, and ∃Tj ∈ T

s.t. Ti≺̇T Tj, and there is closing write opi = wi(x)�→oki ∈ T |Ti, and there is an event
ev = gj(x)� ∈ T |Tj, then opi is in closing obbligato iff ∃eu ∈ T |Ti, s.t. eu = ◦si(x)v
and opi ; eu, and eu ≺T ev.

Definition 43 (View Write Obbligato). Given Ti ∈ T , if ∃Tj ∈ T , s.t. Ti≺̇T Tj, if
there is opi = wi(x)�→oki ∈ T |Ti, and ev = gj(x)� ∈ T |Tj, then opi is in view write
obbligato iff there is eu = si(x)� ∈ T |Ti, s.t. eu ≺T ev or ∃r = resi

[
Ai

]
∈ T |Ti, s.t.

r ≺T ev.

Definition 44 (Obbligato). Trace T is obbligato iff

a) all non-local writes in all transactions committed in T are in committed obbligato,
b) all closing writes whose effects are potentially viewed are in closing write obbligato,
c) all writes whose effects are potentially viewed are in view write obbligato.

Decisiveness is achieved, when transactions do not let other transactions to view the
values they set to the variables they modify until they commit or perform their closing
writes.

Definition 45 (Decisiveness). Trace T is decisive iff given any pair of transactions
Ti, Tj ∈ T , s.t. Ti ¨;Tj for any eu = ◦sj(x)v ∈ T |Tj and ev = gi(x)v ∈ T |Ti, then
either Tj is decided on x, ∃r = resj

[
Cj
]
∈ T |Tj, s.t. eu ≺T r ≺T ev.

Abort accord is a relation between two transactions, where if one of them views the
update events performed by the other, and the other transaction aborts, then the first
transaction is not permitted to abort.

Definition 46 (Abort Accord). Trace T is in abort accord iff for any two transactions
Ti and Tj in T s.t.:

7.3 Last-use Opacity of OptSVA+R 149

a) Tj ¨;Ti, if Ti is aborted in T ,
b) ∃eu = ◦si(x)� ∈ T |Ti and ∃e = ◦sj(x)� ∈ T |Tj or e = gj(x)� ∈ T |Tj and
∃ea = ◊si(x)� ∈ T |Ti, and eu ≺T e ≺T ea,

then Tj is either live or aborted in T .

Commit accord is a similar relation, where given two transactions such that one of
them views the update events performed by the other, and the latter transaction commits,
then the former transaction must have also committed.

Definition 47 (Commit Accord). trace T is in commit accord iff for any two trans-
actions Ti and Tj in T s.t. Tj ¨;Ti, if Tj is committed in T , then Ti is committed in
T .

Coherence specifies, that if a transaction commits, all preceding transactions accord-
ing to the isolation order either committed or aborted beforehand.

Definition 48 (Coherence). Trace T is coherent iff for any two transactions Ti and
Tj in T , s.t. for some x, Ti≺̇x

T Tj, if ∃rj = resj
[
Cj
]
∈ T |Tj, then ∃ri = resi

[
Ci
]
or

ri = resi
[
Ai

]
and ri ≺T rj.

Abort Coda specifies when a recovery event can be expected to be issued. If a trans-
action updates the state of some variable and eventually aborts, either it or another
transaction will issue a recovery event to clean up that update before the transaction in
question completes aborting. On the other hand, if the transaction commits, neither it
or any other transaction will issue a recovery event to revert the state of that variable to
another value.

Definition 49 (Abort Coda). Trace T has coda iff for any transaction Ti:

a) if Ti aborts in T (so r = resi
[
Ai

]
∈ T |Ti), then if ∃eu = ◦si(x)v ∈ T |Ti, then for

some Tj s.t. i = j or Ti≺̇x
T Tj ∃ea = ◊sj(x)v′ ∈ T s.t. eu ≺T ea,

b) if Ti commits in T (so ∃r = resi
[
Ci
]
∈ T |Ti), then if ∃e = ◦si(x)v ∈ T |Ti or

e = gi(x)v ∈ T |Ti, then for any Tj s.t. i = j or Ti≺̇x
T Tj @ea = ◊sj(x)v′ ∈ T s.t.

e ≺T ea.

Chain consistency describes what events are allowed and barred from a chain of
transactions. Specifically, chain isolation stipulates that, a chain of transactions executing
view and update events is not broken by a recovery event, so a transaction cannot view
an inconsistent state where the value of one variable is retrieved before an abort was
performed, and another one after. Chain self-containment is the situation where the
values viewed by a transaction in some chain always come from within that chain.

Definition 50 (Chain Isolation). Given trace T , transactions Ti, Tj ∈ T , ξ(T , Ti, Tj) is
isolated if ∀Tk ∈ ξ(T , Ti, Tj), s.t. ek = ◦sk(x)v, there is no Tl (possibly Tl 6∈ ξ(T , Ti, Tj))
s.t. ∃el = ◊sl(x)v′ where v = v′ and el is between ek and any other event in any
transaction in ξ(T , Ti, Tj).

Definition 51 (Chain Self-containment). Given trace T , transactions Ti, Tj ∈ T ,
ξ(T , Ti, Tj) is self-contained iff given any transactions Tk, Tl ∈ ξ(T , Ti, Tj), s.t. k 6= l

and ∃eku = ◦sk(x)v ∈ T |T ∃elv = gl(x)v′ ∈ T |T and eku ≺T elv, then either v = v′ or
∃emu = ◦sm(x)v′ ∈ T |Tm for some Tm ∈ ξ(T , Ti, Tj) s.t. Tm precedes Tl and follows Tk
in ξ(T , Ti, Tj) and eku ≺T emu ≺T elv.

Definition 52 (Chain Consistency). An isolated trace T is chain-consistent if given
any ξ(T , Ti, Tj), trace T is chain-isolated and self-contained (for some Ti, Tj ∈ T).

150 7 Safety

Finally, a trace is harmonious if it satisfies all the preceding definitions.

Definition 53 (Harmony). Trace T is harmonious iff it satisfies all of the following:
a) minimalism, b) consonance, c) obbligato, d) coherence, commit accord, abort accord,
and abort coda, e) isolation, f) decisiveness, g) chain consistency, and h) unique writes.

7.3.3 Last-use Opacity through Trace Harmony
Theorem 9 (Harmonious Trace Last-use Opacity). Given history H, s.t. H = Hist(T),
if T is harmonious, H is last-use opaque.

The proof for Theorem 9 is given in Appendix A.

7.3.4 OptSVA+R Trace Harmony
Let T̄ be any trace produced by OptSVA+R.

First, we make the assumption that when write operations are executed, the values
written to shared variables comply with their type. It can be assumed that the necessary
type checking would be performed by the compiler, and an operation writing a value
outside of the variable’s domain would never be executed.

Assumption 5 (Writes Within Domain). Given any operation execution wx(v)�→∈T̄ ,
if D is the domain of Sdxc, then v ∈ D.

Observation 8 (Memory Access Pattern). OptSVA+R generates view and update events
for variable x precisely as a result of executing the following lines:

– in procedure :checkpoint at line 123—view event,
– in procedure :read_buffer at line 49—view event,
– in procedure :write_buffer at line 65—routine update event,
– in procedure commit at line 85—routine update event,
– in procedure abort at line 127—recovery update event.

Observation 9 (Closing Write Identification). If after executing a write operation on x
by Ti it is true that wubi(x) = wci(x), then that is the closing write operation execution
on x in Ti.

Lemma 39 (Version Order). Any two transactions Ti, Tj ∈ T̄ s.t. ASeti ∩ ASetj 6= ∅
are isolation ordered: if ∃x ∈ ASeti ∩ ASetj, s.t. pvi(x) < pvj(x), then ∀y ∈ ASeti ∩
ASetj , pvi(y) < pvj(y).

Proof. During start every transaction acquires a value of pvi(x). Since the acquisition
is guarded by locks, it is performed atomically, so that if transaction Ti, starts acquiring
∀x ∈ ASeti, pvi(x), then no other Tj acquires ∀x ∈ ASetj∩ASeti, pvj(x) until transaction
Ti completes acquiring and releases the locks. Hence, if for any two Ti, Tj , if ∃x ∈ ASeti∩
ASetj pvi(x) < pvj(x), then ∀y ∈ ASeti ∩ ASetj , pvi(y) < pvj(y).

Corollary 20 (Version Order from Isolation Order). Given transactions Ti, Tj s.t. Ti≺̇T̄ Tj,
then ∀x ∈ ASeti ∩ ASetj , pvj(x) < pvi(x).

Lemma 40 (Minimalism). T̄ is minimalistic.

Proof. If x is read-only in Ti, then there is exactly one view event on x in Ti (line 49).
If x is not read-only, then there is exactly one view event on x in Ti executed as part

7.3 Last-use Opacity of OptSVA+R 151

of procedure :checkpoint (line 123), either during the first read, the closing write (in
:write_buffer), or, if not previously invoked, during commit.

Routine update events are executed only after the closing write (in :write_buffer—
line 65), so at most once, or during commit (line 85), if there were writes, but the upper
bound on writes was not reached. Hence, routine update events occur at most once per
variable.

A recovery update event can occur only during abort (line 127), at most once per
variable.

Lemma 41 (Obligatory Checkpoints). If Ti issues an update event or a view update
event, Ti invoked :checkpoint.

Proof. View events are only executed as part of :checkpoint.
A routine update event is only executed as part of :write_buffer at line 65, which is

dominated by lines 61–62, which executes checkpoint if it was not previously executed.
A recovery update event occurs as a result of executing line 127, which is guarded

by a condition that wci(x) > 0, so a write must have been executed. Furthermore,
pvi(x) − 1 > lv(x) must be true, which implies that Ti released x, which means the
closing write executed, so :write_buffer was started asynchronously. That procedure
executes a :checkpoint if it was not executed beforehand at lines 61–62.

Lemma 42 (Always View Before Update). If transaction Ti issues an update event
eu = si(x)� in trace T̄ , then there is ev = gi(x)� ∈ T̄ |Ti s.t. ev ≺T̄ eu.

Proof. From Lemma 41, if Ti executes an update event, then it executes :checkpoint
before the event is issued. Since :checkpoint issues a view event, then a view event is
issued before an update event.

Lemma 43 (Wait at Access). Given transactions Ti, Tj s.t. pvj(x) < pvi(x), Ti does not
issue a view or update event on x until Tj executes :release on x, abort, or commit.

Proof. Let Tk be such that pvk(x) = pvi(x) − 1. Every invocation of :checkpoint is
dominated by an instruction that waits until the condition pvi(x) − 1 = lv(x): line 23
by line 22, line 81 by line 79, and line 62 by line 43. Since, from Lemma 41, every view
or update event is preceded by the invocation of :checkpoint, then each view or update
event is dominated by an instruction that waits until pvi(x)− 1 = lv(x). Hence in order
for Ti to issue a event it must be true that pvi(x)− 1 = lv(x).

In order for that condition to be met, some transaction must set lv(x) to pvi(x)− 1
(or pvi(x) = 1, but then there could not be such Tj as assumed). Some transaction Tk
modifies a new value of lv(x) during :release, abort, or commit and the value is there
set to pvk(x). Hence Ti cannot issue any view or update event until some Tk such that
pvk(x) = pvi(x)− 1 executes :release, abort, or commit.

Every invocation of :release (by Tk) is dominated by an instruction that waits until
the condition pvk(x) − 1 = lv(x) is met: the invocation at line 50 by line 13, and the
one at line 66 by line 43. Furthermore, modifying lv(x) within commit (line 117) or
abort (line 117) also requires that pvk(x)− 1 = lv(x) be first satisfied (at line 116 and
line 116, respectively). Hence Tk cannot set lv(x) to pvk(x) view or update event unless
pvk(x) = 1 or until some Tl such that pvl(x) = pvk(x)− 1 executes :release, abort, or
commit.

Assuming that pvk(x) > 1, and that some Tl s.t. pvl(x) = pvk(x) − 1 exists, then,
since Ti cannot issue any view or update event until Tk sets lv(x) in :release, abort,
or commit and since Tk cannot set lv(x) until Tl executes :release, abort, or commit,
then Ti cannot issue any view or update events until Tl executes :release, abort, or
commit. Since pvi(x)− 1 = pvk(x) and pvk(x)− 1 = pvl(x) then pvl(x) < pvi(x).

152 7 Safety

It follows by induction then that given any Tj , s.t. pvj(x) < pvi(x), Ti does not issue
a view or update event on x until Tj executes :release, abort, or commit.

Lemma 44 (Recovery Versions from Version Order). Given transactions Ti, Tj s.t.
pvj(x) < pvi(x), if Tj executes abort before Ti executes :checkpoint, rvj(x) ¬ rvi(x).
otherwise rvj(x) < rvi(x).

Proof. Transaction Ti sets rvi(x) to cv(x) only during :checkpoint (line 124). Every
invocation of :checkpoint is dominated by an instruction that waits until the condition
pvi(x)− 1 = lv(x): line 23 by line 22, line 81 by line 79, and line 62 by line 43.

In order for that condition to be met, some transaction must set lv(x) to pvi(x)−1 (or
pvi(x) = 1, but then there could not be such Tj as assumed, so necessarily pvi(x) > 1).
Some transaction Tk can set a new value of lv(x) during :release, abort, or commit.
Hence Ti sets the value of rvi(x) only after Tk such that pvk(x) = pvi(x) − 1 executes
:release, abort, or commit. Thus, since value of cv(x) is there set by Tk to pvk(x) in
case of :release (line 131) and commit (line 120), or rvk(x) in case of abort (line 128),
rvi(x) = rvk(x) if Tk aborts before Ti executes :checkpoint and rvi(x) = pvk(x) other-
wise.

Since rvk(x) either trivially equals 0 if pvk(x) = 1, or is acquired by analogy from
some Tl s.t. pvl(x) = pvk(x)− 1, then rvk(x) ¬ rvi(x).

Furthermore, under the assumption that Tk does not execute abort prior to Ti exe-
cuting :checkpoint, then value of cv(x) is there set by Tk only either within :release
or commit, and thus cv(x) = pvk(x) during Ti’s :checkpoint, so rvi(x) = pvk(x). Since
pvk(x) < pvi(x), then rvk(x) < rvi(x).

By extension, given Tj s.t. pvj(x) < pvi(x), either k = j, or pvj(x) < pvk(x).
In the former case, necessarily rvk(x) ¬ rvi(x) if Tj executes abort before Ti executes

:checkpoint, or rvk(x) < rvi(x).
In the latter case, there must be some Tl, s.t. pvl(x) = pvk(x). Then, if Tl executes

abort before Tk executes :checkpoint, rvl(x) ¬ rvk(x), otherwise rvl(x) < rvk(x).
Furthermore, either l = j, or pvj(x) < pvl(x). It then follows by induction that given
any Tj s.t. pvj(x) < pvi(x), if Tj executes abort before Ti executes :checkpoint, rvl(x) ¬
rvk(x), otherwise rvl(x) < rvk(x).

Lemma 45 (Isolation). Trace T̄ is isolated.

Proof. Every routine update event, view event, and recovery event is dominated by an
access condition (pvi(x)− 1 = lv(x)). This condition is satisfied for Ti if lv(x) = 0 and
pvi(x) = 0, or if some transaction Tj s.t. pvj(x) = pvi(x)− 1 releases x by setting lv(x)
to pvj(x) during commit or after closing write or after the first non-local read (and thus
after any ◦sj(x)� or gj(x)�).

Since events are guarded by access conditions, and variables are released after all
view or routine update events are issued by a transaction, and since all transactions
are version-ordered, then for any Ti, Tj , ∃x ∈ ASeti ∩ ASetj if ∃ei = ◦si(x)� ∈ T̄ |Ti
or ei = gi(x)� ∈ T̄ |Ti and ∃ej = ◦sj(x)� ∈ T̄ |Tj or ej = gj(x)� ∈ T̄ |Tj , and
ei ≺T ej then ∀y ∈ ASeti ∩ ASetj , if ∃e′i = ◦si(y)� ∈ T̄ |Ti or e′i = gi(y)� ∈ T̄ |Ti and
∃e′j = ◦sj(y)� ∈ T̄ |Tj or e′j = gj(y)� ∈ T̄ |Tj , and e′i ≺T e′j .

Corollary 21 (Isolation Order). Trace T̄ is isolation-ordered.

Lemma 46 (Write Consonance). Any (complete) write operation in T̄ is consonant.

Proof. From Assumption 5, each write is consonant.

Lemma 47 (Routine Update Consonance). Any routine update event in T̄ is consonant.

7.3 Last-use Opacity of OptSVA+R 153

Proof. A routine update event ◦si(x)v occurs either as a result of executing a closing
write operation on x (line 65) or Ti committing (line 85), if the transaction executed
writes, but the upper bound for writes was not reached for x. Clearly, then, if there was
a routine update event, then Ti executed a write operation on x. In both cases above
v = bufi(x) and bufi(x) can be set by any write operation, the first non-local read
operation, or during start for read-only variables. If there was a write, then x is not
read-only, and the first non-local read cannot follow a write, so bufi(x) is set within (the
most recent) write operation executed by Ti and corresponds to the value written by that
operation. Thus, ∀Ti,∀eiu = ◦si(x)v ∈ T̄ |Ti, ∃opi = wi(x)v→oki ∈ T̄ |Ti s.t. opi ; eiu.
Therefore, eiu is consonant.

Lemma 48 (View Consonance). Any view event in T̄ is consonant.

Proof. If a view event occurs, it views the current state of a variable. So given transaction
Ti, if there is a view event ev = gi(x)v ∈ T̄ |Ti, v corresponds to the current state of x.
The only way to change the state of x is via an update event on x. Thus, trivially, for
some Tj , if there is eu = ◦sj(x)v′ ∈ T̄ |Tj or ea = ◊sj(x)v′ ∈ T̄ |Tj , if either eu or ea
precede ev so that no other update event on x occurs between either eu or ea and ev,
then v = v′. Furthermore, from unique routine updates, there is no eu s.t. v′ = 0, and
since x is initially 0, then @eu s.t. v′ = 0 and eu l ev.

Lemma 49 (Local Read Consonance). Any local read operation execution in T̄ is con-
sonant.

Proof. If transaction executes a local read on x, then it previously executed a write
operation on x, so wci(x) > 0. Thus, the read procedure returns at line 31, returning
bufi(x). The value of bufi(x) can be set by any write operation, the first non-local
read operation, or during transaction start for read-only variables. If there was a write,
then x is not read-only, and the first non-local read cannot follow a write, so bufi(x)
is set within (the most recent) write operation executed by Ti and corresponds to the
value written by that operation. Thus, ∀Ti,∀opi = ri(x) → v ∈ T̄ |Ti if opi is local,
∃op′i = wi(x)v′→oki ∈ T̄ |Ti s.t. v′ = v. Therefore, opi is consonant.

Lemma 50 (Non-local Read Consonance). Any non-local read operation execution in
T̄ is consonant.

Proof. If x is read-only in Ti, then during start, a view event occurs within :read_buffer
(line 49), and the state of x is saved in bufi(x). Then, subsequent writes return the value
of bufi(x) (line 31) (waiting if necessary). Thus, they depend on that view event.

Otherwise, a non-local read operation on x is one that is not preceded by a write
on x, so wci(x) = 0. The first such read executes :checkpoint which initiates a view
event (line 123). The value obtained by that event is saved in sti(x) and later bufi(x)
is set to the same value. Finally, that value is returned at line 31. Subsequent non-local
reads use the same value stored in bufi(x). The value remains unchanged, since it only
be overwritten by a write, but the occurrence of a preceding write would mean the read
is local (and since x is not read-only, and there was a preceding non-local read). Thus,
all non-local reads depend on the view event issued during :checkpoint.

Thus, ∀Ti,∀opi = ri(x)→ v ∈ T̄ |Ti if opi is non-local, ∃eiv = gi(x)v′ ∈ T̄ |Ti s.t.
v′ = v.

Lemma 51 (Conservative Recovery Update Events). Any recovery update event in T̄

is conservative.

154 7 Safety

Proof. The recovery update event in Ti occurs as a result of executing line 127, which
updates the state of x to sti(x). This is done only if rvi(x) 6= cv(x) and wci(x) > 0.
Since rvi(x) is set to the value of cv(x) only during :checkpoint and :read_buffer, and
since the requirement that wci(x) > 0 excludes the latter, this condition checks whether
the current transaction previously made a checkpoint. Executing :checkpoint entails a
view event that sets sti(x) to the current value of x. Hence, if ea = ◊si(x)v ∈ T |Ti then
there exists ev = gi(x)v ∈ T |Ti s.t. ea ≺ ev.

Lemma 52 (Clean Recovery Update Events). Any recovery update event in T̄ is clean.

Proof. Assume by contradiction that there exists ea = ◊si(x)v in T̄ |Ti and ev = gi(x)v
that justifies that es is conservative, and e′a = ◊sj(x)v′ in T̄ |Tj s.t. Tj≺̇x

T Ti and ev ≺T

e′a ≺T̄ ea. This implies that Tj executes abort (and satisfies the condition rvj(x) =
cv(x)) between the point at which Ti executes :checkpoint and abort If that is the
case, as a result of executing abort, Tj sets cv(x) to rvj(x).

Given that Tj≺̇x
T Ti, then pvj(x) < pvi(x). Since any execution of :checkpoint for

some Tk is guarded by the condition pvk(x)− 1 = lv(x), then Tj executes :checkpoint
before Ti. Hence, Tj acquires rvj(x) from cv(x) before Ti acquires rvi(x) from cv(x).

The value of rvj(x) is equal to the value of cv(x) at the point when Tj executed
:checkpoint (i.e. when pvi(x) − 1 = lv(x)). The value of cv(x) is set to pvk(x) when
Tk executes :release or commit, or to rvk(x) when Tk aborts. Thus, when Tj executes
:checkpoint, since pvi(x)− 1 = lv(x), then either:

a) cv(x) = pvk(x) = pvj(x)− 1 (if Tk released x or committed),
b) cv(x) = rvk(x) and rvk(x) < pvj(x) (if Tk aborted), or
c) cv(x) = 0 (if there is no such Tk).

In any case, rvj(x) < pvi(x).
Ti is capable of executing :checkpoint after Tj commits, aborts, or releases x. Since Tj

executes abort between Ti’s :checkpoint and abort, then only the third option remains.
If Tj executes :release for x, then it sets cv(x) to pvj(x). Following the logic from the
previous paragraph, this means that when Ti assigns cv(x) to rci(x), pvj(x) ¬ cv(x), so
pvj(x) ¬ rvi(x), and thus rvj(x) < rvi(x).

Hence, after cv(x) to rvj(x) during abort, it is not true that cv(x) = rvi(x). Thus,
ea cannot occur once e′a occurs, which is a contradiction.

Lemma 53 (Needed Recovery Update Events). Any recovery update event in T̄ is
needed.

Proof. The recovery update event occurs as a result of executing line 127, which is
guarded by a condition that wci(x) > 0, so a write must have been executed. Further-
more, pvi(x)−1 > lv(x) must be true, which implies that Ti released x, which means the
closing write executed, so :write_buffer was started asynchronously. If that is the case,
the recovery update event cannot execute until :write_buffer, which means a routine
update event on x will have executed before the recovery update event on x.

Lemma 54 (Dooming Recovery Update Events). Any recovery update event in T̄ is
dooming.

Proof. Trivially, since any recovery update event occurs only within abort.

Lemma 55 (Ending Recovery Update Events). Any recovery update event in T̄ is
ending.

Proof. Trivially, since any recovery update event occurs only within abort, and there
are no other update or view events on the same variable in abort.

7.3 Last-use Opacity of OptSVA+R 155

Lemma 56 (Recovery Update Consonance). Any recovery update event in T̄ is conso-
nant.

Proof. Since each recovery update is conservative (from Lemma 51), needed (from Lemma 53),
dooming (from Lemma 54), ending (from Lemma 55), and clean (from Lemma 52), then
each recovery update is consonant.

Lemma 57 (Trace Consonance). Trace T̄ is consonant.

Proof. From Lemmas 46–50 and 56.

Lemma 58 (Comitted Write Obbligato). Given Ti that is committed in T̄ , every non-
local write operation execution opi = wi(x)v→oki ∈ T̄ |Ti is in committed obbligato.

Proof. If Ti executes a write corresponding to opi, then, if at the end of the execution it
is true that wci(x) = wubi(x), :write_buffer is executed, which causes a routine update
event to execute, writing the value of bufi(x) to x.

Since wci(x) = wubi(x) no other writes follow, and since x is not read-only in Ti, then
the value written to x in :write_buffer is the value passed to the write operation. In
that case there is eu = ◦si(x)v ∈ T̄ |Ti. Since commit will not return until :write_buffer
finishes executing, then trivially invi

[
wi(x)v

]
≺T̄ |Ti

eu ≺T̄ |Ti
resi

[
Ci
]
.

If it is true that wci(x) = wubi(x), then :write_buffer is not executed, but during
commit, the same condition is checked again, and if it is not satisfied, Ti writes the value
from bufi(x) to x. Thus, by analogy to the paragraph above, there is eu = ◦si(x)v ∈ T̄ |Ti.
Since this is executed within commit, then invi

[
wi(x)v

]
≺T̄ |Ti

eu ≺T̄ |Ti
resi

[
Ci
]
.

Lemma 59 (Closing Write Obbligato). Given Ti that is decided on x in T̄ , every non-
local write operation execution opi = wi(x)v→oki ∈ T̄ |Ti is in closing write obbligato.

Proof. If Ti executes a write corresponding to opi, then, at the end of the execution, if opi
is a closing write it is necessarily true that wci(x) = wubi(x). This causes :write_buffer
to be executed (line 43), which causes a routine update event to execute, writing the
value of bufi(x) to x.

Since wci(x) = wubi(x) no other writes follow, and since x is not read-only in Ti, then
the value written to x in :write_buffer is the value passed to the write operation. In
that case there is eu = ◦si(x)v ∈ T̄ |Ti. Since commit will not return until :write_buffer
finishes executing, then trivially invi

[
wi(x)v

]
≺T̄ |Ti

eu ≺T̄ |Ti
resi

[
Ci
]
. Hence opi ; eu.

Ti executes :release only following issuing eu at line 66.
If Ti≺̇T̄ Tj , then pvi(x) < pvj(x) (Corollary 20). From Lemma 43, to issue any ev =

gj(x)�, since pvi(x) < pvj(x), Ti must have executed abort, commit, or :release. Hence
Tj does not issue ev before Ti executes :release, which requires that Ti issues eu so that
eu ≺T̄ ev.

Lemma 60 (View Write Obbligato). Given Ti ∈ T̄ , if ∃Tj ∈ T , s.t. Ti≺̇T̄ Tj, if there
is opi = wi(x)�→ oki ∈ T̄ |Ti, and ev = gj(x)� ∈ T̄ |Tj, then opi is in view write
obbligato.

Proof. If Ti≺̇T̄ Tj , then pvi(x) < pvj(x) (Corollary 20). From Lemma 43, ev occurs only
after Ti releases x, commits, or aborts. Since according to the assumption, Ti cannot
abort prior to Tj issuing ev, Ti either releases x or commits prior to Tj issuing ev.

If Ti releases x it executes :release. This can occur as a result of executing line 50
or line 66. Since Ti executes opi, then line 50 cannot be executed, since it can only be
reached if Ti only ever reads x (condition at line 11). Hence Ti must execute line 66,
which is dominated by line 65, which issues a write event eu = si(x)v, where v is the
value of bufi(x).

156 7 Safety

Since :release was executed at line 66, :write_buffer must have been executed at
line 43. Then the value written to x in :write_buffer is the value passed to the write
operation. In that case there is eu = ◦si(x)v ∈ T̄ |Ti. Since commit will not return until
:write_buffer finishes executing, then trivially invi

[
wi(x)v

]
≺T̄ |Ti

eu ≺T̄ |Ti
resi

[
Ci
]
.

Hence opi ; eu. Ti executes :release only following issuing eu at line 66.

Lemma 61 (Obbligato). Trace T̄ is obbligato.

Proof. From Lemmas 58, 59, and 60.

Lemma 62 (Decisiveness). Trace T̄ is decisive.

Proof. If Tj ...;Ti, then for any x ∈ ASeti ∩ ASetj , pvi(x) < pvj(x) (Lemma 45). Before
any view event occurs, Tj must pass the condition pvk(x)−1 = lv(x) in :read_buffer or
:checkpoint. Hence, before any ev = gj(x)v can occur, some Tk s.t. pvi(x)− 1 = pvk(x)
must set pvk(x) to lv(x). Transaction Tj issues a routine update event eu = ◦sj(x)v′,
whenever it commits or releases x. If it releases, it means that wcj(x) = wubj(x), which
implies that opi is closing. Otherwise, Tj will update on commit, meaning that it will issue
resj

[
Cj
]
once it returns from the commit procedure. Before returning from the closing

write or commit, Tj sets lv(x) to pvj(x). In either case, this happens only afterward eu is
issued. Since there is no waiting between eu and either a commit or a last write returning,
no other transaction may execute anything on x in the meantime. Thus, any transaction
Tk s.t. pvk(x) that waits until pvk(x) − 1 = lv(x) and pvk(x) − 1 = pvj(x) will wait
until Tj returns from the closing write or commit procedure, and so will any subsequent
transactions according to version order. Thus, if pvi(x) < pvj(x) and Tj commits, then
either opj is closing or eu ≺T̄ resj

[
Cj
]
≺ ev.

Lemma 63 (Abort Accord). Trace T̄ is in abort accord.

Proof. Let Ti, Tj be two transactions in T̄ , s.t.:

a) Tj ¨;Ti, Ti is aborted in T̄ .
Assume by contradiction that Tj commits in T̄ , meaning it executes commit suc-
cessfully. Thus it passes ∀x, cv(x) rvj(x).
Since Tj ¨;Ti, ∃ev = gj(x)v ∈ T̄ |Tj and ∃eu = ◦si(x)v ∈ T̄ |Ti.
If Ti aborted before ev was issued, then from abort coda, ∃ea = ◊sk(x)� in some
Tk that precedes the abort, which contradicts that Tj ¨;Ti. Hence Ti aborts only
after ev is issued.
Since Tj ¨;Ti, then Ti≺̇x

T Tj , so from Corollary 20, pvi(x) < pvj(x). From Lemma 43,
ev cannot occur until Ti aborts, commits, or releases x. Since Ti aborts after ev,
then it must therefore release x prior to ev.
Since pvi(x) < pvj(x), then from Lemma 44, rvi(x) < rvj(x). When Ti aborts,
it sets cv(x) to rvi(x). From coherence, Tj commits after Ti aborts. Thus, when
Tj commits, cv(x) = rvi(x), so since rvi(x) < rvj(x), then cv(x) < rvj(x), which
contradicts the condition that cv(x) > rvj(x).
Thus Tj cannot commit.

b) ∃eu = ◦si(x)� ∈ T̄ |Ti and e = ◦sj(x)� ∈ T̄ |Tj or e = gj(x)� ∈ T̄ |Tj and
ea = ◊si(x)� ∈ T̄ |Ti, and eu ≺T̄ e ≺T̄ ea.
Assume by contradiction that Tj commits in T̄ , meaning it executes commit suc-
cessfully. Thus it passes ∀x, cv(x) rvj(x).
Since eu ≺T̄ e, then from isolation it follows that Ti≺̇x

T Tj . Hence, from Corol-
lary 20, pvi(x) < pvj(x). Since ea must be issued during abort, then from coher-
ence, Tj cannot commit prior to ea occurring. Furthermore, Tj cannot commit until
Ti returns from abort.

7.3 Last-use Opacity of OptSVA+R 157

If Ti returned from abort, then it executed line 128, so cv(x) = rvi(x) prior to Tj
committing.
From Lemma 44, since pvi(x) < pvj(x), then rvi(x) < rvj(x). When Ti aborts,
it sets cv(x) to rvi(x). From coherence, Tj commits after Ti aborts. Thus, when
Tj commits, cv(x) = rvi(x), so since rvi(x) < rvj(x), then cv(x) < rvj(x), which
contradicts the condition that cv(x) > rvj(x).
Thus Tj cannot commit.

Lemma 64 (Commit Accord). Trace T̄ is in commit accord.

Proof. Let Ti, Tj be transaction in T s.t. Tj ¨;Ti and Tj is committed in T̄ .
Let us assume by contradiction that Ti is not committed in T̄ . So Ti is either aborted

or live in T̄ . From coherence, if Tj cannot commit until Ti commits or aborts. Thus Ti
is not live in T̄ , so it is aborted in T̄ .

Since Tj ¨;Ti, ∃ev = gj(x)v ∈ T̄ |Tj and ∃eu = ◦si(x)v ∈ T̄ |Ti.
If Ti aborted before ev was issued, then from abort coda, ∃ea = ◊sk(x)� in some Tk

that precedes the abort, which contradicts that Tj ¨;Ti. Hence Ti aborts only after ev is
issued.

Since Tj ¨;Ti, then Ti≺̇x
T Tj , so from Corollary 20, pvi(x) < pvj(x). From Lemma 43,

ev cannot occur until Ti aborts, commits, or releases x. Since Ti aborts after ev, then it
must therefore release x prior to ev.

Since pvi(x) < pvj(x), then from Lemma 44, rvi(x) < rvj(x). When Ti aborts, it sets
cv(x) to rvi(x). From coherence, Tj commits after Ti aborts. Thus, when Tj commits,
cv(x) = rvi(x), so since rvi(x) < rvj(x), then cv(x) < rvj(x), which contradicts the
condition that cv(x) > rvj(x).

Thus Ti cannot abort.

Lemma 65 (Abort Coda). Trace T̄ has coda.

Proof. Let Ti be a transaction in T̄ .

a) If Ti aborts in T̄ (so r = resi
[
Ai

]
∈ T̄ |Ti) then if ∃eu = ◦sx(v)∈T̄ |Ti then

for some Tj (possibly i = j) s.t. j = i or Tj≺̇x
T Ti, ∃ea = ◊sj(x)� ∈ T̄ |Tj s.t.

eu ≺T̄ ea ≺T̄ r.
If there is such eu, then Ti executes :checkpoint (Lemma 41). Since there is such
eu there is also a write operation execution on x in T̄ |Ti (Lemma 47), so wci(x) > 0
(line 39).
If there is such eu, then Ti executes :release for x or commit. Since Ti aborts, then
commit is not possible, so Ti executes :release for x. Therefore Ti sets lv(x) to
pvx(i)− 1.

i) If no other transaction modified cv(x) between the point at which Ti executed
:checkpoint and abort, then cv(x) = rvi(x), thus during abort Ti satisfies
the condition on line 105 and executes line 127, issuing the recovery event ea.
Since ea is issued during abort, then eu ≺T̄ ea ≺T̄ r.

ii) If there is Tj s.t. Tj modifies cv(x) between the points at which Ti executed
:checkpoint and abort, s.t. Tj≺̇x

T Ti, then Tj executes :release, commit, or
abort between the points at which Ti executed :checkpoint and abort. For
the sake of simplicity we assume that there is no other Tk that modifies cv(x)
between those two points s.t. Tk≺̇x

T Ti.

158 7 Safety

Since Ti executes :checkpoint, it issues a view event ev = gi(x)�. In addition,
since Tj≺̇x

T Ti, then from Corollary 20, pvj(x) < pvi(x). From Lemma 43, ev
cannot occur until Tj aborts, commits, or releases x. Since Tj is supposed to
execute :release, abort, or commit after Ti executes :checkpoint, hence after
ev, then Tj must therefore release x prior to ev. Hence Tj executes commit, or
abort between the points at which Ti executed :checkpoint and abort.
If Ti executes commit, then in order to set cv(x) to pvj(x), it must be true that
rvi(x) = cv(x). But if Tj executed :release, then cv(x) is set to pvj(x). Since
rvj(x) 6= pvj(x), then rvi(x) 6= cv(x), so Tj cannot set cv(x) as a result of a
commit. Hence, Tj executes abort between the points at which Ti executed
:checkpoint and abort.
If Tj executes abort, then this implies that Tj executes line 128, and therefore
also line 127, thus Tj issues recovery event ea during abort. Thus, eu ≺T̄

ea ≺T̄ r.

b) If Ti commits in T̄ (so r = resi
[
Ci
]
∈ T̄ |Ti) then if ∃e = ◦sx(v)∈T̄ |Ti or e =

gx(v)∈T̄ |Ti then for no Tj s.t. j = i or Tj≺̇x
T Ti, there exists ea = ◊sj(x)� ∈ T̄ |Tj

s.t. eu ≺T̄ ea ≺T̄ r.
If there is such e, then Ti executes :checkpoint (Lemma 41). If Ti successfully
commits, then this means that Ti satisfies the condition cv(x) rvi(x).
Assume by contradiction that there is such ea in some Tj . Since ea ∈ T |Tj , then
Tj must execute line 127, which also means that it executes line 128 and therefore
sets cv(x) to rvj(x).
Since Tj≺̇x

T Ti, then from Corollary 20 pvj(x) < pvi(x) and from Lemma 44,
rvj(x) < rvi(x). Thus, cv(x) < rvi(x) which contradicts that cv(x) rvi(x).
Thus there is no such Tj .

Lemma 66 (Coherence). Trace T̄ is coherent.

Proof. If Ti≺̇x
T Tj , then pvi(x) < pvj(x). In order to commit or abort, any Tk must pass

the condition pvk(x)−1 = ltv(x). In addition, each Tk sets ltv(x) to pvk(x) only at the
end of either committing or aborting. Hence, if Tk cannot commit or abort until some Tl
s.t. pvk(x)− 1 = pvl(x) finishes committing or aborting. Hence if Tj committed, it must
have passed the condition pvk(x)− 1 = ltv(x), and since pvi(x) < pvj(x), Ti must have
committed or aborted before Tj committed. Thus, given rj = resj

[
Cj
]
∈ T̄ |Tj , then

there is ri = resi
[
Ci
]
∈ T̄ |Ti or ri = resi

[
Ai

]
∈ T̄ |Ti and ri ≺T rj .

Lemma 67 (Chain Isolation). Given trace T̄ and transactions Ti, Tj ∈ T̄ s.t. there
is ξ(T , Ti, Tj), ∀Tk ∈ ξ(T , Ti, Tj) s.t. eku = ◦sk(x)v, there is no Tl s.t. ∃ela = ◊sl(x)v′
where v = v′ and el is between ek and any other event in any transaction in ξ(T , Ti, Tj).

Proof. Assume by contradiction that there exists Tl such that ∃el = ◊sl(x)v′ and ela is
between eku and any other event e ∈ T̄ |ξ(T̄ , Ti, Tj). This means that either e ∈ T̄ |Tl
and eku ≺T̄ ela ≺T̄ e, or ∃Tn s.t. e ∈ T̄ |Tn.

a) Assume e ∈ T̄ |Tl and eku ≺T̄ ela ≺T̄ e.
From Lemma 42 there is a view event ekv = gk(x)� ∈ T̄ |Tk, and from minimalism
there is only one such event in T̄ |Tk, so e must be a recovery event e = ◊sk(x)v. If
Tl executes ela, then from Lemma 53, ∃elu = ◦sl(x)� in T̄ |Tl s.t. eku ≺T̄ ela. Hence
either elu ≺T̄ eku or eku ≺T̄ elu. So either Tl≺̇x

T Tk or Tk≺̇x
T Tl.

If Tl≺̇x
T Tk, then elu ≺T̄ eku , so from Lemma 43, eku cannot occur until elu executes

:release, commit, or abort, and since eku ≺T̄ ela, then only :release is viable.

7.3 Last-use Opacity of OptSVA+R 159

If Tl≺̇x
T Tk, then from version order pvl(x) < pvk(x), so from Lemma 44, rvl(x) <

rvk(x). In order for Tl to issue ea, it must execute abort and satisfy the condition
at line 105. This means that line 128 is executed, so cv(x) = rvl(x).
If subsequently Tk issues ea, then it must also satisfy the condition at line 105, so
rvk(x) = cv(x). But since rvl(x) < rvk(x), then cv(x) < rvk(x), which contradicts
that cv(x) = rvl(x).
The execution of a recovery event on x by Tl is dominated by line 102, which cannot
be passed until pvl(x) − 1 = ltv(x). Any transaction Tn sets ltv(x) to pvn(x) as
a last action during commit (line 96) or abort (line 111). Hence Tl cannot proceed
to abort until Tn finishes committing or aborting. Since Tn cannot execute line 96
or line 111 if line 88 or line 102 was passed, then Tn cannot proceed to commit or
abort until some other Tm s.t pvn(x) − 1 = pvm(x) committed or aborted. Hence
Tl cannot execute a recovery event until any Tm s.t. pvm(x) < pvl(x) committed
or aborted.
If Tk≺̇x

T Tl, then from version order pvk(x) < pvl(x). Hence, Tl executes any events
resulting from abort only after Tk returns from abort or commit. Hence if Tk
executes eka , then eka ≺T̄ ela, which contradicts that ela ≺T̄ eka.
Thus, regardless of whether Tl≺̇x

T Tk or Tk≺̇
x
T Tl there is a contradiction. Therefore,

Tl cannot issue such ela between eku and another event in T̄ |Tl.
b) Assume ∃Tn s.t. e ∈ T̄ |Tn.

We assume without loss of generality that Tn ¨;Tk. Thus, there is a view event env
and possibly a routine update event enu in T̄ |Tn. From minimalism and Lemma 42:
env ≺T̄ enu. Also, since Tn ¨;Tk, then Tk≺̇x

T Tn, so from Corollary 20, pvk(x) <

pvn(x).
If Tl executes ela, then from Lemma 53, ∃elu = ◦sl(x)� in T̄ |Tl s.t. eku ≺T̄ ela. Hence
either elu ≺T̄ eku or eku ≺T̄ elu. So either Tk≺̇x

T Tl≺̇
x
T Tn or Tk≺̇x

T Tn≺̇
x
T Tl. Thus,

from Corollary 20, either pvk(x) < pvl(x) < pvn(x) or pvk(x) < pvn(x) < pvl(x).
If pvk(x) < pvl(x) < pvn(x), then either ela ≺T̄ env or env ≺T̄ ela.
If ela ≺T̄ env , then since ela sets x to v′ s.t. v′ 6= v′′ for any v′′ s.t. ∃◦ sl(x)v′′ ∈ T̄ |Tl
prior to the occurrence of env . Thus when Tn subsequently executes :checkpoint it
issues env = gn(x)v′, and since v′ 6= v′′, this contradicts that Tn ¨;Tk.
If env ≺T̄ ela, then since Tl≺̇x

T Tnm then from version order pvl(x) < pvn(x), so
from Lemma 44, rvl(x) < rvn(x). In order for Tn to issue ea, it must execute
abort and satisfy the condition line 105. This means that line 128 is executed, so
cv(x) = rvl(x).
If subsequently Tl issues enu then it either executes :write_buffer or commit. Is-
suing an update event at line 65 or line 85 is dominated by checking whether
cv(x) = rvn(x) (for all variables) at line 63 or line 82, respectively. If the condition
is failed, the transaction aborts instead. From Lemma 44, rvl(x) < rvn(x), so if
cv(x) = rvl(x), then cv(x) 6= rvn(x). Hence, Ti will abort rather than issue an
update event. Since during abort only a recovery event may be issued, and only if
rvn(x) = cv(x), then, similarly, no recovery event is issued. Hence Tn cannot issue
events on x following ela.
Since each occurrence of a routine update event or a view event checks ∀y, cv(y) =
rvn(y), then no other such event in Tn can follow ela. This is a contradiction.
The execution of a recovery event on x by Tl is dominated by line 102, which cannot
be passed until pvl(x) − 1 = ltv(x). Any transaction Tn sets ltv(x) to pvo(x) as
a last action during commit (line 96) or abort (line 111). Hence Tl cannot proceed
to abort until To finishes committing or aborting. Since To cannot execute line 96

160 7 Safety

or line 111 if line 88 or line 102 was passed, then To cannot proceed to commit or
abort until some other Tm s.t pvo(x) − 1 = pvm(x) committed or aborted. Hence
Tl cannot execute a recovery event until any Tm s.t. pvm(x) < pvl(x) committed
or aborted.
If pvk(x) < pvn(x) < pvl(x), then pvn(x) < pvl(x), so Tl executes abort only
after Tk returns from abort or commit. Hence, since enu ≺T̄ resn

[
An

]
or enu ≺T̄

resn
[
Cn
]
, either resn

[
An

]
∈ T̄ |Tn or resn

[
Cn
]
∈ T̄ |Tn, and since resn

[
Cn
]
≺T̄ ela

or resn
[
An

]
≺T̄ ela, then enu ≺T̄ ela. This contradicts that ela ≺T̄ enu.

Thus, regardless of whether there is a contradiction. Therefore, Tl cannot issue such
ela between eku and another event in T̄ |Tn. By extension, it cannot issue ela between
eku and another event in T̄ |Tm for any Tm ∈ ξ(T̄ , Ti, Tj).

Lemma 68 (Chain Self-containment). Given T , and any transactions Ti, Tj ∈ T , s.t.
there exists ξ(T , Ti, Tj), ξ(T , Ti, Tj) is self-contained.

Proof. Given transaction Tq s.t. ∃eqv = gq(x)vq ∈ T̄ |Tq, assuming that there are any
update events on x in T̄ prior to eqv, then ∃eru = ◦sr(x)vq ∈ T̄ |Tr where eru l eqv
or ∃era = ◊sr(x)vq ∈ T̄ |Tr where era l eqv for some Tr. In addition, from Lemma 42,
∃erv = gr(x)vr ∈ T̄ |Tr s.t. erv ≺T̄ eru and erv ≺T̄ era (as applicable).

Then, similarly, assuming that there are any update events on x in T̄ prior to erv,
then ∃esu = ◦ss(x)vr ∈ T̄ |Ts where esu l erv or ∃esa = ◊ss(x)vr ∈ T̄ |Ts where esa l erv.
And by analogy to Tr, from Lemma 42, ∃erv = gr(x)vr s.t. erv ≺T̄ eru and erv ≺T̄ era (as
applicable).

It is then clear that as long as there are update events on x preceding a view event in
some transaction, another transaction exists that both views and updates x before that
view event.

Thus, given Tk and Tl ∈ ξ(T , Ti, Tj) such that k 6= l and ∃eku = ◦sk(x)v ∈ T |T
∃elv = gl(x)v′ ∈ T |T and eku ≺T elv, there is a sequence of transactions S s.t.:

1. the first transaction is Tk,
2. the last transaction is Tl, and
3. given some transaction Tm ∈ S , where m 6= k, Tm is preceded in S by some

transaction Tn, s.t. for emv = gm(x)vm ∈ T̄ |Tm, ∃enu = ◦sn(x)vm ∈ T̄ |Tn where
enu l emv or ∃ena = ◊sn(x)vm ∈ T̄ |Tn where ena l emv .

Given such S , given some Tm, m 6= k, there is some Tn that precedes Tm in S .
If for emv = gm(x)vm ∈ T̄ |Tm, ∃enu = ◦sn(x)vm ∈ T̄ |Tn where enulemv , then Tm ¨;Tn.
If, on the other hand, for emv = gm(x)vm ∈ T̄ |Tm, ∃ena = ◊sn(x)vm ∈ T̄ |Tn where

ena l emv , then from chain isolation there cannot be a recovery event eka = ◊sk(x)� s.t.
eka ≺T̄ elv, so it follows that k 6= n. Since ena is conservative, ∃env = gn(x)vm ∈ T̄ |Tn.

Since k 6= n and Tn ∈ S , then there is some To preceding Tnin S . Then:

a) If o = k, then Tm ...;Tk.
b) If o 6= k and ∃enu = ◦so(x)vm ∈ T̄ |To where eou l env then Tm ...;To.
c) If o 6= k and ∃ena = ◊so(x)vm ∈ T̄ |To where eoalenv then by analogy, either case a),

b) or c) applies to To as it does to Tn. So, by analogy, either a) Tm ...;Tk, b) Tm ...;To,
or c) there is another preceding transaction in S , etc.
Note, however, that since S is finite, and eka cannot precede elv in T̄ , then even-
tually for some such preceding Tq ∈ S case a) or b) and not c) will apply. Thus,
there will be some Tq ∈ S s.t. Tm ...;Tq (where either q = k or q 6= k).

7.4 Last-use Opacity of OptSVA-CF+R 161

Therefore, ∀Tm ∈ S , s.t. m 6= k, ∃Tn ∈ S s.t. Tm ...;Tn.
In addition, for each such pair Tm, Tn , there is therefore ξ(T̄ , Tn, Tm). Furthermore,

if Tm ...;Tn and for some other To, Tn ...;To, then there is ξ(T̄ , To, Tm). Thus, there is
also ξ(T̄ , Tk, Tl), such that if Tl ...;Tm and Tm ∈ S , then Tm ∈ ξ(T̄ , Tk, Tl). Since
Tk, Tl ∈ ξ(T̄ , Ti, Tj), then if Tm ∈ ξ(T̄ , Tk, Tl), Tm ∈ ξ(T̄ , Ti, Tj).

If S = Tk · Tl then trivially v = v′.
Otherwise, since Tl ∈ S and l 6= k, then ∃Tm ∈ S s.t. Tl ...;Tm, so ∃emu = ◦sm(x)v′ ∈

T |Tm for some Tm ∈ ξ(T , Ti, Tj), s.t. Tm precedes Tl and follows Tk in ξ(T , Ti, Tj) and
eku ≺T emu ≺T elv.

Lemma 69 (Tree Chain Consistency). Trace T̄ is chain consistent.

Proof. From Lemma 67 and Lemma 68.

Lemma 70 (Trace Harmony). Trace T̄ is harmonious.

Proof. Trace T̄ satisfies all of the following: a) minimalism from Lemma 40 b) conso-
nance from Lemma 57, c) obbligato from Lemma 61, d) coherence, commit accord, abort
accord, and abort coda from Lemmas 66, 64, 63, and 65, e) isolation from Lemma 45,
f) decisiveness from Lemma 62, g) chain consistency from Lemma 69, and h) unique
writes (assumed).

Corollary 22. History H = Hist(T̄) is last-use opaque. In consequence OptSVA+R is
last-use opaque.

7.4 Last-use Opacity of OptSVA-CF+R

Given that OptSVA-CF+R is a more restricted variant of OptSVA+R, it follows that it
guarantees safety properties that are at least as strong as OptSVA+R’s.

Theorem 10. Every OptSVA-CF+R history is last-use opaque.

Proof sketch. For the purpose of the proof assume that Obj = Var , Then the require-
ments in synchronizing complex objects in OptSVA-CF+R transactions mean that OptSVA-
CF+R allows a subset of histories allowed by OptSVA+R. Since any history allowed by
OptSVA+R is last-use opaque, then any history allowed by OpSVA-CF+R is also last-use
opaque.

8
Implementation and Evaluation

This chapter discusses two distributed TM implementations of versioning algorithms. We
explain the architecture, API, and specific mechanisms these systems employ to comply
with particular versioning algorithms. Each implementation is also comprehensively eval-
uated against other distributed concurrency control mechanisms.

In the first section we present Atomic RMI, an implementation of SVA+R/RSVA+R
that aims to introduce an easy-to-use interface that allows the execution of atomic trans-
actions on top of Java RMI. The idea of Atomic RMI builds on previous work on the
calculus of distributed atomic tasks [96, 98] and was first presented in its current form
in [75, 78].

In the second section we discuss Atomic RMI 2, an implementation of OptSVA-
CF+R/ROptSVA-CF+R that builds on Atomic RMI but exhibits much improved per-
formance thanks to the high degree of parallelism of the underlying concurrency control
algorithm. This implementation was first presented in [82].

8.1 Atomic RMI

In this section, we present Atomic RMI, a programming framework that extends Java
RMI with support for distributed transactions in the control flow model. Atomic RMI is
a fully-pessimistic CF distributed TM with support for programmatic abort (rollback)
whose goal is to provide a simple-to-use and powerful interface for executing atomic code
in distributed systems. It implements SVA+R as the underlying concurrency control
algorithm. We first present an overview of our system architecture, followed by an in-
depth look into specific features of the system, including a discussion of its strengths and
limitations of the implementation. We then evaluate the system and show its efficiency
compared to 2PL-based locking schemes and an optimistic distributed TM.

8.1.1 Overview
The Atomic RMI architecture builds on the architecture of Java RMI, as shown in
Fig. 8.1. Java Virtual Machines (JVMs) running on network nodes can host a num-
ber of discrete shared remote objects, each of which is uniquely identifiable within the
system and registered in an RMI registry located on the same node. Each remote object

164 8 Implementation and Evaluation

JVM N1

Transaction T1

Transactional
Stub T1/A

Stub T1/B

JVM N2

Transaction T2

Transactional
Stub T2/A

Stub T2/B

JVM N3
RMI Registry

Shared Object A
Proxy T1/A

Proxy T2/A

JVM N4
RMI Registry

Shared Object B
Proxy T1/B

Proxy T2/B

Figure 8.1: Atomic RMI architecture.

specifies an interface of methods that can be called remotely, hence adhering to the het-
erogeneous object model. A client application running on any JVM can ask any registry
for a reference to a specific object. Then, the client can use the reference to call the
object’s methods. Each shared object is located at exactly one specific node (as opposed
to the object being copied or moved to other nodes, or being replicated on several nodes)
and all operations invoked on that object cause the appropriate method’s code to exe-
cutes on the object’s host node and return the result to the client in accordance with
the control flow model. The semantics of the methods are defined by the programmer
and can be anything from simple gets and sets, to complex methods executing arbitrary
server-side code, accessing a database, or even invoking other remote objects.

Atomic RMI introduces transaction-based concurrency control to this model. Clients
calling multiple remote objects in parallel can resort to atomic transactions to enforce
consistent accesses to fields of the objects, and the system makes sure that concur-
rent transactions are executed correctly and efficiently. For this, Atomic RMI employs
SVA+R, a TM concurrency control algorithm described in Section 6.2.2. SVA+R is our
main focus in the following discussion, but Atomic RMI can also switch to RSVA+R, a
variant of SVA+R.

In order to give SVA+R the means to guide execution, so that correctness is guar-
anteed, Atomic RMI introduces remote object proxies into the RMI architecture. For
each shared remote object there is an automatically-generated proxy on the host node
that has a wrapper method for each of the original object’s methods (those available
remotely). Clients are required to access remote objects via proxies, so all calls of the
original object’s methods first pass through wrapper methods. The wrapper methods are
then used to enforce SVA+R: establish whether a given operation can be executed at a
given time, or whether it must be deferred or canceled. Once the algorithm establishes
that a call may proceed, the proxy calls the original method of the remote object. In the-
ory, proxy objects could be located either on the server side or the client side, but since
the communication between the proxy and the shared object is much more frequent than
that between the transaction and the proxy, placing them on the server-side incurs lower

8.1 Atomic RMI 165

1 interface Transaction {
2 Transaction();
3 Transaction(boolean reluctant);
4

5 <T> T accesses(T obj);
6 <T> T accesses(T obj, int supr);
7

8 void start();
9 void commit();

10 void retry();
11 void abort();
12

13 void start(Transactional runnable);
14 }
15

16 interface Transactional {
17 void run(Transaction t);
18 }

1 interface Account extends Remote {
2 int balance();
3 void deposit(int amount);
4 void withdraw(int amount);
5 void reset();
6 }
7

8 class AccountImpl
9 extends TransactionalUnicastRemoteObject

10 implements Account {
11

12 private int balance = 0;
13

14 public int balance() {
15 return balance;
16 }
17 public void deposit(int amount) {
18 balance += amount;
19 }
20 public void withdraw(int amount) {
21 balance -= amount;
22 }
23 public void reset() {
24 balance = 0;
25 }
26 }

(a) Atomic RMI transaction interface. (b) Shared object definition.

1 Registry r = LocateRegistry.getRegistry(...);
2

3 Transaction t = new Transaction();
4 Account a = t.accesses(r.lookup("A"), 2);
5 Account b = t.accesses(r.lookup("B"), 1);
6

7 t.start(new Transactional{
8 void run(Transaction t) {
9 a.withdraw(100);

10 b.deposit(100);
11

12 if (a.balance() < 0)
13 t.abort();
14 }
15 });

1 Registry r = LocateRegistry.getRegistry(...);
2

3 Transaction t = new Transaction();
4 Account a = t.accesses(r.lookup("A"), 2);
5 Account b = t.accesses(r.lookup("B"), 1);
6

7 t.start();
8

9 a.withdraw(100);
10 b.deposit(100);
11

12 if (a.balance() < 0)
13 t.abort();
14 else
15 t.commit();

(c) Transaction definition (Transactional object). (d) Transaction definition (in-line).

Figure 8.2: Atomic RMI API and examples.

overheads. In addition, if the proxy is placed on the server, it can easily manage copy
and log buffers, which must be placed on the server to preserve the CF model—methods
executed using buffers should have side effects on the same node as the original object.

Shared Remote Objects
Shared remote objects used with Atomic RMI are plain unicast (stateful) RMI objects,
except that instead of UnicastRemoteObject (which handles the Java Remote Method
Protocol) they subclass the TransactionalUnicastRemoteObject class. We show an ex-
ample of a bank account object defined in this way in Fig. 8.2b. This class creates proxy
objects when necessary, in effect injecting SVA+R support code into remote method in-
vocations. The methods of remote objects are not limited: as well as simple operations
like reading and writing to a field, they can contain blocks of code which include side
effects, system calls, I/O operations, network communication, etc. that execute on the
server. This freedom is possible in large part due to the pessimistic approach to concur-
rency control used by SVA+R—since these operations often produce visible effects on
the system, they cannot be repeated in case of conflicts, as in the optimistic approach.
The pessimistic approach will only let them execute (up to) once in the course of nor-

166 8 Implementation and Evaluation

mal operation, although allowances must be made when the user triggers an abort by
manually rolling back some transaction.

In particular, remote methods can also contain method calls to other remote objects,
further distributing the execution of the transaction. Note, however, that if these are
to be accessed transactionally (i.e., with the same correctness guarantees), references to
the objects have to be made known to the transaction a priori for SVA+R to operate
correctly.

Note that Atomic RMI uses the control flow model of execution, since it allows trans-
actions to execute code on the server where the remote object is located, rather than
limiting them to executing code always on their own node, just using remote data, as in
the data flow model. Our intention is to orientate Atomic RMI towards this model, since
it provides greater freedom and expressiveness to the programmer, who can balance the
load between servers and clients by defining the level of processing that is done on remote
objects. Additionally, the control flow model is more versatile, because it can emulate the
data flow model if remote objects only provide methods which simply write or retrieve
data from the host.

Transaction Objects
The programmer declares a transaction using the API provided by Atomic RMI (Fig. 8.2a),
by creating a Transaction object, which is responsible for starting and stopping trans-
actional execution. We show example transaction definitions in Fig. 8.2c and 8.2d. A
transaction can be defined as reluctant at this point, meaning it will never be forced
to abort, because it will not access objects that are released early, instead waiting for
the preceding transaction to commit or abort. Specifically, if transactions are defined as
reluctant, Atomic RMI switches to RSVA+R to execute them.

Once a transaction object is created, it is used to declare the transaction’s preamble,
where the programmer specifies which objects will be used by the transaction and how,
by passing the reference retrieved from the RMI registry to method accesses. The
programmer can use a variant of this method to also provide suprema for any object used
by the transaction. The suprema indicate the maximum number of times the transaction
will execute methods on each shared object throughout the execution of the code. In
the examples in Fig. 8.2c and 8.2d, the preamble declares the transaction will invoke a
method on object A at most twice (line 4), and at most once on B (line 5).

In practice, suprema do not have to be inferred manually, but instead static analysis
(see Chapter 9) or the type system [96] can be used to do it automatically. If suprema
are not given, infinity is assumed (and the system maintains correctness guarantees). If
suprema are provided though, the underlying concurrency control algorithm uses them
to effect early release, and in this way increase the level of parallelism between concurrent
transactions, which has a positive effect on performance.

Instrumentation
When accesses are declared within the preamble, an object stub is created. This stub is
then used within the code of the transaction to invoke methods on a shared object, as with
ordinary RMI stubs. The difference between an ordinary RMI stub and an Atomic RMI
stub is that the latter does not forward method calls to the shared object directly, but
instead uses a proxy object. Proxy objects are created dynamically on the node hosting
the shared object in question at the same time as the stub is created by the transaction.
Each proxy object links one specific shared object on the server side with one specific
transaction (object) on the client side. Proxy objects implement the interfaces of the
shared objects they are linking, and their rôle is to inject concurrency control code before

8.1 Atomic RMI 167

and after the invocation of specific methods of the shared object. The injection is done
via reflection, which supplies the necessary flexibility, allowing arbitrary methods easily
to be supplemented with concurrency control code. Proxy objects can be decommissioned
once a transaction that created them finishes executing.

Transactional Code
Once the preamble of the transaction is in place, the transaction’s code can be specified.
This is done in one of two ways: by implementing the Transactional interface, or in-
line. An example of the former is given in Fig. 8.2c. Here, transactional code is specified
by creating an object implementing the Transactional interface (line 7), whose run
method then defines the logic of the transaction (lines 9–15). In general, a transaction can
contain virtually any code between its start and either commit or abort. This specifically
means that apart from operations on shared objects, any local operations, e.g., irrevocable
operations, can be present within.

As an example of a simple transaction, that transfers an amount of 100 currency from
one bank account to another. Thus, an anonymous Transactional object is created (line
7) and within the run method, the withdraw method is called on object a (the stub for
shared object A), after which the deposit method is called on b (the stub for B). The
programmer can rest assured the concurrency control algorithm will synchronize the
execution of this code so that no other transaction in the system interferes with the
execution in a way that would violate its consistency. If the transaction reaches the end
of its code it attempts to commit. The programmer is also given the option to abort or
retry the entire transaction manually by using the transaction object and invoking either
the abort or retry method. Here, the transaction is rolled back (line 13) if it turns out
that the balance on account A fell below 0 as a result of executing withdraw (line 12).

We define the same transaction in-line in Fig. 8.2d. Here, instead of defining an object
to run transactional code, the transaction is delimited by the invocation of methods
start, commit and abort. Thus the transaction begins at line 7 and finishes at line 13 or
15, depending on whether the condition at line 12 evaluates to true or false. Note that in-
line transactions must explicitly call commit. In addition, Transactional objects handle
the retry operation automatically, by aborting and restarting the transaction, while in-
line transactions require that this be handled programmatically (an exception must be
caught). Thus, Transactional objects are easier to use, while in-line transactions are
more flexible. Otherwise, both methods of defining transactions are equivalent.

Suprema
The main requirement that Atomic RMI poses for its users is the need to provide the
set of objects used by transactions a priori and a strong suggestion to also provide
upper bounds (suprema) on the number of accesses of remote objects accessed by each
transaction. The former is required to acquire versions on each object. The latter allows
SVA+R to decide when objects can be released early—if this information is inexact or
omitted (equivalent to setting the upper bound to infinity) SVA+R will only release
objects when transactions commit or abort. In such cases, although the execution will
nevertheless be correct, Atomic RMI will be less efficient since transactions will wait
more on one another.

However, while it is acceptable for upper bounds to be too high, it is essential that
they are never lower than the actual number of calls a transaction does to a given object.
If the specification is lower then the actual number of accesses, the guarantees provided
by SVA+R cannot be upheld, because a transaction could release an object and then
attempt to access it again. In order to alleviate such situations, transactions throw an

168 8 Implementation and Evaluation

1 t = new Transaction();
2 a = t.accesses(a);
3 b = t.accesses(b);
4 t.start();
5 for (i = 0; i < n; i++) {
6 a.foo();
7 b.foo();
8 }
9 t.release(a);

10 t.release(b);
11 // local operations
12 t.commit();

1 t = new Transaction();
2 a = t.accesses(a);
3 b = t.accesses(b);
4 t.start();
5 for (i = 0; i < n; i++) {
6 a.foo();
7 if (i == n)
8 t.release(a);
9 b.foo()

10 }
11 t.release(b);
12 // local operations
13 t.commit();

(a) Early release at end of block. (b) Conditional early release.

1 t = new Transaction();
2 a = t.accesses(a, n);
3 b = t.accesses(b, n);
4 t.start();
5 for (i = 0; i < n; i++) {
6 a.foo(); // nth call: release
7 b.foo(); // nth call: release
8 }
9 // local operations

10 t.commit();

1 t = new Transaction();
2 for (h : hotels)
3 trHotels.add(t.accesses(h, 2));
4 t.start();
5 for (h : trHotels) {
6 if (h.hasVacancies())
7 h.bookRoom();
8 else
9 t.release(h);

10 }
11 t.commit();

(c) Early release by supremum. (d) Complementary manual release.

Figure 8.3: Early release examples.

exception when the number of accesses for some object exceeds its supremum. It is then
left to the programmer to resolve the issue by handling the exception. A typical solution
would be to roll back the offending transaction. A more sophisticated technique would
be to roll back the transaction, then modify the suprema and retry.

The upper bounds can be collected manually by the programmer by inspecting the
code and creating the preamble. They can also be inferred automatically by various
means, including a type system (see e.g., [96]) or static analysis. In particular, Atomic
RMI comes with a precompiler tool which statically analyzes transactions to discover
which objects they use, and to derive the upper bounds on accesses to them. With
this information, the precompiler generates the appropriate code and inserts it into the
program. The idea behind the static analysis is described in detail in Chapter 9. The tool
itself is a command-line utility implemented on top of the Soot framework [87].

Manual Early Release
The early release mechanism in Atomic RMI can be triggered automatically (via the
supremum early release mechanism) or manually.

Manual early release is an extension of SVA+R that we introduce in Atomic RMI,
where, if the programmer has good knowledge of when an object stops being used in a
transaction from the semantics of the program, she can allow that remote object to be
released by invoking the release operation. The release operation simply waits for the
access condition on a given remote object to become true, and then releases it as if its
upper bound was reached. This mechanism must be used carefully, so that a released
object is not accessed again later on (causing an exception). On the other hand, the
mechanism can be used to complement the early release mechanism supplied by SVA+R,
as we explain below.

Note the simple example in Fig. 8.3a, where a transaction calls methods on shared
objects a and b in a loop. If manual release was to be used, the simplest way to use it is
to insert release instructions at the end of the loop at lines 9–10. However, it will mean

8.1 Atomic RMI 169

that before a is released, the transaction unnecessarily waits until b executes as well. If
a and b are remote objects, each such call can take a long time, so this simple technique
impairs efficiency.

Instead, the programmer should strive to write transactions like in Fig. 8.3b. Here, a is
released at lines 7–8, in the last iteration of the loop before the method call on b is started.
An earlier release improves parallelism, but the solution requires that the programmer
spend time on optimizing concurrency (which the TM approach should avoid) and to
clutter up the code with instructions irrelevant to the application logic. In addition, the
release in both examples sends an additional network message to a and b (because the
release method requires it), which can be relatively expensive.

However, if the SVA+R algorithm is given the maximum number of times each object
is accessed by the transaction, i.e., that a and b will be accessed at most n times each,
then Atomic RMI can determine which access is the last one as it is happening. Then,
the transaction’s code looks like in Fig. 8.3c, where suprema are specified in lines 2–3,
but the instructions to release objects are hidden from the programmer, so there is no
need for supplementary code. Additionally, since release is done as part of the nth call on
each object, there is no additional network traffic. Furthermore, object a does not wait
for the method b.foo() to execute.

However, releasing by suprema alone is not always the best solution, since there
are scenarios when deriving precise suprema is impossible. In those cases the manual
early release complements the suprema-based mechanism in increasing the parallelism
of transactional executions. One such case is shown in Fig. 8.3d, where a transaction
searches through objects representing hotels, and books a room if there are vacancies.
Each interaction with a hotel can take up to two method calls: vacancy check (line 6)
and booking (line 7). However the supremum will only be precise for one hotel, the first
one with vacancies. Other hotels that do not have vacancies, will not be asked to book
a room, so there is only one access. This means that the supremum will not be met for
those cases until the end of the transaction, so those hotel objects will only be released on
commit. This is particularly paradoxical, since the transaction will retain exclusive access
longer to objects it does not intend to use. Hence, they are manually released on line 9,
so the objects are not needlessly retained and can be accessed by other transactions as
soon as possible.

Irrevocable Operations
The greatest advantage of Atomic RMI is its pessimistic algorithm, which allows any
operation to be used within transactions. In particular, irrevocable operations pose no
problem. These are operations that have visible effects on the system and cannot be easily
reverted, e.g., system calls, sending network messages. This is not true for optimistic
transactions, because conflicts cause aborts, which then cause irrevocable transactions
to be repeated.

For the same reason, Atomic RMI allows transactions to include locking or to start
new threads within transactions. This is also often not possible in optimistic transactions,
where aborts can cause threads to be restarted or locks to be acquired and not released
(especially, if conflicts are detected eagerly). However, not only does allowing these sorts
of operations improve expressiveness, but it also makes working with legacy code easier.

While it is true that Atomic RMI transactions operating according to SVA+R do not
typically forcibly abort (as we remark in Section 8.1.2, even if programmatic aborts occur,
cascading aborts do not happen in benchmarks), it is possible for transactions to abort
in potentia. In order to make forced aborts impossible for specific transactions, Atomic
RMI provides an interface to make transactions reluctant as per RSVA+R, meaning that

170 8 Implementation and Evaluation

they are never forced abort by the TM, and therefore are completely safe for irrevocable
operations.

Buffering
In order to buffer remote objects, Atomic RMI introduces a universal mechanism that
deep-copies shared remote objects. The copy is created and kept on the same JVM as
the original object, to avoid the cost of moving it across the network. The copy is created
by reflection: a new object of the same type is created, and all of its fields (barring
concurrency-control–related data) are set to the same values as the original object. This
method of copying is used to implement both the st and the buf buffers used by SVA+R.

Nesting and Recurrency
Atomic RMI supports transaction nesting, albeit with limitations. The programmer can
create a transaction within another transaction, but in such cases it is vital to ensure
that they do not share objects. Otherwise, the inner transaction will wait for the outer
to release the objects, while the outer will not release them until the inner finishes. In
effect, a deadlock occurs.

Atomic RMI also supports transaction recursion. That is, a transaction may call itself
within itself (for instance, if a transaction is defined within a method). The recursion will
be treated as a single transaction. The execution will proceed until the commit and abort
methods are called, in which case the transactional method is exited and the transaction
finishes as normal. Keep in mind, however, that the suprema for object accesses must
still be defined for the entire execution of the transaction.

Fault Tolerance Mechanisms
In distributed environments partial failures are a fact of life, so any DTM system must
have mechanisms to deal with them. Atomic RMI handles two basic types of failures:
remote object failures and transaction failures.

Remote object failures are straightforward and the responsibility for detecting them
and alarming Atomic RMI falls onto the mechanisms built into Java RMI. Whenever
a remote object is called from a transaction and it cannot be reached, it is assumed
that this object has suffered a failure and an exception is thrown. The programmer
may then choose to handle the exception by, for example, rerunning the transaction, or
compensating for the failure. Remote object failures follow a crash-stop model of failure:
any object that crashed is removed from the system.

On the other hand, a client performing some transaction can crash causing a trans-
action failure. Such failures can occur before a transaction releases all its objects and
thus make them inaccessible to all other transactions. The objects can also end up in
an inconsistent state. For these reasons transaction failures need also to be detected and
mitigated. Atomic RMI does this by having remote objects check whether a transaction
is responding. If a transaction fails to respond to a particular remote object (i.e., if it
times out), it is considered to have crashed, and the object performs a rollback on itself:
it reverts its state and releases itself. If the transaction actually crashed, all of its objects
will eventually do this and the state will become consistent. On the other hand, if the
crash was illusory and the transaction tries to resume operation after some of its objects
rolled themselves back, the transaction will be forced to abort when it communicates
with one of these objects.

8.1 Atomic RMI 171

8.1.2 Evaluation
In this section we present the results of a practical evaluation of Atomic RMI. First, we
compare the performance of Atomic RMI to other distributed concurrency control mech-
anisms, including another distributed TM. In the second test, we check the performance
of Atomic RMI under different Java Runtime Environments (JREs).

Benchmarks
For our comprehensive evaluation we used a micro-benchmark and three complex bench-
marks. We based our implementation of the benchmarks on the one included in HyFlow
[68].

The distributed hash table benchmark (DHT) is a micro-benchmark containing a num-
ber of server nodes acting as a distributed key-value store. Each node is responsible for
storing values for a slice of the key range. There are two types of transactions. A write
transaction selects 2 nodes and atomically performs a write on each. A read transaction
selects 4 nodes and performs an atomic read on them. The benchmark is characterized
by small transactions (2–4 remote operations, few local operations) and low contention
(few transactions try to access the same resource simultaneously).

The bank benchmark simulates a straightforward distributed application using the
bank metaphor. Each node hosts a number of bank accounts that can be accessed re-
motely by clients. Bank accounts allow write operations (withdraw and deposit) and a
read operation (get balance). Clients perform either write or read transactions. In the
former type, a transfer transaction, two random accounts are selected and some sum is
withdrawn from one account and deposited on the other. In the latter type, an audit
transaction, all the accounts in the bank are atomically read by the transaction and a
total is produced. The benchmark has both short and long transactions and medium to
high contention, depending on the number of read-only transactions.

The loan benchmark presents a more complex distributed application where the ex-
ecution of the transaction is also distributed. Each server hosts a number of remote
objects that allow write and read operations. Each client transaction atomically executes
two reads or two writes on two objects. When a read or write method is invoked on a re-
mote object, then it also executes two reads or writes (respectively) on two other remote
objects. This recursion continues until it reaches a depth of five. Thus, each client trans-
action “propagates” through the network and performs 30 operations on various objects.
Hence, the benchmark is characterized by long transactions and high contention, as well
as relatively high network congestion.

Finally, the vacation benchmark is a complex benchmark (originally a part of STAMP
[58]), representing a distributed application with the theme of a travel agency. Each server
node supplies three types of objects: cars, rooms, and flights. Each of these represents
a pool of resources that can be checked, reserved, or released by a client. When some
resource is reserved, associated reservation and customer objects are also created on
the server. Clients perform one of three types of transactions. Update tables selects a
number of random objects and changes their price to a new value. Delete customer
removes a random customer object along with any associated reservations. Note that
the delete customer operation requires some transactions to execute speculatively and
(programmatically) abort when the list of objects reserved for deletion becomes out of
date. Make reservation is a read-dominated transaction that searches through a number
of objects, chooses one of each type (car, room, flight) that meet some price criterion.
Once the objects are chosen, the transaction may create a reservation. The benchmark
has medium to large transactions with a lot of variety, and medium to high contention.

172 8 Implementation and Evaluation

Frameworks
We evaluate Atomic RMI with specified precise suprema (where possible). All versions
of Atomic RMI use manual early release in the vacation benchmark to improve efficiency
while making reservations (while searching through remote objects). In all other cases,
transactions release objects when they reach their supremum.

We compare Atomic RMI with standard Java RMI with mutual exclusion locks (or
mutexes, denoted Exclusion Locks) and Java RMI with read/write locks (denoted R/W
Locks). They feature fine grained locking: there is one lock per remote object. The locks
are used like a CR2PL transaction: all locks are acquired at the start (although we
simplify the lock acquisition procedure by using a predefined locking order, which is
sufficient to avoid deadlocks), and they are all released on commit. We use this locking
scheme with mutual exclusion locks as a baseline algorithm, which is very simple to use
and can be expected to be seen in applications written by conventionally trained software
engineers. On the other hand, read/write locks present one of the most popular types of
performance optimizations in concurrent systems: parallelizing reads.

We also compare Atomic RMI with HyFlow [68], another Java RMI-based implemen-
tation of distributed transactional memory, implementing the Distributed Transactional
Locking (DTL) algorithm, a variant of TL2, a well-known optimistic TM. Since the tech-
nology used in both Atomic RMI and HyFlow is the same, the comparison should show
the performance difference between the pessimistic and optimistic approaches to TM.

Testing Environment
In each of the benchmarks every node performs the rôle of a server hosting a number of
publicly accessible remote objects, as well as a client running various randomly chosen
types of transactions using remote objects from any server.

We perform our tests on a 10-node cluster connected by a private 1 Gb network. Each
node is equipped with two quad-core Intel Xeon L3260 processors at 2.83 GHz with 4
GB of RAM each and runs a OpenSUSE 13.1 (kernel 3.11.10, x86_64 architecture). We
use the 64-bit IcedTea 2.4.4 OpenJDK 1.7.0_51 Java runtime (suse-24.13.5-x86_64) for
tests involving comparison between multiple frameworks. We also use this JRE (denoted
OpenJDK 1.7.0_51 on the graphs) alongside Oracle’s 64-bit 1.7.0_55-b13 Java Runtime
Environment with Java HotSpot build 24.55-b03 (denoted Oracle 1.7.0_55), and Ora-
cle’s 64-bit 1.8.0_05-b13 Java Runtime Environment with Java HotSpot build 25.5-b02
(denoted Oracle 1.8.0_05) for evaluating behavior when running on different JREs. We
also attempted to run the benchmarks on the last version of Oracle JRockit (1.6.0_45-
b06), but were unsuccessful due to compatibility issues with the libraries used for the
implementation of the benchmarks.

Each of the benchmarks is run on 2–10 nodes. Every node hosts one server with as
many objects as specified by the benchmark. In addition, every node hosts one client with
24 threads each. So, for example, on 10 nodes there are 240 simultaneous transactions
accessing objects on 10 nodes. Threads execute transactions selected at random. In one
batch of tests there are 20% of read transactions and 80% of write transactions in each
benchmark. In the other batch the ratio is reversed.

Results
The results of the comparison between concurrency control mechanisms are presented
in Fig. 8.4. Each benchmark is presented on two graphs: one for a 20% read-to-write
operation ratio, and the other for an 80% read-to-write operation ratio. Points on the
graph represent the mean throughput (on the y-axis) from the given benchmark run on

2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsDHT

●
● ●

●
●

● ●
●

●

● Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
20

0
60

0
10

00
14

00

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsDHT

●

●
●

●

●

●
●

● ●

● Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
50

10
0

15
0

20
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsBank

●
●

●

●

●
●

●
●

●

● Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
50

15
0

25
0

35
0

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsBank

● ●
●

●
●

●
●

● ●

● Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
20

0
60

0
10

00

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsLoan

● ● ●
●

●

●
●

●

●
● Atomic RMI

Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
50

0
10

00
15

00

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsLoan

●
● ●

●
●

●

●

●

●
● Atomic RMI

Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
20

0
40

0
60

0
80

0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsVacation

●

●

●

●
●

● ●

●

●

● Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
50

0
10

00
15

00

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsVacation

●

●
●

● ●

●

●

●

●
● Atomic RMI

Exclusion Locks
R/W Locks
HyFlow DTL2

Figure 8.4: Evaluation results.

174 8 Implementation and Evaluation

a particular number of nodes (on the x-axis). The results are shown as a percentage
improvement in relation to the execution of Exclusion Locks.

The results of the DHT benchmark show that in a low-contention environment with
short transactions Atomic RMI is comparable to performance obtained by using both fine
grained R/W Locks and HyFlow, and all three are much better than fine grained Exclu-
sion Locks. Atomic RMI’s advantage over Exclusion Locks comes from early release and
allowing some transactions to execute in part in parallel. Thus, there are more transac-
tions executing at once, so more of them can go through the system per unit of time. R/W
Locks and HyFlow attain a very similar result, by allowing reads to execute in parallel
with other reads, therefore also allowing some transactions to execute in part in parallel.
The gain from treating reads specially is very similar to what is gained from early release,
so the shapes of the graphs are very similar. However, the overhead of maintaining all
of the distributed TM mechanisms in Atomic RMI and HyFlow—including rollback sup-
port (so making copies of objects) and fault tolerance (extra network communication)—is
greater than the overhead of R/W Locks. Hence, Atomic RMI and HyFlow perform con-
sistently worse in DHT than R/W Locks. Note also that the advantage that the more
subtle frameworks have over Exclusion Locks increases in proportion to the number of
nodes in the network, hinting at better scalability.

The results for Bank show a case with a higher contention, where the higher cost
of setting up HyFlow’s and Atomic RMI’s more complex concurrency control pays off,
so both frameworks tend to outdo R/W Locks (and Exclusion Locks) on average. The
benchmark also shows the impact of the two approaches to parallelizing transactions.
Since R/W Locks and HyFlow allow executing reads in parallel, they both gain a signif-
icant boost in the 80% read case, since any number of transactions can simultaneously
read from the same object. To the contrary, Atomic RMI parallelizes transactions on the
basis of early release rather than reads, so it is forced to wait for a preceding transac-
tion to release the right object for two transactions to be able to execute simultaneously.
Since transactions here contain operations in random order, Atomic RMI’s SVA+R al-
gorithm is often forced to wait for a preceding transaction to release the right object.
This still gives performance similar to that of R/W Locks, but it means Atomic RMI
is outperformed by HyFlow. On the other hand, in the 20% read case, R/W Locks and
HyFlow have fewer reads to parallelize, so they execute on a par with Exclusion Locks,
HyFlow performs particularly poorly in this scenario because of the high number of
aborts caused by speculative execution of write operations. Here, HyFlow transactions
abort in between 15.5% and 51% cases (as opposed to between 4.25% and 8.9% in the
80% read case), while other frameworks do not perform aborts in this scenario at all. In
contrast, Atomic RMI performs significantly better than the other frameworks, since its
early release mechanism does not depend on a large read-to-write ratio. In fact, Atomic
RMI performs similarly in both the 20% and the 80% read case, reliably achieving a
throughput of around 200% in both scenarios. Nevertheless, it is clear that Atomic RMI
could benefit from introducing support for read/write differentiation in addition to the
existing mechanisms.

The Loan benchmark shows that Atomic RMI is also much better at handling long
transactions and high contention than all other types of the concurrency control mech-
anisms. Again, since Atomic RMI does not distinguish between reads and writes, both
scenarios are effectively the same in terms of performance and an increase in throughput
comes from releasing objects as early as possible. However, as opposed to Bank, in the
Loan benchmark, Atomic RMI can effect an early release while about half of the trans-
action still remains to be executed. Hence, Atomic RMI transactions run in parallel in
part to the transaction preceding it, and in part to the one following it. This creates a
significant performance gain compared to R/W Locks and HyFlow. These, again, differ

8.1 Atomic RMI 175

in performance between the 20% read case and the 80% read case, but in this high a
contention their advantage over Exclusion Locks is not as great as Atomic RMI’s.

Finally, Vacation shows the behavior of more complex transactions in a high con-
tention environment. In this scenario, there is an actual advantage to being able to roll
back and this is a component in the performance gain. Atomic RMI makes copies for
abort on the server-side, so there is no network overhead associated with either making
a checkpoint or reverting objects to an earlier copy. On the other hand, the rollback
mechanism in the locking schemes requires that clients copy objects and store them on
the client side, which makes them costly operations. Atomic RMI, therefore, has a big
advantage over both locking mechanism, from rollback support alone. In particular, the
transaction that requires rollback is delete customer, which makes up for 10% and 40% of
transactions in Vacation (in the 80% and 20% read case, respectively). Furthermore, the
complexity of this real-world–like benchmark makes transactions increasingly difficult to
parallelize using locks, since often it is necessary to lock a superset of a transaction’s read
set and write set, and since read-only transactions are less likely to occur. Hence, R/W
Locks struggle with performance, even falling behind Exclusion Locks at times.

The comparison of HyFlow and Atomic RMI in Vacation is much more involved. Since
read transactions do not imply read-only transactions here, there is much less to be gained
by parallelizing reads. Here, even a read transaction can write, so cause conflicts and
therefore effect aborts in HyFlow. It is the order of operations and the implementation
of the read transaction that explains why Atomic RMI does better than HyFlow in
the 80% read case and not in the 20% read case. First of all, the make reservation
transaction initially performs a sequence of reads to a large set of remote objects, until
one is found that fits some specified criterion. Since the object can be released instantly
if the criterion is not met, then Atomic RMI allows many parallel transactions to work
on the same objects. And since reads in Vacation are done in the same order in each
transactions, any two Atomic RMI transactions can execute almost entirely in parallel.
On the other hand, since there are writes at the end of make reservation, if HyFlow
executes these in parallel, a conflict can occur and cause an abort. This is why there is
the advantage of Atomic RMI over HyFlow in an 80% read scenario, where the make
reservation transaction is prevalent. On the other hand, the necessary rollback in delete
customer is more problematic in Atomic RMI, since it may cause a cascade of aborts.
Furthermore, update tables performs reads in random order, so Atomic RMI encounters
the same problems as in the 80% read case in Bank. HyFlow avoids both these problems
through speculation and avoiding cascading aborts. Hence HyFlow outperforms Atomic
RMI in the 20% read case where these particular transactions are a bigger part of the
workload. However, both Atomic RMI and HyFlow perform quite well, achieving a typical
speedup of at least 200% in comparison to Exclusion Locks.

On the whole, Atomic RMI is able to perform just as well as fine grained locks
in all environments, with only small penalty for additional features in environments
particularly hostile to versioning algorithms (low contention, short transactions). On
the other hand, in environments for which versioning algorithms were intended (high
contention, long transactions, mixed reads and writes) Atomic RMI gains a significant
performance advantage over fine grained locking. In comparison to HyFlow, both TM
systems perform variously in different environments. On average, Atomic RMI tends to
perform better than HyFlow in high contention, while it tends to be outperformed by
HyFlow in cases where read-only transactions can be treated specially. Hence Atomic
RMI is preferable to R/W Locks and Exclusion Locks in all cases, while the decision to
use Atomic RMI in place of an optimistic TM like HyFlow should be made depending
on the workload.

The results under different Java Runtime Environments are presented in Fig. 8.5.

2 4 6 8 10

0
20

40
60

80
12

0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

20% readsDHT

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
20

40
60

80
10

0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

80% readsDHT

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
50

10
0

15
0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

20% readsBank

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
50

10
0

15
0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

80% readsBank

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
5

10
15

20

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

20% readsLoan

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
5

10
15

20

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

80% readsLoan

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
20

40
60

80
12

0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

20% readsVacation

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
50

10
0

15
0

20
0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

80% readsVacation

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

Figure 8.5: Evaluation results of Atomic RMI under various JREs.

8.2 Atomic RMI 2 177

Points on the graph represent the mean throughput in transactions per second (on the
y-axis) from the given benchmark run on a particular number of nodes (on the x-axis).
The benchmarks indicate that Atomic RMI performs in a relatively similar manner. The
most significant difference can be seen when relatively few nodes are involved. This is best
visible in Vacation for tests with 4 nodes or fewer, where Oracle 1.8.0_85 significantly
outperforms either of the Java 7 implementations. The results also show a decline in
throughput as more nodes are added. This is because each added node increases the rate
of conflicts between transactions, as well as network congestion.

8.1.3 Discussion
The transaction abstraction is easy for programmers to use, while hiding complex syn-
chronization mechanisms under the hood. We use that to full effect by employing SVA+R,
an algorithm based on solid theory that allows high parallelism. Additionally, the pes-
simistic approach that is used in the underlying algorithm allows our system to present
fewer restrictions to the programmer with regard to what operations can be included
within transactions. Apart from limited transaction nesting, very little is forbidden within
transactions.

Supremum-based early release makes our programming model efficient and relatively
burden-free (especially, when static analysis is employed). Upper bounds on object calls
are hard to estimate but the effort pays off since they allow to release objects as early as
possible in certain cases. Our evaluation shows that due to the early release mechanism,
Atomic RMI has a significant performance advantage over fine grained locks.

However, given the results of our evaluation, it is necessary to implement a different
versioning algorithm that will distinguish between reads and writes, while retaining the
early release mechanism. Combining the two optimizations should improve the efficiency
of the system even further. We proceed to test this prediction by introducing Atomic
RMI 2 an improved version of Atomic RMI that implements exactly that kind of a
concurrency control algorithm.

8.2 Atomic RMI 2

In this section we present Atomic RMI 2, an implementation of OptSVA-CF+R (de-
scribed in Section 6.4) that builds on Atomic RMI. The creatively named Atomic RMI 2
provides a simple-to-use API that allows programmers to implement consistent trans-
actions as straightforwardly as if using much simpler mechanisms, such as distributed
coarse-grained locking. However, instead of employing an operation-type agnostic con-
currency control algorithm like its predecessor, Atomic RMI 2 uses one which recognizes
three classes of operation types: reads, writes, and updates, and applies optimizations
with respect to the execution of these operations. Atomic RMI 2 uses the same API as
Atomic RMI, only extended to allow the identification of these operation types in the
objects’ interfaces, as well as to allow transactions to specify separate suprema for each
operation type.

As a result of distinguishing operation types, the algorithm allows for the execution of
transactional code to be highly parallelized, which leads to the improved performance of
the DTM system. We demonstrate this in a comprehensive evaluation of Atomic RMI 2,
showing that it produces a significant performance increase over its predecessor as well as
various lock-based distributed concurrency control solutions. In addition, we show that
Atomic RMI 2 performs better than, or comparably to HyFlow2 (depending on contention

178 8 Implementation and Evaluation

1 interface Transaction {
2 Transaction();
3 Transaction(boolean reluctant);
4

5 <T> T reads(T obj);
6 <T> T writes(T obj);
7 <T> T updates(T obj);
8 <T> T accesses(T obj);
9

10 <T> T reads(Tobj, int rub);
11 <T> T writes(T obj, int wub);
12 <T> T updates(T obj, int uub);
13 <T> T accesses(T obj, int rub,
14 int wub,
15 int uub);
16

17 void start();
18 void commit();
19 void retry();
20 void abort();
21

22 void start(Transactional runnable);
23 }
24

25 interface Transactional {
26 void run(Transaction t);
27 }

1 interface Account extends Remote {
2 @Access(Mode.READ) int balance();
3 @Access(Mode.UPDATE) void deposit(int amount);
4 @Access(Mode.UPDATE) void withdraw(int amount);
5 @Access(Mode.WRITE) void reset();
6 }
7

8 class AccountImpl
9 extends TransactionalUnicastRemoteObject

10 implements Account {
11

12 private int balance = 0;
13

14 public int balance() {
15 return balance;
16 }
17 public void deposit(int amount) {
18 balance += amount;
19 }
20 public void withdraw(int amount) {
21 balance -= amount;
22 }
23 public void reset() {
24 balance = 0;
25 }
26 }

(a) Atomic RMI 2 transaction interface. (b) Shared object definition.

1 Registry r = LocateRegistry.getRegistry(...);
2

3 Transaction t = new Transaction();
4

5 Account a = t.accesses(r.lookup("A"), 1, 0, 1);
6 Account b = t.updates(r.lookup("B"), 1);
7

8 t.start(new Transactional() {
9 void run(Transaction t) {

10 a.withdraw(100);
11 b.deposit(100);
12

13 if (a.balance() < 0)
14 t.abort();
15 }
16 });

1 Registry r = LocateRegistry.getRegistry(...);
2

3 Transaction t = new Transaction();
4

5 Account a = t.accesses(r.lookup("A"), 1, 0, 1);
6 Account b = t.updates(r.lookup("B"), 1);
7

8 t.start()
9

10 a.withdraw(100);
11 b.deposit(100);
12

13 if (a.balance() < 0)
14 t.abort();
15 else
16 t.commit();

(c) Transaction definition (Transactional object). (d) Transaction definition (in-line).

Figure 8.6: Atomic RMI 2 API and examples.

and operation length), but does so while avoiding aborting transactions altogether, thus
allowing the use of irrevocable operations. Given this, we show that a pessimistic system
can be as well-performing as an optimistic one. In this way we also introduce a CF DTM
with competitive performance that was lacking.

8.2.1 Overview
Atomic RMI 2 is a re-implementation of the Atomic RMI framework. Because of this, the
two systems share the same architecture and most of the same API. The differences stem
from the requirements of the improved concurrency control algorithm, as follows. Since
OptSVA-CF+R requires that read, write, and update methods be handled differently,
interfaces of shared objects are declared differently in Atomic RMI 2. Furthermore, since
OptSVA-CF+R uses separate upper bound values for the three types of operations, the
definition of transaction preambles changes in Atomic RMI 2 to allow for separate defi-
nition of suprema for each operation type. Finally, Atomic RMI 2 introduces new buffer
types and new modules for controlling threads, to meet the requirements of OptSVA-
CF+R for buffering remote objects without synchronization and for transaction-local

8.2 Atomic RMI 2 179

asynchronous execution. We discuss each of these features below.

Shared Remote Objects
Atomic RMI 2 shared remote objects are unicast RMI objects, that implement an ar-
bitrary interface and subclass the TransactionalUnicastRemoteObject, just like in
Atomic RMI. However, since OptSVA-CF+R requires that operations be categorized as
either reads, writes, or updates, the programmer should provide annotations in the inter-
face to indicate each method’s category. This is done via the @Access annotation which
takes either the Mode.READ, Mode.WRITE, or Mode.UPDATE argument to indicate specific
operation categories. These categories accord with the categories defined by OptSVA-
CF+R: a read operation cannot modify the state of the object and may return a value,
a write operation cannot view the state of the object and cannot return a value, and an
update operation may both modify and view the state of the object, and may return a
value. We show an example of the bank account objects’ interface with annotations in
Fig. 8.6b. If a method is not otherwise annotated, it is conservatively assumed to be an
update method.

Transaction Objects
Clients execute operations on shared objects as part of transactions using the transaction
interface provided by Atomic RMI 2 (see Fig. 8.6a). The API is analogous to that used
in Atomic RMI (see Section 8.1.1): transactions can be either defined in-line or via
Transactional interface (see Fig. 8.6c and 8.6d), and they can also be prevented from
aborting by being defined as reluctant (which makes Atomic RMI 2 switch its concurrency
control algorithm from OptSVA-CF+R to ROptSVA-CF+R).

The one significant difference introduced into Atomic RMI 2 transactions’ API is that
in the preamble the programmer specifies which objects will be used by the transaction
and how, by passing the reference retrieved from the RMI registry to method reads,
writes, updates, or accesses. The read method is used to specify that only read op-
erations will be executed on that object by this transaction. Similarly, the writes and
updates methods are used to specify that only writes or updates, respectively, will be
executed on the object by this transaction. Finally, accesses is used to declare that
methods of any kind may be executed on this object within this transaction.

The programmer can use variants of these methods to also provide suprema for any
object used by the transaction. There are three types of suprema that indicate the max-
imum number of times the transaction will execute read, write, and update methods, on
each shared object throughout the execution of the code. In the example in Fig. 8.6c the
preamble declares the transaction will invoke at most one read method, no write meth-
ods, and at most one update method on shared object A (line 5). It also declares that
the transaction will execute at most one update method, and no read or write methods
on B (line 6).

Buffering
Atomic RMI 2 implements copy buffers just like Atomic RMI, but also introduces an im-
plementation of the log buffer log used by OptSVA-CF+R. A log buffer for some object
implements the same interface as the original object, but when an operation is supposed
to be executed on the log buffer, the code of the method is not executed right away.
Instead, a method object is created, and this object as well as the invocation’s argu-
ments are appended to a linked list associated with the buffer. This does not require any
synchronization with the actual object that the log buffer represents. However, the log

180 8 Implementation and Evaluation

buffer in our implementation does not execute any methods until it is applied explicitly
to an actual object, by the concurrency control algorithm (which does require synchro-
nization). When the log buffer is applied, each of the methods on its list is executed on
the actual object in sequence.

Executor Thread
OptSVA-CF+R calls for asynchronous execution of certain procedures using separate
threads. Given the overhead that starting a thread creates, Atomic RMI 2 uses one
executor thread per JVM. The executor thread is always running and transactions assign
it tasks. Each task consists of a condition and code. The code of the task is meant to be
executed only when the condition is satisfied. Once the thread receives a task, it checks
whether it can be immediately executed. If not, it queues up the task and waits until
any of the two counters that can impact the condition change value (lv and ltv). When
any of the counters change, the thread re-evaluates the relevant conditions and executes
the task, if the condition so allows.

8.2.2 Evaluation
In this section we present the results of a practical evaluation of Atomic RMI 2 in the
context of other distributed TM concurrency control mechanisms operating in a similar
system model.

Benchmark
We perform our evaluation using a 16-node cluster connected by a 1Gb network. Each
node had two quad-core Intel Xeon L3260 processors at 2.83 GHz with 4 GB of RAM
each and runs OpenSUSE 13.1 (kernel 3.11.10, x86_64 architecture). We use Groovy
version 2.3.8 with the 64-bit Java HotSpot(TM) JVM version 1.8 (build 1.8.0_25-b17).

The evaluation is performed using our own distributed implementation of Eigenbench
[47]. Eigenbench is a flexible, powerful, and lightweight benchmark that can be used for
comprehensive evaluation of multicore TM systems by simulating a variety of transac-
tional application characteristics.

Eigenbench uses three arrays of shared objects, each of which is accessed with a
different level of contention. The hot array contains some number n of objects that can be
accesses by transaction in any thread. The access to objects in the hot array is controlled
by the TM. The mild array contains n objects per thread. The access to these objects
is also controlled by the TM, but the objects are partitioned in such a way, that no two
transactions ever conflict on them. The third, cold array is populated and partitioned
like the mild array, but it is only accessed non-transactionally. Each object within any of
the three arrays is a reference cell, i.e., an object that holds a single value, that can be
either read or written to—an object-oriented equivalent of a variable. These arrays are
accessed by client transactions. Each transaction accesses semi-randomly selected objects
in all three arrays in random order, with the exception that the number of accesses to
each type of array is specified, and the ratio of read operations to write operations on
each type of array is also specified. The benchmark has a specified locality, which is a
probability with which transactions will access the same object several times. When an
object is being selected by a transaction, a random number is generated, and if it is below
the locality probability, the object is selected at random from the transaction’s history of
objects accessed thus far. Otherwise, the object is selected randomly from the pool of all
shared objects. Locality and the length of the history are parameters of the benchmark.

64128 256 512 768 1024
Clients

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 [o

p/
s]

Atomic RMI 2
Atomic RMI
HyFlow2
R/W CR2PL
R/W C2PL
Mutex CR2PL
Mutex C2PL
GLock

(a) 90% reads, 10% writes.

64128 256 512 768 1024
Clients

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 [o

p/
s]

(b) 50% reads, 50% writes.

64128 256 512 768 1024
Clients

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 [o

p/
s]

(c) 10% reads, 90% writes.

Figure 8.7: Throughput vs client count (hot array accesses).

4 8 12 16
Nodes

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 [o

p/
s]

Atomic RMI 2
Atomic RMI
HyFlow2
R/W CR2PL
R/W C2PL
Mutex CR2PL
Mutex C2PL
GLock

(a) 90% reads, 10% writes.

4 8 12 16
Nodes

0

20

40

60

80

100

120

140

160

180

Th
ro

ug
hp

ut
 [o

p/
s]

(b) 50% reads, 50% writes.

4 8 12 16
Nodes

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 [o

p/
s]

(c) 10% reads, 90% writes.

Figure 8.8: Throughput vs node count (hot and mild array accesses).

4 8 12 16
Nodes

0

50

100

150

200

Th
ro

ug
hp

ut
 [o

p/
s]

Atomic RMI 2
Atomic RMI
HyFlow2
R/W CR2PL
R/W C2PL
Mutex CR2PL
Mutex C2PL
GLock

(a) 90% reads, 10% writes, 5 arrays.

4 8 12 16
Nodes

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 [o

p/
s]

(b) 50% reads, 50% writes, 5 arrays.

4 8 12 16
Nodes

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 [o

p/
s]

(c) 10% reads, 90% writes, 5 arrays.

4 8 12 16
Nodes

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 [o

p/
s]

(d) 90% reads, 10% writes, 10 arrays.

4 8 12 16
Nodes

0

20

40

60

80

100

120

140

160

180
Th

ro
ug

hp
ut

 [o
p/

s]

(e) 50% reads, 50% writes, 10 arrays.

4 8 12 16
Nodes

0

50

100

150

200

250

Th
ro

ug
hp

ut
 [o

p/
s]

(f) 10% reads, 90% writes, 10 arrays.

Figure 8.9: Throughput vs node count (hot array accesses).

8.2 Atomic RMI 2 183

Frameworks
The first framework we use for evaluation is Atomic RMI. Since Atomic RMI and Atomic
RMI 2 use the same basic technology and provide the same guarantees, the compari-
son between them shows off the optimizations introduced in OptSVA-CF+R over pure
SVA+R. The second framework we compare Atomic RMI 2 against is HyFlow2 [86], a
state-of-the-art distributed TM system implemented in Scala. HyFlow2 implements the
optimistic Transactional Forwarding Algorithm (TFA) (see Section 4.2.2) and operates
in the data flow model. TFA is opaque but does not have provisions for irrevocable
operations.

We also compare all three TM systems against distributed concurrency control so-
lutions based on locks and C2PL algorithms. Specifically, we use distributed mutual
exclusion locks (marked Mutex) and read-write locks (marked R/W Locks), both custom-
tailored and implemented on top of Java RMI. In both solutions a lock is created for
every shared object in the system. Each locking solution has two variants. The first vari-
ant is a straightforward usage where every transaction locks every object from its access
set when it commences, and releases each of object on commit. This is equivalent to
a conservative rigorous two-phase locking solution and satisfies opacity. We denote this
variant as CR2PL. The second variant represents conservative two-phase locking (C2PL),
and is a more advanced implementation from the programmer’s point of view. Here, each
transaction also initially locks each of the objects in its access set, but the programmer
determines the last access on each object in the transaction’s access set and manually
releases the lock early (prior to commit). C2PL locking satisfies last-use opacity under
the assumption that the last access is always determined correctly. Finally, we also use a
solution with a single global mutual exclusion lock (GLock) that is acquired by each trans-
action for the duration of the transaction’s entire execution. This produces a completely
sequential execution and acts as a baseline for the purpose of the comparison.

Results
Fig. 8.7 illustrates the change of throughput (measured as the number of executed opera-
tions on shared data per second) as the number of clients increases from 64 (4 per node)
to 1024 (64 per node). We show three scenarios, each executed on 16 nodes, with 10
arrays of each type per node. Each client executes 10 consecutive transactions, each with
10 operations on the hot array per transaction, with a 9÷1, 5÷5, or 1÷9 read-to-write
operation ratio. Each operation takes around 3ms to execute, not counting the overhead
from synchronization, network communication, or serialization overhead. This means
operations are fairly long, which represents the complex computations. The locality of
operations is set to 50% with a history of 5 operations.

The graphs show that all frameworks’ throughput falls as the number of clients, and
therefore contention, increases. The decline is steep until 256 clients, and it levels out
by 1024 clients. All systems significantly outperform the serial execution forced through
GLock. In the 90% read scenario HyFlow2 and Atomic RMI 2 outperform other frame-
works by a significant margin of between 9 and 267% (not counting GLock), with the
exception of R/W C2PL outperforming HyFlow2 at 64 clients. Atomic RMI 2 outper-
forms HyFlow2 initially (by 9–25%), but after 512 clients are introduced, HyFlow2 takes
the lead (by 2–23%), and both frameworks throughputs eventually converge at the 1024
client mark.

In the other two scenarios, all frameworks suffer a decrease in throughput, but
Atomic RMI 2 remains relatively efficient, outperforming all other frameworks, includ-
ing HyFlow2, by 9–359%. The difference stems from the write-oriented optimizations
in Atomic RMI 2 that allow the framework to tighten the executions in the presence

184 8 Implementation and Evaluation

Scenario Clients
64 128 256 512 768 1024

9÷1 ratio 66 74 79 86 84 89
5÷5 ratio 60 70 75 83 87 87
1÷9 ratio 66 74 79 86 84 89

Table 8.1: HyFlow2 abort rates for Fig. 8.7 [%].

of larger contingents of write operations, just as much as is possible in read-dominated
schedules: objects are acquired for writing as late as possible and released prior to com-
mit. Meanwhile other frameworks typically do not optimize write operations to the same
extent. Specifically, HyFlow2 does not release early on writes, and R/W C2PL cannot
perform any optimizations on writes, apart from early release on last write. In addition
a degradation in Atomic RMI 2’s performance is also partly explained by the need to
introduce new threads to handle asynchrony, which can become a bottleneck and offset
the gain from Atomic RMI 2’s optimizations if other threads are also running on the
same node (like client threads here).

Among the remaining frameworks, any C2PL always performs better than the appo-
site CR2PL variant, and R/W performs better than Mutex. Atomic RMI performs on
par with Mutex C2PL and significantly below Atomic RMI 2.

Fig. 8.9 shows a change in throughput with constant contention as new nodes are
introduced. In this scenario, we vary the number of nodes from 4 to 16 with 5 or 10 arrays
of each type hosted on each node (yielding lower and higher contention respectively), and
16 clients running per node. Transactions only perform operations on the hot array. The
remainder of parameters is as above. As more processors are introduced into the system,
the number of transactions running in parallel increases, causing the throughput of all
frameworks to increase as well.

In the 5-array scenarios in Fig. 8.9a–c the comparison shows that Atomic RMI 2
significantly and consistently outperforms Atomic RMI and all remaining frameworks,
with the exception of HyFlow2. Specifically, Atomic RMI 2 achieves at least a 47% better
throughput over Atomic RMI due to the introduced optimizations. The impact of read-
only optimizations is visible in the 90% read scenario, where Atomic RMI 2 achieves up
to a 201% advantage in throughput. Furthermore, the write optimizations give Atomic
RMI 2 a performance boost of up to 167% over Atomic RMI in the 90% write scenario.
In a more balanced scenario optimizations can be applied less often, leading to a slightly
lower performance improvement of up to 72%. Note, that Atomic RMI’s performance does
not change with respect to the differences in workloads among scenarios, since Atomic
RMI is agnostic of operation types. HyFlow2 and Atomic RMI 2 perform similarly in read
dominated and balanced scenarios, with HyFlow2 outperforming Atomic RMI 2 by up
to 10% in a 16-node system, and Atomic RMI 2 outperforming HyFlow2 by as much in a
4 node system. The similarities in performance stem from special handling of read-only
variables in both systems. However, in a write dominated scenario, Atomic RMI 2 has a
77% percent throughput advantage, which we again attribute to extensive write-oriented
optimizations employed in OptSVA-CF.

The 10-array scenarios in Fig. 8.9a–c yield similar results, but here, Atomic RMI 2
manages to consistently outperform HyFlow2, as well as other evaluated frameworks. This
is because transactions have more objects from which to randomly select, so transactions
tend to contain shorter subsequences of operations on the same objects, which allows
Atomic RMI 2 to release more objects earlier.

Fig. 8.8 shows changes in throughput as above, but with longer transactions, that

8.2 Atomic RMI 2 185

Scenario Nodes
4 8 12 16

9÷1 ratio, 5 arrays, hot 73 69 73 74
5÷5 ratio, 5 arrays, hot 81 83 80 82
1÷9 ratio, 5 arrays, hot 77 81 85 81
9÷1 ratio, 10 arrays, hot 65 68 67 63
5÷5 ratio, 10 arrays, hot 78 77 79 77
1÷9 ratio, 10 arrays, hot 75 76 80 79
9÷1 ratio, 10 arrays, hot & mild 66 67 67 66
5÷5 ratio, 10 arrays, hot & mild 78 79 82 81
1÷9 ratio, 10 arrays, hot & mild 74 81 81 81

Table 8.2: HyFlow2 abort rates for Fig. 8.8 and 8.9 [%].

perform mild array accesses in addition to hot array accesses. Hence each transaction
performs 10 operations on the hot array and 10 operations on the mild array, in the same
read-to-write ratios. Since accesses on mild arrays never lead to conflicts, the average
contention is much lower in this scenario than the previous. Because of this, through-
put increases for each framework. Atomic RMI 2 performs similarly to HyFlow2 in the
balanced scenario (up to 2% reduction or 8% improvement), slightly better in the read
dominated (8–19% improvement), and significantly better in the write dominated sce-
nario (64–76%). Both HyFlow2 and Atomic RMI 2 perform significantly better than all
other frameworks, including Atomic RMI. The results are similar to those in the previous
scenario, but show that Atomic RMI 2’s advantage decreases in lower contention, which
we attribute to the overhead introduced by the instrumentation and asynchronous execu-
tions. Instrumentation requires that new objects are created on-the-fly, which takes time
and uses processing power. Asynchronous execution requires that new threads are created
and maintained by each JVM to handle various computations imposed by OptSVA-CF+R
(usually buffering) which puts strain on the processor, especially since these threads com-
pete with client threads and server threads running on the same JVM.

The abort rates of Atomic RMI 2 and Atomic RMI remain at 0% throughout the
evaluation (despite none of the transactions being reluctant), while 60–89% of HyFlow2
transactions abort and retry at least once due to conflicts, depending on the scenario
(see Tables 8.1 and 8.2). This means, that irrevocable operations are likely to be aborted
and re-executed. On the other hand, Atomic RMI 2 manages to rival the efficiency of an
optimistic TM system while bypassing problems with irrevocable operations completely.

8.2.3 Discussion
Throughout we see that Atomic RMI 2 significantly outperforms Atomic RMI and other
lock-based distributed concurrency control mechanisms, and performs similarly to or bet-
ter than a state-of-the-art optimistic distributed TM, all without the need to use aborts
and, thus, without complicating irrevocable operation executions, and while employing
the reflection-based mechanisms that allow to use CF model. We also see that Atomic
RMI 2 performs best in read-dominated scenarios, but becomes really competitive in
write-dominated scenarios, where the buffering- and asynchrony-related write-oriented
optimizations make a real difference to throughput. Given this, we successfully demon-
strate that a pessimistic system can be as well-performing as an optimistic one.

9
Precompiler

In this chapter we present a precompiler for Atomic RMI which can be used to statically
derive the a priori information required by Atomic RMI’s underlying concurrency con-
trol algorithm: the access set of each transaction, and suprema—upper bounds on the
number of times each transaction will access each object in its access set throughout the
transaction’s execution. This extends our research in [72, 73].

First, we describe the static analysis algorithm used by the precompiler. The precom-
piler uses a static analysis algorithm based on data flow analysis to establish information
about values and paths and region analysis to tally method calls. We expand regions
with additional properties so that the final, vital part of the analysis becomes straight-
forward. We also describe a use of a natural positive set extended by an absorbing value to
count uncertain executions. In effect, we infer upper bounds (either concrete or infinite)
conservatively but safely.

In the following sections we discuss the implementation of the precompiler itself, and
discuss the effectiveness as well as other applications of the static analysis. In the final
section we briefly survey related work.

9.1 Static Analysis

To derive the suprema the algorithm performs multiple passes over the input code in
the form of an intermediate language. Three passes correspond to the three phases that
form our algorithm: value analysis, region analysis, and call count analysis. In addition,
another pass is performed before value analysis to identify loops. Value analysis predicts
possible values of variables in the code. It also identifies unfeasible or dead code, and
unfolds loops. Region analysis uses the results of value analysis to convert the input code
into regions. Finally, call count analysis examines these regions to produce the upper
bounds on method call counts. We describe our use of Jimple and each of the phases of
the algorithm in detail below.

9.1.1 Translation to Jimple
In order to analyze a program in Java we first translate it into an intermediate represen-
tation called Jimple [88] using the Soot framework [87]. We use Jimple as an intermediate

188 9 Precompiler

Identifiers j ∈ Ident
Constants c ∈ Const
Labels l ∈ Lab
Types t ∈ Type
Fields f ∈ Field ::= j : t
Immediates i ∈ Imed ::= j

∣∣ c
Right-hand values r ∈ Rval ::= i

∣∣ i[i] ∣∣ i.[f]
∣∣ [f]

Methods m ∈ Meth ::= invoke i.[j(j1, ..., jn)](i1, ..., in){b1, ..., bn, }
Conditions p ∈ Cond ::= i == i

∣∣ i i ∣∣ i > i
∣∣ i ¬ i ∣∣ i < i

∣∣ i 6= i

Expressions e ∈ Expr ::= i+ i
∣∣ i / i ∣∣ i ∗ i ∣∣ i%i ∣∣ − i ∣∣ i− i ∣∣ i | i ∣∣ i & i∣∣ i xor i

∣∣ i� i
∣∣ i� i

∣∣ (t)i
∣∣ i instanceof t∣∣ new t

∣∣ new t[i1]...[in]
∣∣ length i

∣∣ p
Statements s ∈ Stmt ::= switch(i){case c1 : l1; ...; case cn : ln; default : l0}∣∣ if p goto l1 else l2

∣∣ l ∣∣ j = m
∣∣ j = r

∣∣ m∣∣ goto l
∣∣ return i

Blocks b ∈ Bloc ::= l : b1; ...; bn;
∣∣ b1; ...; bn;

∣∣ s
Figure 9.1: Jimple syntax (altered from [88]).

language because it is much better suited for analysis than either Java source code or
bytecode. The reason for this is that Jimple is a 3-address code representation with a very
limited instruction set consisting of 17 statements. In our earlier attempts to perform
similar analyses using Java source code [72] we learned that such analyses become con-
voluted and the implementation costly in effort due to the number of constructs needing
handling and the complexity of their semantics.

The part of Jimple syntax that is pertinent to our further discussion is presented in
Fig. 9.1. The semantics are mostly straightforward, the reader is referred to [88] for details
and the complete language. The constructs most important to us are the conditional
statements, switch statements, method invocations, assignments, and labeled blocks. We
introduce superficial alterations to the syntax to suit further description of the algorithm.
We treat labels as statements and place them at the beginning of labeled blocks. We
modify the conditional statement to define target labels for both outcomes instead of
having a succeeding block of code called if the condition is false. We do not distinguish
among different sorts of method invocations—interface, special, virtual, and static—and
we remove type information from invocations while adding a direct definition of the
methods’ arguments and a set of possible bodies. We also fix method invocations nested
in other statements by defining a separate assignment statement instead where the results
of the invocation are assigned to an identifier. We show an example Java program using
Atomic RMI distributed transactions in Fig. 9.2a translated to the altered form of Jimple
in Fig. 9.2b (lines 2, 3 are omitted because they are generated from Jimple later—see
Section 9.2.2 for details).

For the purposes of analysis the input program is represented as Control Flow Graphs
(CFGs) and each method’s body is a separate graph. Most statements in Jimple will have
one incoming and outgoing edge. The conditional statement will have 2 outgoing edges,
and the switch statement will have one more outgoing edge than it has conditions. Loop
headers and labeled blocks will have more incoming edges. Invoke statements point to
CFGs of other method bodies.

9.1.2 Value Analysis
As a preliminary to the value analysis we find loops in code. A loop consists of a head and
a body. A loop head is a statement s that dominates any other statement s′ (all paths

9.1 Static Analysis 189

1 Transaction t = new Transaction();
2 a = t.accesses(a, 2); // generated, upper bound: 2
3 b = t.accesses(b, 1); // generated, upper bound: 1
4 t.start();
5 int balance = a.balance();
6 if (balance >= sum) {
7 a.withdraw(sum);
8 b.deposit(sum);
9 k.commit();

10 } else
11 k.abort();

1 k = new soa.atomicrmi.Transaction;
2 invoke k.[<init>()](){$b0};
3 invoke k.[start()](){$b1};
4 balance = invoke a.[balance()](){$b4};
5 if balance < sum goto label1 else label0;
6 label0:
7 invoke a.[withdraw(@parameter0)](sum){$b5};
8 invoke b.[deposit(@parameter0)](sum){$b6};
9 invoke k.[commit()](){$b2}; return null;

10 label1:
11 invoke k.[abort()](){$b3};

(a) Java. (b) (Altered) Jimple.

Figure 9.2: Example Atomic RMI code.

G(s) , S , (SV , SP , SD, SI)
G(s) = eval(join({G(p) | s succ p}), s)
eval(S, j = r) , (SV [j 7→ {val(r, SV)}], SP , SD, SI)
eval(S, j = m) , S′ = eval(S,m), (SV ⊕ S′V [j 7→ {val(m, SV)}], SP , SD, SI)
eval(S, invoke i.[j(j1, ..., jn)](i1, ..., in){b1, ..., bm}) ,

case depth(i.j)→ SV [k 7→ ωk ∈ defs(b1) ∪ ... ∪ defs(bm)], SP , SD, SI)
otherwise→ S′ = (SV [j1 7→ val(i1, SV), ..., jn 7→ val(in, SV)], SP , SD, SI),

join(eval(S′, b1), ..., eval(S′, bm))
eval(S, l) , (SV ⊕ SP (l), SP , SD, SI)
eval(S, s : return i) , (SV , SP , SD ∪ {(s, s′) | s pdom s′, s′ ∈ Stmts)}, SI)
eval(S, s : if p goto l1 else l2) ,

case pred(p, S) = true→ (SV , SP

[
l1 7→ SP [p 7→ true]

]
, SD ∪ {(s, l2)}, SI)

case pred(p, S) = false→ (SV , SP

[
l2 7→ SP [p 7→ false]

]
, SD ∪ {(s, l1)}, SI)

case pred(p, S) = ω → (SV , SP

[
l1 7→ SP [p 7→ true], l2 7→ SP [p 7→ false]

]
, SD, SI)

eval(S, s : switch(i){case c1 : l1; ...; case cn : ln; default : l0}) , (SV ,
SP

[
l1 7→ SP (l1)[j = val(c1)], ..., ln 7→ SP (ln)[j = val(cn)]

]
, SD

∪{(s, lk) | pred(ck = j, S) = false ∨ pred(cr = j, S) = true, k = 1, ..., n, r = 1, ..., k}
∪{l0 | pred(∃k, ck = j, S) = true, k = 1, ..., n}, SI)

eval(S, s ∈ H) , evalloop(s,G,L(id(s)), 1, L)
eval(S, s ∈ B ∧ s 6∈ H) , S
join(S1, ..., Sn) ,

(
{k 7→ S1

V (k) ∪ ... ∪ Sn
V (k) | k ∈ (dom S1

V ∪ dom Sn
V)}, {l 7→

{k 7→ S1
P (l)(k) ∪ ... ∪ Sn

P (l)(k)} | l ∈ dom S1
P ∪ ... ∪ Sn

P , k ∈ dom S1
P (l) ∪ ... ∪ Sn

P (l)},
S1

D ∪ ... ∪ Sn
D, {k 7→ max

i=1,...,n
(Si

I(k)) | k ∈ (dom S1
I ∪ dom Sn

I)}
)

S′V ⊕ S′′V , {k 7→ S′V (k) ∪ S′′V (k) | k ∈ (dom S′V (k) ∪ dom S′′V (k))}

Figure 9.3: Value analysis.

from the start to s′ lead through s [2], denoted s dom s′) while simultaneously being
the successor of s′ (there is a path from s′ to s). A loop body is a sequence of statements
all of which are dominated by a loop head and have that loop head as their successor.
We gather the heads in set H and create map L which contains a unique identifier of
each statement h from H as a key mapped to a set of statements whose elements are all
dominated by h.

The first phase of the analysis is a forward data flow analysis performed on the CFG.
Its main purpose is threefold: to establish the possible values of variables at each node
of the CFG representing the program, to count the maximum number of loop iterations
through loop unfolding, and to establish which nodes of the CFG are dead or unfeasible
(will not be executed). There are two principal functions in value analysis, eval and join.
These functions are used to compute members of global state G, a data structure that
results from the analysis. We present all of those elements in Fig. 9.3 and describe them
below.

190 9 Precompiler

Global state G maps Jimple statements to states which apply to them. Global state
is constructed during value analysis by constructing a state for each statement using a
transfer function eval and an aggregation of states for the predecessors of a given state-
ment using join. We designate individual states S, such that S is a quadruple consisting of
a value map SV , an inferred value map SP , a dead edge set SD, and a loop iteration map
SI . SV is a map of locals (identifiers and constants) to sets of values—it indicates what
values a given variable or constant may take at this point in the program. SP maps labels
(names of blocks) to value maps and indicates assumptions about values of variables and
constants inferred from conditions that will apply at a particular succeeding statement.
SD contains pairs of statements indicating edges that will definitely not be used in the
execution of the program. SI is a map of loop heads to numbers indicating the maximum
estimated iteration count of the loop, or an unknown value. All components of the state
are initially empty.

Transfer function eval is the key function of the analysis. It analyzes each Jimple
statement and establishes the state of the program that holds after the statement is
evaluated. The resulting state depends on the type of statement and the state before
that statement.

When encountering an assignment of a right-hand side expression r to an identifier j,
a new mapping is added to SV that maps j to the set of possible values of expression r.
When eval encounters an assignment of the results of method invocationm to identifier j,
firstm is evaluated separately and state after its evaluation S′ is extended by the mapping
of j to the result of m. A method invocation itself is analyzed by first extending the value
map by parameter identifiers mapped to the values of arguments. Then all possible bodies
are evaluated and the results are joined (the particular bodies are identified from the type
hierarchy and arguments but we leave the details to Soot). But if recursion exceeds a
depth L all the values defined within possible method bodies are set to unknown (this
degrades precision but maintains safety). L must be tuned to a given application. A label
l extends the value map with predictions from the inferred map. A return statement
adds all other statements it dominates to SD.

When analyzing an if statement the expression that is the condition is checked. If
the condition yields true then the edge in the CFG from the current statement to label l2
is added to dead edges, and predictions about variables are made under the assumption
that the condition will be true at label l1. Conversely, if the condition yields false the
edge from the statement to l1 will be dead and predictions will be made for l2 under the
assumption that the condition is false. If the condition yields an unknown, no edges will
be added to the dead edge set, but predictions for both l1 and l2 will be made. A switch
statement is analyzed by creating a prediction for each constant c1, ..., cn that the local
i is equal to it at an appropriate label l1, ..., ln. Furthermore, if any of the constants ck
is definitely equal to i, edges from this statement to labels subsequent to that constant
lk+1, ..., ln and the default label l0 are added to the dead edge set SD.

Function join (Fig. 9.3) is responsible for joining states and is used when a statement
has two or more incoming edges. Each component of the state is joined with its counter-
part in the second state. Sets SD are added together. The keys and values are copied to
a new map, and if a key is present in both maps, the values are added (SV , SP) or the
higher one is selected (SI).

We use the following helper functions within eval. Function val substitutes values
from a value map for identifiers and constants (where possible) in a given expression and
evaluates it to establish a set of values that the expression may yield. The returned set
may consist of a single value, any number of elements or contain the unknown value ω.
We use the function pred in a similar manner, except that only conditional expressions
are evaluated and a single ternary value is returned—true, false, or ω. We use depth

9.1 Static Analysis 191

evalloop(s,G′,U, i, L) ,
G′′ = G′, G′′(u) = eval(join({G′′(u) | u succ p ∧ u ∈ U})),
E = {e | s succ e ∧ s 6∈ U ∧ e ∈ U},
E′ = E \ {d | G′′(d) = S′, unpredecessed(S′D, d) ∧ d ∈ E},
Se = join({G′′(e) | e ∈ E′}),
Z = {(b, h) | h dom b ∧ h succ b ∧ @s ∈ U, h succ s succ b}
Sz = join({G′′(b) | (b, h) ∈ Z}),
case Z ⊆ Sz

D ∨ (∀(b, h) ∈ Z, unpredecessed(Sz
D, b))→ (Se

V , Se
P , Se

D, Se
I [h 7→ i])

case i > L→ (Se
V [k 7→ ω, k ∈ defs(U)], Se

P , Se
D, Se

I [h 7→ ω])
case i ¬ L→ evalloop(h,G′′,U, i+ 1, L)

unpredecessed(SD, s) , ∀s succ p, (p, s) ∈ SD ∨ unpredecessed(p)
defs(U) ,

{
j | s ∈ {j = m, j = r} ∧ s ∈ U

}
Figure 9.4: Loop unfolding.

Unit regions U ∈ Units ::= unit
Statement regions S ∈ Statements ::= statement s
Invocation regions I ∈ Invocations ::= invoke j, R1, ..., Rm, s
Block regions B ∈ Blocks ::= block [R1, ..., Rn]
Condition regions C ∈ Conditions ::= condition p,R1, R2
Loop regions L ∈ Loops ::= loop h,R
Regions R ∈ Regions ::= U

∣∣ S ∣∣ I ∣∣ B ∣∣ C ∣∣ L
Figure 9.5: Region-based intermediate representation.

to find out the depth of a method’s recursion. Function id produces a unique identifier
of a statement. Operators succ, dom and pdom denote the succession, domination and
post-domination relation of two statements in the CFG.

When encountering a statement that was identified as a head of a loop, function
evalloop is used where the statements that form the body of the loop are taken from L
and evaluated. During evaluation a collection of states G′ is created and used to find
those exit statements E′ and back edges Z that may be executed during this iteration. If
no back edge could be used during this iteration we know the loop exits, so we aggregate
the states after all exit statements and finish evaluating the loop. It can also be deduced
at this point that the loop will be executed at most as many times as we performed
iterations. Otherwise, if we have not reached an arbitrary limit of iterations we conduct
another iteration using evalloop. If the limit was reached we do not proceed but assume
that this loop will continue indefinitely and set all the values that are defined within its
body to unknown ω. Upon evaluation exit statements from the loop body are derived
from the dead edge set of the resulting state. If there is only one exit from the loop
then the loop exits in the current iteration and both the state of the variables and the
number of iterations are added to S. Otherwise another iteration is required and the
evaluation is repeated. In order to manage infinite loops or those where the conditions
of exiting are uncertain, an iteration limit L is given which, when reached, will cause
the evaluation to cease and set all effects of the loop to unknown value ω. Setting values
to ω preserves safety. We use two additional helper functions within evalloop. We define
predicate unpredecessed which checks whether a statement’s predecessors are all dead
or the edge from them to it are unused. We also define function defs which returns the
names of variables defined in a given statement.

9.1.3 Regions
The second phase of our analysis is concerned with preparing the input structure required
by the third phase which is conducted using region-like structures. Thus we introduce a
function to convert the CFG into a region graph. Regions [2, 51] are areas of code with

192 9 Precompiler

D , {s | S = G(s), unpredecessed(SD, s)}
block(H, [s1, ..., sn]) , block [Ri | 1 < i < n,Ri = regf(H, si) ∧ (i = 1 ∨ ¬si ∈ Ri−1)]
regf(H, l : b1; ...; bn;) , block(H, [l, b1, ..., bn])
regf(H, b1; ...; bn;) , block(H, [b1, ..., bn])
regf(H, s ∈ H) , loop s, block(H \ {s}, [s′|s′ ∈ L(s)])
regf(H, s ∈

⋃
∀h∈H

L(h) ∨ s ∈ D) , unit

regf(H, s : if p goto l1 else l2) ,
case @e ∈ Stmt, e pdom s→

condition p, block(H, [s′ | l1 dom s′]), block(H, [s′ | l2 dom s′])
case ∃e ∈ Stmt, @e′ ∈ Stmt, e pdom s ∧ e′ pdom s ∧ e psdom e′ →

condition p, block(H, [s′ | l1 dom s′ ∧ e pdom s′]),
block(H, [s′ | l2 dom s′ ∧ e pdom s′])

regf(H, s : switch(i){case c1 : l1; ...; case cn : ln; default : l0}) ,
case @e ∈ Stmt, e pdom s→

condition (i = c1), block(H, [s′ | l1 dom s′]),
(
, ...,(

condition (i = cn), block(H, [s′ | ln dom s′]), block(H, [s′ | l0 dom s′])
))

case ∃e ∈ Stmt, @e′ ∈ Stmt, e pdom s ∧ e′ pdom s ∧ e psdom e′ →
condition (i = c1), block(H, [s′ | l1 dom s′ ∧ e pdom s′]),

(
, ...,(

condition (i = cn), block(H, [s′ | ln dom s′ ∧ e pdom s′]),
block(H, [s′ | l0 dom s′ ∧ e pdom s′])

))
regf(H, s : invoke i.[j(j1, ..., jn) : t](i1, ..., in){b1, ..., bm}) ,

invoke i, regf(H, b1), ..., regf(H, bm), s
regf(H, s) , statement s

Figure 9.6: Region-finding analysis.

a single entry point, like code blocks. We extend each region with information about its
rôle in the code. We distinguish unit regions, statement regions, invocation regions, block
regions, condition regions, and loop regions. We show their definitions in Fig. 9.5.

Regions are converted from Jimple CFG by the analysis defined in Fig. 9.6. The
analysis is performed on the root of the CFG using regf. The function then handles each
node of the CFG by recursion and returns a tree of regions. It uses the loop header set H
and a map of loop headers to their bodies L from the previous analysis, and a set of dead
statements D whose all incoming edges or predecessors are dead (according to SD). For
convenience, we also define function block which creates a block region from a sequence
of statements by applying regf to each of them in succession and aggregating them into
a single region.

9.1.4 Call Count Analysis
Call count analysis is performed on the region tree in order to establish the number of
times each object’s methods are called. It is depicted in Fig. 9.7. The analysis begins with
the application of function ccount at the root of the region tree and proceeds depth-first
through the subregions. In general, method calls on objects in the tree’s leafs are counted
and the counts are aggregated upwards, either by adding the call counts (with addjoin) in
cases of sequences or by taking the highest count (using maxjoin) in cases of alternative
program paths.

Function ccount takes three arguments—the global state G, the maximum number
of executions of the parent region n, and the region of appropriate type. The function
returns a map of object identifiers to the number of times that particular object’s method
were called. Thus, when the function comes across statement or unit regions it returns
empty sets. When it reaches an invoke region it notes the object owning the method
and creates a mapping of that object to the number of times the parent region is to be

9.2 Implementation 193

ccount(G, n, unit) , ∅
ccount(G, n, statement s) , ∅
ccount(G, n, invoke j, R1, ..., Rm, s) , S = G(s),

addjoin({SV (j) 7→ n},maxjoin(ccount(G, n,R1), ..., ccount(G, n,Rm)))
ccount(G, n, block [R1, ..., Rn]) , maxjoin(ccount(SV , n,R1), ..., ccount(G, n,Rn))
ccount(G, n, condition p,R1, R2, s) , S = G(s),

case pred(p, S) = true→ ccount(G, n,R1)
case pred(p, S) = false→ ccount(G, n,R2)
case pred(p, S) = ω → maxjoin(ccount(G, n,R1), ccount(G, n,R2))

ccount(G, n, loop h,R) , S = G(h), ccount(G, n ∗ SI(h), R)
maxjoin(M1, ...,Mn) , {k 7→ max(M1(k), ...,Mn(k)) | k ∈ dom M1 ∪ ... ∪ dom Mn}
addjoin(M1, ...,Mn) , {k 7→ M1(k) + ...+Mn(k) | k ∈ dom M1 ∪ ... ∪ dom Mn}
ω + c = ω, ω ∗ c = ω, max(ω, c) = ω

Figure 9.7: Call count analysis.

executed; this mapping is then aggregated using function addjoin to the results of the
evaluation of the joined bodies of the invoked method using ccount. If a block region
is encountered its subregions are evaluated first and the results of these evaluations are
aggregated using addjoin. When ccount encounters a conditional region the condition is
checked and one of the subregions is evaluated, if the condition is true or false or both
conditions are evaluated and their results are aggregated using maxjoin if the condition
is unknown. Finally, with loop regions the subregion that is the loop’s body is processed
using ccount, but the number of executions of the parent region is multiplied by the
number of loop iterations (obtained from SI).

Function maxjoin is used for joining the results of evaluations of two or more subregions
where it is unknown which ones will execute. It takes n maps of some keys to numerical
values as arguments and returns a similar map. Out of all values that share a key across
the maps the maximum one is inserted into the resulting map. Function addjoin is used
for aggregating the results of evaluations of a sequence of subregions that will execute
one after another. It takes n maps of some keys to numerical values as arguments and
returns a similar map. All values that share a key across the maps will be added together
and the sum will be inserted into the resulting map under that key.

Functions at this stage of the analysis may need numerical values to be added or
multiplied with the unknown value ω. If this happens, we treat it as an absorbing element,
and the result of such an operation is always unknown. In a similar vein, the maximum
of any set of numbers including ω is also unknown.

9.2 Implementation

We implemented our precompiler as a tool for Atomic RMI using the Soot framework.
The precompiler implementation consists of three elements: Jimple creation, upper bound
analysis, and code generation (as shown in Fig. 9.8). The Jimple creator converts Java
source code into the Jimple intermediate language—this is provided by Soot. The upper
bound analysis deduces the information about remote object calls within Jimple. It is
divided into four analyses, each responsible for one pass over the code. The code generator
instruments the input source code with instructions based on the information obtained
by the analysis. The two components are described in more detail below.

194 9 Precompiler

Upper-bound analysis

Java
bytecode Jimple creation

Jimple Jimple Jimple

TF

transactions

VA
values values

values

RF

regions

OCA

suprema

Code generationJava
source code

Java
source code

Figure 9.8: Components and information flow in the precompiler.

9.2.1 Upper Bound Analysis
The upper bound analysis consists of value analysis (VA), region finding (RF), trans-
action finding (TF), and object call analysis (OCA). These are forward flow analyses
implemented in Soot. Each of them makes one pass over the input code in the form of a
CFG from a particular starting point (the main method, for instance). The implementa-
tion of each analysis defines a transfer function applied to each node of the CFG, a join
operator for joining result sets, and initial result sets (see Fig. 9.3, Fig. 9.6, and Fig. 9.7).

Value analysis is the most complex of the analyses. It is the implementation of the
algorithm in Section 9.1.2 such that the transfer function and join implement eval and
join. The transfer function performs whatever action is needed for a given statement
type (these are recognized via the type system). The result sets represent SV and SP , SI ,
and SD are passed via separate fields (for convenience). The implementation finds loops
headers and bodies using Soot’s built-in loop finder. Loops are processed by running
the analysis repeatedly on a pruned copy of the CFG that contains only the statements
from the loop and integrating the results into the original analysis. Recurrent calls are
handled by finding all applicable method bodies, starting an analysis on each, and joining
the results. A stack of calls keeps track of the depth of recursion and when to bound it.

The implementation of value analysis needs to take care of additional significant mech-
anisms that are obvious in the formalization and therefore glossed over. These include
mechanisms for evaluating expressions. Expressions’ arguments’ types are recognized and
the semantics appropriate to them is applied (i.e. a + b is addition if a and b are integers
or concatenation if they are strings). All combinations of basic types (at least primitives
and Object) and operators need to be implemented. We take the approach that operators
are defined by classes and perform argument-dependent operations.

Region finder converts the CFG into a region graph in accordance with the algorithm
in Section 9.1.3. The algorithm performs numerous graph searches like finding domina-
tion and post-domination relations within the graph (provided by Soot) and finding if
particular paths exist within the CFG (e.g. whether all paths from a conditional expres-
sion leads to the end of the body or to a common post-dominator). RF creates a region
hierarchy, were each region is characterized by its type and type-specific fields.

Transaction finder is a component that tracks Atomic RMI transactions and their
components: it identifies the start and possible ends of transactions, remote objects used
within, and transactions’ preambles. These information are collected for use by OCA and
marked in Jimple using the Soot tag system.

OCA is responsible for tallying remote objects calls as in Section 9.1.4. The implemen-
tation is straightforward: it accepts the data from the preceding analyses and uses them

9.3 Discussion 195

to traverse regions and identify those that make calls to remote objects. The number of
executions of these regions is predicted and the counts are summed up with reference to
particular remote objects.

The implementation must take into account the unknown values that may appear
in the course of this analysis. These are implemented as a new type that allows any
positive natural number or a value representing ω. The type also defines the maximum
function and arithmetical operations using the unknown value (specifically addition and
multiplication from Fig. 9.7).

9.2.2 Code Generation
The code generator for Atomic RMI modifies code on the lexical level using the suprema
obtained from the execution of the upper bound analysis. Necessarily, in order for the
code generator to modify the existing source code that source code must be available for
analysis. The source is converted into tokens by the SableCC lexer [31] and then divided
into lines.

The generator performs three passes over the collection of lines of tokens. In the first
pass the generator locates transactions in the source code using the information provided
by the transaction finding (TF) phase of code analysis. When found, all definitions in
a transaction’s preamble are marked for removal, with the exception of those which are
followed by a comment string specifying them as manual overrides. The second pass
inserts a line of code into each transaction’s preamble for each identified remote object
pertaining to that transaction (lines 2, 3 in Fig. 9.2a). The insert contains a variable
representing the remote object and a supremum on the number of method calls to that
object, and it is built using on a simple template. All the inserts are marked for prepending
to the beginning of the transaction. The final pass applies all the changes marked by the
previous two passes to the tokens and they can then be written to the output stream.

9.3 Discussion

Our work illustrates a static analysis for extracting the maximum number of times objects
will be called in a fragment of code. Such information has a number of applications, but
we concentrate on using the upper bounds as input data for Atomic RMI. We have so
far found that the analysis we implemented solves this problem satisfactorily for our
purposes. The tree-like region-based intermediate representation allows to find all of the
method calls within the code and the use of the absorbing unknown value produces
conservative results when uncertain values are involved. Both of these guarantee that
the statically derived upper bounds are correct, i.e. not lower than any actual number
of method calls on a particular object. Apart from being conservative, the estimated
upper bounds should also be as accurate as possible—as close to the actual number of
executions as possible. For typical Atomic RMI transaction code, the analysis is able to
handle most scenarios adequately.

The formalization of our algorithm and adherence to it simplified the implementation
of the tool. The formalization was a blueprint for the join operators and transfer function
of the individual data flow analyses which it defined theirmodi operandi and allowed us to
concentrate on the details of the interfaces, data structures, etc. during implementation.
Another advantage is that the correctness of the created tool is verifiable, extensible,
and amendable by inspection and modification of the underlying algorithm, without an
initial need to delve into the actual source code.

196 9 Precompiler

Apart from our application of the algorithm, there are other possible applications for
it. The analysis can be used to find relationships between concurrent threads: a thread
accessing a shared object once, several times, or not at all may impact safety guarantees
like isolation or performance in different ways. With this information prior to execution
it can be treated differently, i.e., applied proper synchronization, delayed, or executed
as-is without breaking guarantees. Upper bounds can also be applied in compile-time
resource optimization. For instance, the amount of memory used by a given program or
its influence on network traffic may be estimated from calls to particular objects if the
interface is known and used to configure the environment appropriately or to optimize
the analyzed program. Other uses may be found in code rewriting, automatic refactoring,
etc. Apart from the work of [59] these applications seem largely unexplored.

9.4 Related Work

There is a large body of research related to analysis of programs that aims at deriving
information about execution patterns statically (we sketch out some of these below).
However, we do not know examples of using this information for optimizing the execution
of distributed transactions in the way we do. The largest body of work to which our static
analysis bears resemblance has been done with regard to the Worst Case Execution
Time (WCET) problem [93]—establishing upper bounds on the time code takes to run.
However, most of this work is aimed at real-time systems, not transactional concurrency
control which is the main concern of our work. A number of frameworks are available
for WCET analysis, like aiT [29], Bound-T [46], SWEET [35], and SymTA/P [84]. A
comprehensive survey of these tools and methods was done in [94]. Whereas our approach
is based on region analysis, some work in WCET use symbolic analysis [54], path analysis
[37], and abstract interpretation [46, 30]. We also use the latter type of analysis for our
value analysis algorithm. In WCET emphasis is placed on the problem of evaluating loops
in general and bounding loop iterations in particular. This is done, among others, by the
use of Presburger arithmetic [64], path analysis (using integer linear programming) [85],
or a combination of methods involving abstract interpretation [27]. Our work touches
on those concerns: we use loop unfolding to establish their bounds roughly similar to
that of SWEET [35] but simpler. WCET tools additionally often use the Implicit Path
Enumeration technique [53] or single feasible paths [103] to establish worst-case paths
and perform final timing analyses. While our application presents no need for the latter,
we use region-based analysis to conservatively deduce worst-case paths. WCET tools also
allow for manual declaration or correction of difficult-to-deduce information (e.g., loop
bounds).

Our work has significant similarities to work on lock inference. Lock inference aims
to determine which memory locations or shared objects in a program must be protected
by locks and where these locks should be located. Thus, our work and lock inference
share the same ultimate goal of providing concurrency control via static analysis albeit
by different mechanisms. The authors of [19] employ backward data flow analysis to
transform a program’s control flow graph into a path graph which is then used to derive
locks. In [45] the authors present a method for identifying shared memory locations using
type-based analysis, points-to analysis, and label flow analysis [63]. In Autolocker [57]
pessimistic atomic sections are converted into lock-guarded critical sections by analyzing
dependencies among annotated locks based on a computation history derived from a
transformation of the code using a type system.

In [59] the authors propose a tool for the automatic inference of upper bounds on the

9.4 Related Work 197

usage of user-specified resources. Rather than memory or execution time, these may be
the number of open files, accesses to database, sent text messages, etc. This work and
ours share the set of tools they use (Soot and Jimple [87]) and they both try to solve
a similar problem. The tool presented by the authors performs a data flow analysis to
derive data dependencies, then creates a set of equations from input-output parameter
size relationships. Finally the equations are solved using a recurrence solver. Our approach
differs most in that we perform region analysis to determine maximum paths and resource
use where they construct and solve equations.

10
Conclusions

In order to prove the main thesis of the dissertation we surveyed the existing TM safety
properties, and examined their applicability to TM with early release in Chapter 3. We
then developed safety properties suitable for such TM: last-use opacity and strong last-
use opacity in Chapter 5.

Then, we examined the existing pessimistic TM concurrency control algorithms, both
distributed and non-distributed ones, as well as optimistic DTM and optimistic TM with
early release (Chapter 4). On the basis of our analysis we selected the family of versioning
algorithms as a promising basis for further research. We then extended BVA and SVA to
eliminate their single point of failure by removing the dependence on a global lock, and
lifted them from the commit-only model to the more general arbitrary abort model in
Chapter 6 (Sections 6.1 and 6.2, respectively).

Next, we introduced OptSVA+R and OptSVA-CF+R and their variants in Chapter 6
(Sections 6.3–6.4). These are novel pessimistic TM concurrency control algorithms based
on the extended versioning algorithms, but employing a number of optimizations that
allow them to execute conflicting transactions with a high degree of parallelism. We then
implemented these algorithms as a DTM system and showed in Chapter 8 that such
DTM systems manage to outperform a state-of-the-art optimistic DTM system while
maintaining a zero percent abort rate. We also showed in Chapter 7 that despite their
improved generality and efficiency, the new algorithms retain strong safety guarantees.
We showed this by conducting formal opacity and last-use opacity proofs which required
us to introduce new proof techniques.

Finally, in Chapter 9 we introduced a precompiler to gather a priori knowledge about
transaction executions which improves the ease with which our implementations can be
used in practice.

Proof for Thesis
Below we conclude by providing a demonstration that the results presented in the dis-
sertation bear out the thesis introduced in Chapter 1.

We introduce Atomic RMI 2, a CF DTM system implementing pessimistic DTM algo-
rithms: OptSVA-CF+R and ROptSVA-CF+R.

a) In Section 8.2.2 we show that Atomic RMI 2 outperforms a state-of-the-art opti-
mistic DTM system, so Atomic RMI 2 is capable of high performance.

200 10 Conclusions

b) We show in Theorem 10 that OptSVA-CF+R is last-use opaque, in Theorem 4 we
show it is strongly progressive, and in Theorem 3 we show it is deadlock-free. Hence
OptSVA-CF+R satisfies strong safety, progress, and liveness guarantees.

c) In Section 8.2.2 we show that OptSVA-CF+R does not abort in practice, so ir-
revocable operations execute correctly in practice. In addition, ROptSVA-CF+R
completely removes the possibility of aborting from the class of reluctant transac-
tions, so irrevocable operations always execute correctly in general, assuming all
irrevocable transactions are reluctant.

d) OptSVA-CF+R supports arbitrary aborts and operates within the heterogeneous
object model. In addition, it has no single point of failure to detract from scalability.
Finally, the information required a priori can be derived via precompilation. Thus,
we consider OptSVA-CF+R to apply practically.

Thus, our thesis is satisfied. �

Future Work
Even though the research presented in this dissertation achieves its aims, we see avenues
for improvement that can be undertaken in future research.

Eventual Consistency
Given the limitations imposed on distributed systems that are necessary to maintain
strong consistency guarantees there is a growing interest in relaxed consistency models.
Such models are often sufficient for particular applications, but allow more freedom to
improve scalability and availability. Eventual consistency [89] is a particularly useful ap-
proach, where the correct state spreads throughout the system over time, so that at any
point any element of the system may be inconsistent, but all elements will eventually
converge upon a consistent state. On the other hand relaxing properties may be unac-
ceptable in the general case: a slightly stale shopping cart is one thing, but inconsistent
bank transfer processing is quite another.

We see a promising future research direction in attempting to balance strong and
eventual consistency by proposing a general-purpose transactional memory (based on
the solutions presented in this dissertation) that allows eventually consistent transac-
tions to run alongside consistent ones. Specifically, we propose to extend the versioning
algorithms with a mechanism that allows certain eventually consistent transactions to ex-
ecute quickly, without waiting for currently running transactions. When they commence,
such transactions would grab the most recent consistent snapshot of all the variables
they need of those snapshots that can be obtained without waiting. Once the snapshot
is buffered, these transactions operate only on the buffers, to avoid waiting during reads
and invalidating the global state on writes. Thus, this mode relaxes safety—the client
may initially see an inconsistent view (although one generated using read-consistent data)
and, since his updates are not propagated, has a different impression of the global state.
Thus, the state must eventually be converged, and so, the transaction is concurrently re-
executed in consistent mode to fix the client’s view and apply modifications. Note that
other clients only see the execution of the consistent transaction. We presented some
preliminary ideas with respect to eventually consistent versioning algorithms in [101].

Benchmarks
Initially, TMs were evaluated using microbenchmarks, but these test specific features in
isolation and use data structures that are too trivial to draw general conclusions about a

10 Conclusions 201

TM. Alternatively, there are HPC benchmark suites, but these are difficult to translate
meaningfully into the transactional idiom. That is, benchmarks from SPEComp [4] or
SPLASH-2 [104] are already expertly optimized to minimize synchronization, so any
incorporated transactions are used rarely and have little effect on overall performance.
Hence, a set of TM-specific benchmarks was needed, whose transactional characteristics
and contention for shared resources were both varied and controllable. Thus, benchmarks
and benchmark suites like STMBench7 [34], LeeTM [3], and STAMP [58] were developed.

As with non-distributed TMs, the variety of differently-featured distributed TMs re-
quire empirical evaluation to find how their features, the workloads, and the configuration
of distributed systems influences their performance. Therefore, as with non-distributed
TMs, they must be evaluated empirically. However, the existing TM benchmarks are not
appropriate for distributed TMs. This is primarily the case since the structures they use
are not easy to distribute. Distributing non-distributed TM benchmarks often leads to
arbitrary sharding of the structure that has no purpose for the application itself (e.g.,
the clients still must access the entire domain). Hence distributing STMBench7, LeeTM,
or labyrinth or k-means from STAMP creates applications that do not reflect realistic
use cases for distributed systems. On the other hand, even if a benchmark has valid
distributed variants, the conversion is often non-trivial and should not be expected to be
done ad hoc, if it is to be uniformly applied by various research teams.

As a result systems like HyFlow, HyFlow2, Atomic RMI, and Atomic RMI 2 are
all evaluated using a few microbenchmarks (usually in-house implementations) supple-
mented by a distributed version of the vacation benchmark from STAMP, which originally
mimics a distributed database use case. In effect, the presentation of the evaluation some-
times leads ambiguities. In addition, a direct comparison between evaluation results from
different papers is often difficult, if not impossible.

Hence, we believe that a suite of dedicated benchmarks for distributed TM systems
should be created. The benchmarks in the suite should allow depth of evaluation, but the
design of such a suite should emulate the breadth provided by STAMP by implementing
a number of distributed applications grounded in real systems. We presented some of the
preliminary work on that front in [11].

Streszczenie

Programowanie współbieżne jest powszechnie uznawane za trudne (zob. np. [21, 39, 40,
68]). Źródłem trudności jest współbieżne wykonanie programu, które może potencjalnie
prowadzić do przeplotu operacji wykonywanych przez wątki lub procesy na zmiennych
współdzielonych, dając w efekcie nieprawidłowe wyniki. Przykładem jest błędne odczy-
tanie przez proces innej wartości zmiennej współdzielonej, niż ta ostatnio zapisana do
tej zmiennej przez ten proces. Dlatego więc programista musi przewidzieć i wyelimino-
wać tego typu nieprawidłowe zachowanie, synchronizując wykonanie niektórych operacji.
W tym celu programista ma do dyspozycji odpowiednie niskopoziomowe konstrukcje
synchronizacyjne, np. zamki (ang. locks), monitory (ang. monitors), bariery (ang. bar-
riers), czy semafory (ang. semaphores). Jednakże korzystanie z tych mechanizmów w
sposób poprawny i efektywny nie jest łatwe, gdyż wymaga wnikliwej analizy całego sys-
temu, a błędy wynikające z niewłaściwego zastosowania synchronizacji są często trudne
do wykrycia z uwagi na niedeterminizm. Błędna synchronizacja ma poważne skutki dla
działania systemu, np. odczyt niespójnego stanu (ang. inconsistent views), zakleszcze-
nie (ang.deadlock, livelock), hazard (ang. race condition), lub inwersja priorytetów (ang.
priority inversion).

Programowanie współbieżne jest jednak nieuniknione. Wynika to ze wzrastającej po-
pularności procesorów wielordzeniowych, gdzie współbieżne wykonanie programu jest
niezbędne, aby wykorzystać potencjał wielu rdzeni procesora. Ponadto, wraz z populary-
zacją architektur zorientowanych na usługi (ang. service oriented architectures) oraz prze-
twarzania w chmurze (ang. cloud computing), także systemy rozproszone, które są z na-
tury współbieżne, stały się wszechobecne. Jest to widoczne do tego stopnia, że rozmaite
aplikacje, począwszy od edycji dokumentów tekstowych, a kończąc na bazach danych
i aplikacjach typu Big Data, coraz częściej delegują przetwarzanie do usług zdalnych,
które wykonują określony program równolegle z programem klienta.

Skoro programiści aplikacji coraz częściej stykają się z problemami programowania
współbieżnego, niezbędnym staje się dostarczenie im odpowiednich abstrakcji, które po-
zwalałyby wyeliminować część z tych problemów oraz ukryć szczegóły implementacji
mechanizmów synchronizacji. Abstrakcje takie są wykorzystywane w innych dziedzinach
programowania. Przykładowo, programiści nie piszą w praktyce własnych rozwiązań do
komunikacji przez sieć, lecz korzystają z hermetycznych bibliotek (np. Netty, JGroups,
Java Message Service lub Java RMI), które dostarczają tego typu funkcjonalność w for-
mie wysokopoziomowego API, które zwalnia programistę od implementowania szczegółów
zarządzania gniazdami czy serializacji danych. W podobny sposób programiści aplikacji

204 10 Conclusions

powinni móc tworzyć systemy współbieżne.

Pamięć Transakcyjna
Pamięć transakcyjna (ang. transactional memory, TM) [44, 71] jest zapożyczoną z syste-
mów bazodanowych uniwersalną propozycją rozwiązania problemu synchronizacji w sys-
temach współbieżnych poprzez zastosowanie abstrakcji transakcji (zob. np. [12, 16, 91]).
W tym podejściu programista jedynie oznacza fragmenty kodu wymagające synchroniza-
cji jako transakcje, a a system pamięci transakcyjnej jest odpowiedzialny za wykonanie
poszczególnych operacji na danych współdzielonych w ramach transakcji w taki sposób,
żeby zapewniona była wydajność i poprawność. Wykonanie kodu transakcji zostaje powie-
rzone odpowiedniemu algorytmowi sterowania współbieżnością, który zapewnia, że prze-
plot operacji spełnia konkretne gwarancje poprawności. Gwarancje te określone są przez
własności bezpieczeństwa które opisują dany algorytm, np. uszeregowalność (ang. seria-
lizability) [60] lub nieprzezroczystość (ang. opacity) [33]. Programista, z kolei, nie musi
znać szczegółów działania zastosowanego algorytmu sterowania współbieżnością, a jedy-
nie własności bezpieczeństwa, które ten algorytm spełnia. W konsekwencji, abstrakcja
transakcji ukrywająca szczegóły implementacji algorytmów sterowania współbieżnością
oraz spełniająca określone własności bezpieczeństwa, znacząco upraszcza programowanie,
wspierając jednocześnie poprawność i wydajność działania systemów współbieżnych.

Rozproszona pamięć transakcyjna (ang. distributed transactional memory, DTM)
[14, 49, 18, 68, 86, 10] przenosi ideę pamięci transakcyjnej do systemów rozproszonych.
Generalizacja ta powoduje potrzebę rozwiązania dodatkowych problemów jak asynchro-
niczność i awarie częściowe, ale także stwarza nowe perspektywy. Cechą najbardziej od-
różniającą transakcje w pamięci transakcyjnej od ich bazodanowych poprzedników jest
możliwość wykonywania innych operacji niż tylko odczyt i zapis na zmiennych współ-
dzielonych. W systemach pamięci transakcyjnej współdzielone między transakcjami mogą
być obiekty, których operacje odczytu i zapisu mają bardziej złożoną semantykę, np. licz-
niki, czy kolejki. Mogą to być także obiekty których interfejsy są dowolnie zdefiniowane
przez programistę i których implementacja ma arbitralną semantykę. W rozproszonej
pamięci transakcyjnej dowolność definicji obiektów może dodatkowo służyć umiejscowie-
niu wykonania pewnego kodu na konkretnych (zdalnych) węzłach sieci. W szczególności
wyróżnia się dwa modele. Model przepływu danych (ang. data flow) zakłada, że obiekt
na którym wykonywana jest operacja migruje do węzła, na którym wykonywana jest
transakcja, i właśnie tam wykonywany jest także kod operacji. W tym modelu efekty
operacji są zawsze lokalne względem transakcji. Model przepływu sterowania (ang. con-
trol flow) zakłada, że obiekty są nieruchome i kod operacji wykonuje się zawsze na węźle
„domowym”. Oznacza to, że efekty operacji są lokalne względem obiektu, a nie trans-
akcji. Każdy z modeli ma swoje wady i zalety, ale unikatową cechą modelu przepływu
sterowania jest to, że pozwala on na „pożyczanie” przez transakcje mocy obliczeniowej od
zdalnych węzłów. Pozwala to na większą elastyczność przy projektowaniu i implementacji
aplikacji rozproszonych.

Optymistyczne Sterowanie Współbieżnością
Powszechnie stosowanym podejściem do synchronizacji w (rozproszonej) pamięci trans-
akcyjnej jest podejście optymistyczne. W podejściu tym, w ujęciu ogólnym, transakcje są
wykonywane jednocześnie bez względu na charakterystykę dostępów wewnątrz transakcji,
a próba walidacji ich poprawności następuje później, np. w momencie zatwierdzenia (ang.
commit) gdy wszystkie operacje transakcji zostały wykonane. Zatwierdzenie kończy się
powodzeniem, gdy wykonanie transakcji przebiegło w sposób poprawny. Niepowodzenie

10 Conclusions 205

zatwierdzenia następuje w wypadku gdy bieżąca transakcja wykonała nieprawidłowe ope-
racje, np. usiłując operować na tym samym obszarze pamięci (zmiennej współdzielonej,
obiekcie) jednocześnie z inną transakcją w sytuacji, gdy przynajmniej jedna z nich pró-
buje ten obszar modyfikować. Scenariusz taki nazywany jest konfliktem (ang. conflict)
i wymaga on wycofania (ang. abort) jednej z transakcji. Wycofanie transakcji oznacza, że
transakcja usuwa wszelkie oznaki swojego wykonania. Następnie transakcja wycofana zo-
stanie wykonana po raz kolejny, w nadziei, że tym razem konflikt nie wystąpi i transakcja
zostanie zatwierdzona poprawnie. Podejście optymistyczne można zaimplementować na
wiele sposobów, ale typowym jest buforowanie operacji lub ich wyników podczas działania
transakcji, i wprowadzanie zmian do oryginalnego obiektu dopiero podczas zatwierdzenia
(ang. commit-time), raczej niż modyfikowanie obiektów już podczas wykonywania ope-
racji (ang. encounter-time). Typowe jest wykrywanie konfliktów jak najwcześniej, w celu
minimalizacji marnotrawienia pracy wykonanej przez ostatecznie wycofane transakcje.

Podejście optymistyczne jest dość uniwersalnym rozwiązaniem, ale ma ono dwa man-
kamenty. Po pierwsze, podejście optymistyczne napotyka na problemy wynikające ze spe-
kulacyjnego wykonywania transakcji w środowiskach z wysokim współczynnikiem współ-
zawodnictwa (ang. contention)—tj. takich, gdzie wiele transakcji jednocześnie ubiega się
o wykonanie operacji na tym samym obiekcie. Wysokie współzawodnictwo sprawia, że
prawdopodobieństwo wystąpienia konfliktów wzrasta, co z kolei powoduje, że wzrasta czę-
stość z jaką transakcje są wycofywane. W efekcie zwiększone jest prawdopodobieństwo,
że dana transakcja będzie wielokrotnie wycofana i wielokrotnie (co najmniej częściowo)
wykonana, zanim w końcu zostanie zatwierdzona. Co więcej, wykonywanych jest wiele
obliczeń, których wyniki są następnie ignorowane, a po odjęciu transakcji wycofanych,
konfliktujące się transakcje w praktyce wykonują się sekwencyjnie. Istnieją mechanizmy,
które eliminują wyżej opisany problem problem przez zarządzanie ponownym urucha-
mianiem konfliktujących transakcji, tak, aby nie doprowadzać do ponownych konfliktów.
W tym celu można stosować proste rozwiązania jak wykładnicze opóźnienie (ang. expo-
nential back-off) [43], lub rozwiązania złożone, jak szeregowanie oparte o prawdopodo-
bieństwo wystąpienia konfliktów [24, 105], a także inne mechanizmy sterowania współ-
zawodnictwem (ang. contention management) [25, 70]. Rozwiązania te mają opóźniać
wykonanie niektórych transakcji (zazwyczaj po pierwszym konflikcie), powodując obni-
żenie liczby współbieżnych transakcji. Rozwiązania te natomiast wymagają parametry-
zacji, co wymaga strojenia parametrów ręcznie lub wyprowadzania ich podczas działania
systemu, a także prowadzi do konieczności reakcji na zmiany profilu obciążenia. Często
także rozwiązania te wymagają centralnej koordynacji, co uniemożliwia wykorzystanie
ich w systemach rozproszonych.

Kolejnym problemem podejścia optymistycznego jest obsługa operacji niewycofy-
walnych (ang. irrevocable operations). Operacje niewycofywalne są to operacje, których
efekty są obserwowalne, ale nie można ich usunąć ani nie powinno się powielać. Przykła-
dami takich operacji są operacje na zamkach, operacje wejścia/wyjścia, czy komunikacja
sieciowa. Operacje te często występują w złożonych aplikacjach i są zazwyczaj trudne do
zlokalizowania w kodzie transakcji, ponieważ są wykonywane w ramach procedur będą-
cych częściami używanych przez programistę bibliotek. Natomiast jeśli operacja niewy-
cofywalna znajdzie się w kodzie transakcji wykonywanej optymistycznie, to ta transakcja
może spowodować wielokrotne wykonanie operacji niewycofywalnej na skutek konfliktu.
Przykładowo, spowodować to może wielokrotne wysłanie tej samej wiadomości sieciowej,
łamiąc protokół komunikacji, lub wielokrotne pobranie tego samego zamka prowadząc do
zakleszczenia transakcji. Rozwiązanie tego problemu w systemach optymistycznych nie
jest proste. Popularnym rozwiązaniem jest spowodowanie, że transakcja wykonująca ope-
racje niewycofywalne nie zostaje nigdy wycofana. Przykładowo, w [92] zaproponowano
system, w którym transakcja zawierająca operacje niewycofywalne staje się transakcją

206 10 Conclusions

niewycofywalną, która zawsze wygrywa konflikty z innymi transakcjami. Jednakże tylko
jedna taka transakcja może działać jednocześnie w całym systemie ze względu na para-
doks w wypadku konfliktu między dwoma niewycofywalnymi transakcjami. Powoduje to
jednak zmniejszenie wydajności systemu. W [9, 62] zastosowane inne rozwiązanie: sys-
tem pamięci transakcyjnej utrzymuje wiele wersji tego samego obiektu, więc transakcje
mogą operować na starszych wersjach jeśli operowanie na nowej wersji powodowałoby
konflikt. Rozwiązanie to prowadzi do skomplikowania i spowolnienia systemu pamięci
transakcyjnej. W konsekwencji, wiele istniejących systemów pamięci transakcyjnej zabra-
nia wykonywania operacji niewycofywalnych (np. Haskell [41]) lub wymaga zdefiniowania
operacji, które wykonają kompensacji ich efektów (np. [13]). Są to jednak rozwiązania
niepraktyczne, zwłaszcza jeśli system rozproszonej pamięci transakcyjnej ma być zaapli-
kowany w złożonych systemach zorientowanych na usługi. Przykładowo, jeśli wykonanie
operacji na obiekcie-usłudze powoduje efekt materialny (np. wydruk książki), to operacja
niewycofywalna jest częścią semantyki usługi i nie istnieje kompensacja, która (bezstrat-
nie) odwróci jej efekt.

Pesymistyczne Sterowanie Współbieżnością
Prostszą metodą rozwiązywania problemów wymienionych powyżej jest użycie pesymi-
stycznego podejścia do sterowania współbieżnością. Podejście pesymistyczne ma swoje
początki w transakcjach bazodanowych (np. blokowanie dwufazowe – ang. two-phase
locking [12, 91]) i zostało przeniesione do pamięci transakcyjnej w [56, 1, 10] oraz w pra-
cach [96, 97]. Ogólna idea pesymistycznej pamięci transakcyjnej jest taka, że transakcje
nie wykonują operacji spekulacyjnie, lecz najpierw sprawdzany jest warunek poprawności
wykonania danej operacji, a operacje dla których warunek nie może być natychmiast speł-
niony ze względu na potencjalny konflikt są opóźniane do momentu, aż konflikt staje się
niemożliwy. Oznacza to, że transakcje są wycofywane bardzo rzadko lub wcale, dzięki
czemu wyeliminowane zostają problemy związane wyżej wymienionymi scenariuszami
z wysokim współzawodnictwem i z operacjami niewycofywalnymi.

W [56] pokazano jednakże, że podejście pesymistyczne w formie stosowanej do tej
pory ma negatywny wpływ na wydajność systemów pamięci transakcyjnej, ponieważ jest
uzależnione od szeregowego wykonywania transakcji, które wykonują zapisy do zmien-
nych. Ograniczenie to ma na celu wykluczenia konfliktów, ale powoduje ono ograniczenie
równoległości wykonania.

Głównym celem przedstawionej pracy było pokazanie, że obniżenie wydajności nie
jest nieodzowną częścią podejścia pesymistycznego i może być całkowicie wyelimino-
wane. W tym celu, rozważono zastosowanie techniki wczesnego zwalniania zasobów (ang.
early release). Wczesne zwalnianie zasobów to technika optymalizacyjna stosowana w pa-
mięci transakcyjnej, gdzie pary transakcji między którymi zachodzi konflikt są jednak
zatwierdzane [65], jeśli tylko przeplot operacji, który prowadzi do konfliktu jest w istocie
poprawny. Technika ta jest szczególnie efektywna w podejściu pesymistycznym, gdzie
transakcje nie są wycofywane. Przy takim założeniu, można zezwolić transakcjom na
odczytywanie ostatecznego stanu zmiennych modyfikowanych przez inną transakcję bez
troski o odczytanie stanu niepoprawnego, pomimo tego, że modyfikująca transakcja nie
została jeszcze zatwierdzona. Systemy korzystające z techniki wczesnego zwalniania (np.
[43, 65, 28, 13, 75]) pokazują, że powoduje ona znaczącą poprawę efektywności działa-
nia pamięci transakcyjnej. Dlatego też w niniejszej pracy wykorzystano tę technikę jako
rdzeń zaproponowanych optymalizacji, dążąc do stworzenia bezpiecznego i wydajnego
systemu pesymistycznej pamięci transakcyjnej.

10 Conclusions 207

Bezpieczeństwo
W odróżnieniu od transakcji bazodanowych, pamięć transakcyjna pozwala na włączanie
dowolnych operacji do kodu transakcji obok odczytów i zapisów na danych współdzielo-
nych. Powoduje to, że pamięć transakcyjna musi wykonywać transakcje bardziej ostroż-
nie, niż jest to wymagane w bazach danych. Przykładowo, uszeregowalność ustanawia,
że jeśli transakcje, które są zatwierdzone, wykonały się poprawnie, to całość wykonania
może być uznana za poprawną. Jeśli więc transakcja bazodanowa przeczyta ze zmiennej
niespójną wartość, wystarczy, że nie dopuści się tej transakcji do zatwierdzenia, i cały
przeplot pozostanie poprawny w świetle uszeregowalności. Natomiast, jeśli pamięć trans-
akcyjna pozwoli transakcji na odczytanie wartości niespójnej, może dojść do złamania
jakiegoś niezmiennika i wykonania nieprzewidzianej niebezpiecznej operacji, np. podziału
przez zero lub wejścia w pętlę nieskończoną. W takim wypadku, klasyczne własności ba-
zodanowe, takie jak uszeregowalność są niewystarczające dla zapewniania poprawności
pamięci transakcyjnej. Pamięć transakcyjna wymaga własności bezpieczeństwa, które
będą ograniczać lub wykluczać możliwość odczytu niespójnego stanu przez transakcje
niezależnie od tego, czy będą one ostatecznie zatwierdzone. W tym celu zaproponowano
własność nieprzezroczystości, która, ponad wymagania uszeregowalności, wymaga także
utrzymania między transakcjami porządku czasu rzeczywistego i uniemożliwia transak-
cjom czytanie modyfikacji wprowadzonych przez żywe (jeszcze niezatwierdzone) transak-
cje. Nieprzezroczystość stała się standardową własnością systemów pamięci transakcyjnej
i jest de facto spełniana przez większość systemów prezentowanych w literaturze.

Jednak, jeśli wykluczyć czytanie modyfikacji wprowadzonych przez niezatwierdzone
transakcje, niemożliwym staje się użycie techniki wczesnego zwalniania zasobów, na-
wet jeśli nie powoduje to niepoprawnych zachowań. Natomiast przed zaproponowaniem
wydajnej pamięci transakcyjnej, niezbędnym staje się zdefiniowanie gwarancji popraw-
ności które przez taki system muszą być spełnione i odkrycie lub zdefiniowanie własno-
ści bezpieczeństwa które będą te gwarancje określać, jednocześnie dopuszczając użycie
wczesnego zwalniania zasobów. Ze względu na fakt, że nieprzezroczystość jest bardzo re-
strykcyjną własnością, w celach praktycznych w literaturze zaproponowano wiele innych,
rozluźnionych własności bezpieczeństwa, takich jak spójność świata wirtualnego (ang.
virtual world consistency – VWC) [48], specyfikacja pamięci transakcyjnej (ang. transac-
tional memory specification — TMS1 i TMS2) [22], nieprzezroczystość elastyczna (ang.
elastic opacity) [28], nieprzezroczystość żywa (ang. live opacity) [26] i inne. W ramach tej
rozprawy dokonano analizy tych własności, a także istniejących własności bazodanowych
celem określenia czy pozwalają na optymalizację przez wczesne zwalnianie zasobów, jakie
ograniczenia nakładają na tę optymalizację i jakich wymagają dodatkowych założeń. Na
podstawie tej analizy wprowadzono nowe własności przeznaczone dla systemów pamięci
transakcyjnej z wczesnym zwalnianiem zasobów, które jednocześnie dostarczają silnych
gwarancji bezpieczeństwa.

Model Systemu
Pamięć transakcyjna może być używana w ramach wielu modelów systemu, które wpły-
wają na założenia, jakie algorytm sterowania współbieżnością będzie przyjmować. Po
pierwsze, pamięć transakcyjna może działać na zmiennych (obiektach-zmiennych), czyli
na obiektach, których stan jest zdefiniowany przez pojedynczą wartość, która z kolei może
być odczytana lub nadpisana. Model taki jest typowy dla nierozproszonej pamięci trans-
akcyjnej (np. [21, 39, 65]), ale rozproszona pamięć transakcyjna częściej używa modelu
gdzie obiekty współdzielone są bardziej złożone (np. [68, 86]). Konkretnie, wyróżniamy
tutaj dwa modele obiektowe: jednorodny (ang. homogeneus) i niejednorodny (ang. hetero-

208 10 Conclusions

geneous). W modelu jednorodnym obiekty są jednakowe i relatywnie proste: odpowiadają
strukturom takim jak liczniki czy stosy. Obiekty współdzielą jeden interfejs, który zawiera
jedną operację odczytu i jedną operacje zapisu o znanej semantyce. W modelu niejedno-
rodnym zakłada się, że każdy z obiektów definiuje własny interfejs zawierający dowolne
operacje o dowolnej (i zazwyczaj nieznanej a priori) semantyce, działające na złożonym,
hermetycznie odizolowanym stanie. Różne modele mają różne aplikacje: zmienne znaj-
dują zastosowanie w systemach lokalnych i równoległych o dużej wydajności oraz bazach
danych, podczas gdy modele obiektowe używane są w złożonych systemach chmurowych
czy architekturach zorientowanych na usługi, gdzie każdy z obiektów wyrażać może nawet
całe usługi.

Po drugie, systemy pamięci transakcyjnej mogą dostarczać różnych interfejsów dla sa-
mych transakcji. Wiele optymistycznych i pesymistycznych systemów jest systemami wy-
łącznie zatwierdzającymi (ang. commit-only), gdzie transakcja dąży zawsze do tego, żeby
po wykonaniu swoich operacji wykonać zatwierdzenie (np. [96, 6, 56]). Alternatywnie, pa-
mięć transakcyjna może być systemem z dowolnością wycofania (ang. arbitrary abort),
gdzie transakcja może w dowolnym momencie działania samoistnie wycofać się, zamiast
podejmować próby zatwierdzenia. Dodanie operacji wycofania do interfejsu transakcyj-
nego powoduje, że system staje się bardziej ekspresywny, a także dostarcza istotnej dla
wydajnej implementacji odporności na awarie częściowe funkcjonalności.

Warto odnotować, że systemy pamięci transakcyjnej działające na zmiennych mogą
przyjąć dużo szersze założenia odnośnie do stanu systemu, niż pamięć transakcyjna dzia-
łająca na obiektach w pozostałych modelach. Powoduje to, że jeśli porównamy wydaj-
ność takich dwóch systemów stosując tylko zmienne, pamięć transakcyjna działająca na
zmiennych będzie bardziej wydajna od pamięci obiektowej. Natomiast, jeśli porównamy
te dwa systemy używając modelu obiektowego, pamięć transakcyjna działająca na zmien-
nych ma szanse działać nieprawidłowo ze względu na jej zbyt silne założenia. Podobnie,
pamięć transakcyjna przystosowana do dowolnych wycofań może być użyta w modelu
wyłącznie zatwierdzającym, chociaż skutkować to będzie obniżeniem wydajności w po-
równaniu do odpowiednika przystosowanego do pracy w modelu wyłącznie zatwierdzają-
cym. Z drugiej strony, pamięć transakcyjna wyłącznie zatwierdzająca nie może być użyta
poprawnie i wydajnie w modelu, w którym transakcje mogą być dowolnie wycofywane.
Stypulujemy, że praktyczność systemu pamięci transakcyjnej jest uwarunkowana moż-
liwością jego aplikacji w szerokiej gamie modeli systemów przy zachowaniu wydajności
i poprawności. W konsekwencji rozprawa rozważy aplikację wprowadzonych algorytmów
w różnych modelach, starając się osiągnąć uniwersalność. Jednocześnie przedstawiamy
warianty naszych algorytmów mające na celu poprawę wydajności w konkretnych mo-
delach.

Przyjęto też założenie, że praktyczny system rozproszonej pamięci transakcyjnej nie
może opierać się na centralnych strukturach, które wprowadzałyby pojedynczy punkt
awarii (ang. single point of failure), gdyż ograniczałoby to skalowalność (ang. scalability)
systemu, oraz uniemożliwiałoby jego funkcjonowanie pomimo częściowych awarii.

Żywotność i Postęp
Dodatkowo, poza poprawnością systemu, praktyczny system pamięci transakcyjnej powi-
nien także gwarantować, że poszczególne operacje wewnątrz transakcji zostaną wykonane,
tj. żywotność (ang. liveness), oraz, że każda z transakcji ostatecznie będzie zatwierdzona,
tj. postęp (ang. progress). Podstawową własności żywotności dla pamięci transakcyjnej
jest wolność od zakleszczenia (ang. deadlock freedom), która oznacza, że transakcje nigdy
nie doprowadzają do zakleszczeń. Zakleszczenie to sytuacja, w której między transak-
cjami występuje cykl oczekiwania. Silna progresywność (ang. strong progressiveness) [33]

10 Conclusions 209

to popularna własność postępu mówiąca, że konflikt nie może doprowadzić do sytuacji,
w której wszystkie skonfliktowane transakcje zostają zmuszone do wycofania. System
pamięci transakcyjnej który nie spełnia tych własności żywotności i postępu może do-
prowadzać do “klinowania się“ całego systemu, a więc nie jest systemem praktycznym.

Teza
W świetle powyższych zamierzeń i wymogów, sformułowano w pracy następującą tezę:

Możliwym jest zaproponowanie pesymistycznego algorytmu sterowania współbieżnością
dla rozproszonej pamięci transakcyjnej, który jednocześnie:

a) osiąga wysoką wydajność,
b) spełnia silne własności bezpieczeństwa, żywotności i postępu,
c) gwarantuje poprawne wykonanie operacji niewycofywalnych,
d) jest stosowalny w ogólnych modelach systemów.

Kontrybucja
Przedstawiona teza jest udowodniona poprzez kontrybucje wprowadzone poniżej i opisane
szczegółowo w poszczególnych rozdziałach rozprawy.

I Analiza istniejących własności i algorytmów pamięci transakcyjnych.
Formalnie przeanalizowano istniejące własności bezpieczeństwa dla pamięci trans-
akcyjnej oraz bazodanowe warunki spójności celem określenia, czy znajdują one
zastosowanie w pamięci transakcyjnej z wczesnym zwalnianiem zasobów. W szcze-
gólności, określono, czy pozwalają one na wczesne zwalnianie zasobów, jakie klasy
niespójnych odczytów są przez nie dopuszczane i jakie ograniczenia są przez nie na-
łożone na transakcje. Następnie, zbadano wybrane istniejące pesymistyczne i roz-
proszone pamięci transakcyjne, oraz pamięci transakcyjne stosujące wczesne zwal-
nianie zasobów, ustalając ich parametry i gwarancje bezpieczeństwa. Pozwala nam
to wyciągnąć wnioski o stosowalności istniejących własności do systemów z wcze-
snym zwalnianiem zasobów. Ponadto, analiza pozwoliła na ustalenie, które algo-
rytmy i techniki mogą być użyte do implementacji pesymistycznej rozproszonej
pamięci transakcyjnej. Analizy przedstawione są w Rozdziałach 3 i 4, i stanowią
rozszerzenie wyników zaprezentowanych w [77] i [79].

II Nowe silne własności bezpieczeństwa dla pamięci transakcyjnej z wcze-
snym zwalnianiem zasobów.
W pracy zaproponowano zostały dwie nowe własności bezpieczeństwa, nieprzezro-
czystość do ostatniego użycia i silna nieprzezroczystość do ostatniego użycia, które
dają silne gwarancje spójności i wykluczają większość klas niespójnych odczytów
stanu, jednocześnie pozwalając na wczesne zwalnianie zasobów. Własności wraz
z ich charakterystyką przedstawiono oraz omówiono w Rozdziale 5. Własności te
zostały wcześniej zaprezentowane w [76, 79].

III Nowe pesymistyczne algorytmy sterowania współbieżnością dla pesymi-
stycznej (rozproszonej) pamięci transakcyjnej.
Ponadto w pracy opisano szereg nowych algorytmów sterowania współbieżnością
dla pesymistycznej (rozproszonej) pamięci transakcyjnej. Rozpoczęto od rozszerze-
nia istniejących algorytmów wersjonowania [96, 97] celem wykluczenia pojedyn-
czego punktu awarii i uogólnienia ich do modelu pozwalającego na dowolne wyco-
fywanie transakcji, w efekcie uzyskując algorytmy BVA+R, SVA+R i RSVA+R.

210 10 Conclusions

Następnie zastosowano szereg daleko idących optymalizacji ze względu na typy
wykonywanych operacji, aby uzyskać algorytmy sterowania współbieżnością Opt-
SVA+R i OptSVA-CF+R (wraz z wariantami), które dążą do wysokiego stopnia
zrównoleglenia transakcji. Pokazujemy, że owe algorytmy pozwalają na większe
zrównoleglenie wykonań transakcji niż ich poprzednicy i wykazujemy ich własności.
Algorytmy wprowadzone są w Rozdziale 6, a ich dowody poprawności znajdują się
w Rozdziale 7. Nowe algorytmy stanowią rozszerzenie badań zaprezentowanych
w [74, 75, 78, 82, 102].

IV Dowody bezpieczeństwa i techniki dowodzenia.
Przedstawiono zostały także techniki dowodzenia pozwalające nam na wnioskowa-
nie o bezpieczeństwie (nieprzezroczystość i nieprzezroczystość do ostatniego użycia)
algorytmów z wczesnym zwalnianiem zasobów. Następnie zastosowano wprowa-
dzone techniki, udowadniając własności wybranych algorytmów. Zaprezentowane
jest to w Rozdziale 7 i stanowi rozszerzenie wyników pokazanych w [79, 80, 102].

V Implementacja nowych algorytmów. Efektem pracy były też implementacje
systemów rozproszonej pamięci transakcyjnej w modelu przepływu sterowania dla
dwóch z zaprezentowanych algorytmów sterowania współbieżnością. Jedna z im-
plementacji posłużyła do pokazania, że OptSVA-CF+R przewyższa efektywnością
wysokiej klasy optymistyczny system rozproszonej pamięci transakcyjnej. Imple-
mentacje i ewaluacja są zaprezentowane w Rozdziale 8 i odzwierciedlają one wyniki
badań w [75, 78, 82].

VI Analiza statyczna i prekompilator.Wprowadzono też prekompilator, który jest
w stanie wygenerować informacje wymagane a priori przez niektóre z zaprezento-
wanych algorytmów pamięci transakcyjnej na podstawie analizy statycznej kodu
źródłowego transakcji. Prekompilator zaprezentowany jest w Rozdziale 9 i odzwier-
ciedla badania zaprezentowane w [72, 73].

Analiza Istniejących Własności

W celu analizy istniejących własności bezpieczeństwa, zarówno dla pamięci transakcyjnej,
jak i warunków spójności dla baz danych, zdefiniowano formalnie wczesne zwalnianie
zasobów jako scenariusz, gdzie wykonywane są przynajmniej dwie transakcje Ti i Tj
w taki sposób, że transakcja Ti zapisuje do jakiejś zmiennej x wartość v, a następnie Tj
odczytuje v z x , gdy Ti jest żywa. Mówimy wtedy, że Ti zwalnia x do Tj . Następnie
zdefiniowano trzy warunki, które określają do jakiego stopnia jakaś własność P pozwala
na wczesne zwalnianie zasobów:

Def. 4 (Dopuszczanie Wczesnego Zwalniania Zasobów) Własność P dopuszcza taką hi-
storię wykonania, gdzie występuje wczesne zwalnianie zasobów.

Def. 5 (Dopuszczanie Nadpisywania) Własność P dopuszcza taką historię wykonania,
gdzie występuje wczesne zwalnianie zasobów i gdzie transakcja Ti, która zapisuje
wartość v do zmiennej x i zwalnia zmienną x do transakcji Tj , następnie zapisuje
ponownie jakąś wartość v′ do x po tym, jak Tj odczyta v z x.

Def. 6 (Dopuszczanie Wycofywania Po Zwolnieniu Zasobów) Własność P dopuszcza
taką historię wykonania, gdzie występuje wczesne zwalnianie zasobów i gdzie trans-
akcja Ti, zwalnia jakaś zmienną do transakcji Tj , a następnie Ti ostatecznie zostaje
wycofana.

10 Conclusions 211

Własność Zastosowanie Def. 4 Def. 5 Def. 6 ⊆Uszeregowalne
Serializability bazy danych, TM � � � �

CO bazy danych � � � ×
Recoverability bazy danych � � � ×
Cascadelessness bazy danych × × × ×
Strictness bazy danych × × × �

Rigorousness bazy danych × × × �

Opacity TM × × × �

Markability TM × × × �

TMS1 TM × × × �

TMS2 TM × × × �

VWC TM � × × �

Live opacity TM � × × �

Elastic opacity TM � × × ×
Tablica 11.1: Podsumowanie dopuszczalności wczesnego zwalniania zasobów w istniejących
własnościach.

Spośród tych definicji, Def. 4 jest warunkiem koniecznym stosowalności własności
dla pamięci transakcyjnej z wczesnym zwalnianiem. Def. 5 służy wykluczeniu własności
zbyt permisywnych, które pozwalają na czytanie stanu niespójnego w trakcie działania
transakcji. Odczyt takiego stanu może prowadzić do niebezpiecznych sytuacji opisanych
w [33]: błędów arytmetyki obiektowej, wejścia w nieskończoną pętlę, dzielenia przez zero.
Def. 6 służy zapewnieniu, że nie ogranicza się możliwości wycofania transakcji, które
wykonują wczesne zwalnianie zasobów. Takie ograniczenie czyni te transakcje niewyco-
fywalnymi, co niesie ze sobą wiele problemów, np. ograniczenie możliwości wykonywania
takich transakcji sekwencyjnie [92]. Co więcej wymuszenie ostatecznego zatwierdzenia
w tych transakcjach doprowadza do tego, że w systemach z dowolnym wycofaniem (w
szczególności w systemach potencjalnie awaryjnych) wczesne zwalnianie zasobów jest
wykluczone całkowicie.

Analizujemy istniejące własności bezpieczeństwa dla pamięci transakcyjnej oraz wa-
runki spójności używane w systemach baz danych pod względem wyznaczonych kryteriów
i zaprezentowano wyniki analizy w Tablicy 11.3. Tablica ta informuje, które z wyżej wy-
mienionych definicji są spełniane przez konkretną własność. Dodatkowo informuje, czy
własność wywodzi się z systemów baz danych i czy jest szeroko używana w systemach
pamięci transakcyjnej, a także, w ostatniej kolumnie, ustalono czy dana własność jest
silniejsza od uszeregowalności – tzn. czy każda historia spełniona przez daną własność
spełnia także własność uszeregowalności. W tabeli podano nazwy własności w języku
angielskim.

Przedstawiona w pracy analiza wykazuje, że tylko niewielka liczba istniejących wła-
sności pozwala na jakiekolwiek wykorzystanie wczesnego zwalniania zasobów. Spośród
pozostałych własności, te które pozwalają na wczesne zwalnianie zmiennych są albo zbyt
dozwalające, pozwalając na nadpisywanie uprzednio zwolnionej zmiennej, albo zbyt re-
strykcyjne, wymagając od transakcji zwalniających zmienne, aby były efektywnie nie-
wycofywalne. W konsekwencji można zauważyć brak własności praktycznie stosowalnej
w systemach pamięci rozproszonej z wczesnym zwalnianiem zasobów.

212 10 Conclusions

Analiza Istniejących Algorytmów

Następnym krokiem była analiza istniejących algorytmów sterowania współbieżnością
dla pamięci transakcyjnej i systemów pamięci transakcyjnej. Ponieważ badania nad pa-
mięcią transakcyjną zaowocowały dużą liczbą rozwiązań, skupiono się na systemach od-
zwierciedlających następujące aspekty: rozproszone systemy pamięci transakcyjnej, pe-
symistyczne pamięci transakcyjne, oraz pamięci transakcyjne wykorzystujące wczesne
zwalnianie zasobów. Dla każdej kategorii algorytmów dokonano ogólnego przeglądu ist-
niejących algorytmów, oraz dokładnniejszej analizy wybranych przedstawicieli z każdej
kategorii.

Wyniki analizy podsumowano w Tablicy 11.2. Kolumna podejście wskazuje czy al-
gorytm jest pesymistyczny czy optymistyczny. Kolumna postęp wskazuje, czy algorytm
jest blokujący (oparty na zamkach) czy też jest pozbawiony czekania. Należy odnotować,
że SemanticTM nie wymaga czekania, przy założeniu istnienia odpowiedniego modułu
szeregującego transakcje przed wykonaniem. Kolumna modyfikacje wskazuje, czy algo-
rytm wprowadza modyfikacje do obiektów podczas wykonania operacji na obiekcie czy
modyfikacje są opóźnione do momentu zatwierdzenia. Kolumna wycofania mówi, kiedy
transakcje w danym algorytmie wykonują wymuszone wycofanie. W kolumnie a priori
wskazane są dane wymagane do poprawnego wykonania wykonania transakcji jeszcze
przed uruchomieniem. Kolumna obiekty mówi w jakim modelu ze względu na definicje
obiektów działa algorytm. Warto zauważyć, że algorytmy działające w modelu obiekto-
wym niejednorodnym mogą być użyte również w modelu jednorodnym, a algorytmy dzia-
łające w modelu jednorodnym mogą być użyte także w modelu ze zmiennymi. Z drugiej
strony algorytmy oznaczone jako działające z dowolnymi obiektami są używane w modelu
zmiennych, ale mogą być trywialnie zgeneralizowane do dowolnego modelu obiektowego.
Kolumna zakleszczenie informuje czy algorytm dopuszcza wystąpienie zakleszczenia. Ko-
lumna bezpieczeństwo wskazuje, jakie własności bezpieczeństwa są spełnione przez algo-
rytm (podane w języku angielskim). Kolumna zwalnianie zasobów mówi czy algorytm
wykorzystuje technikę wczesnego zwalniania zasobów. Niektóre algorytmy dopuszczają
wczesne zwalnianie przez transakcje zmiennych tylko-do-odczytu. W końcu, kolumna ope-
racje niewycofywalne wskazuje jak algorytm radzi sobie z operacjami niewycofywalnymi:
czy są one wykonywane zawsze poprawnie, czy mogą wystąpić w wycofanej transakcji
lub czy mogą być wykonane wielokrotnie. Rozróżnić należy tutaj wycofanie w sensie
ogólnym i wycofanie na życzenie programisty—jeśli programista nakaże transakcji wyco-
fać się (poprzez wywołanie operacji wycofania), wycofanie operacji niewycofywalnej jest
zamierzone przez programistę, więc jest zachowaniem poprawnym.

Własności Pamięci Transakcyjnej z Wczesnym Zwalnianiem
Warto zauważyć, że pomimo istnienia własności bezpieczeństwa, które pozwalają na wcze-
sne zwalnianie zmiennych, takich jak spójność świata wirtualnego (ang. virtual world
consistency, VWC), nieprzezroczystość elastyczna (ang. elastic opacity) [28], czy nie-
przezroczystość żywa (ang. live opacity), to w praktyce algorytmy pamięci transakcyjnej
które używają wczesnego zwalniania nie zaspokajają żadnej z nich, a jedynie relatywnie
słabą własność uszeregowalności (ang. serializability) lub uszeregowalności konfliktowej
(ang. conflict serializability). Zauważamy, że silniejsze z tych własności nie mogą być
użyte ponieważ wymagają one, żeby transakcje, które zwalniają wcześnie zmienne nie
mogły się wycofać. Z drugiej strony, zachowania przedstawionych algorytmów bardzo
różnią się od siebie. Np. algorytmy z rodziny blokowania dwufazowego (ang. two-phase
locking, 2PL) i algorytm wersjonowania w oparciu o suprema (ang. Supremum Versio-

Algorytm Podejście Postęp Modyfikacje Wycofania A priori Obiekty Zaklesz- Bezpie- Zwalnianie Operacje
czenie czeństwo zasobów niewycofywalne

B2PL pesymistyczne blokujący p. wykonania przy zakleszczeniu ∅ dowolne tak serializable tak wycofywane
C2PL pesymistyczne blokujący p. wykonania bez wycofywania RSet, WSet dowolne nie serializable tak poprawne
S2PL pesymistyczne blokujący p. wykonania przy zakleszczeniu ∅ dowolne tak strict odczyty wycofywane
R2PL pesymistyczne blokujący p. wykonania przy zakleszczeniu ∅ dowolne tak rigorous nie wycofywane
CS2PL pesymistyczne blokujący p. wykonania bez wycofywania RSet, WSet dowolne nie opaque odczyty poprawne
CR2PL pesymistyczne blokujący p. wykonania bez wycofywania RSet, WSet dowolne nie opaque nie poprawne
CAS2PL pesymistyczne blokujący p. wykonania dowolne RSet, WSet dowolne nie opaque odczyty wycofywalne

przez użytkownika
CAR2PL pesymistyczne blokujący p. wykonania dowolne RSet, WSet dowolne nie opaque nie wycofywalne

przez użytkownika
BVA pesymistyczne blokujący p. wykonania bez wycofywania ASet niejednorodne nie opaque nie poprawne
SVA pesymistyczne blokujący p. wykonania bez wycofywania ASet, niejednorodne nie serializable tak poprawne

suprema
TL2/DTL2 optymistyczne blokujący p. zatwierdzenia przy konflikcie ∅ zmienne nie opaque nie wycofywane
TFA optymistyczne blokujący p. zatwierdzenia przy konflikcie ∅ jednorodne nie opaque nie wycofywane
MS-PTM pesymistyczne blokujący p. zatwierdzenia bez wycofywania ∅ zmienne nie opaque nie poprawne
PLE pesymistyczne blokujący p. wykonania bez wycofywania ∅ zmienne nie opaque nie poprawne
SemanticTM pesymistyczne pozbawiony p. wykonania bez wycofywania ASet, zmienne nie opaque nie powtarzane

czekania* zależności
DATM optymistyczne blokujący p. zatwierdzenia przy nadpisaniu, ∅ zmienne tak conflict tak wycofywane

zakleszczeniu serializable
i kaskadzie

Tablica 11.2: Podsumowanie algorytmów sterowania współbieżnością dla pamięci transakcyjnej.

214 10 Conclusions

ning Algorithm, SVA) nie pozwalają na nadpisywanie zmiennej po jej zwolnieniu, podczas
gdy DATM na to pozwala. Ponieważ te różnice nie są określone przez własności, wnio-
skujemy, że brakuje odpowiednich własności bezpieczeństwa dla pamięci transakcyjnej
wykorzystującej wczesne zwalnianie zasobów.

Rozproszona Pamięć Transakcyjna
Spośród przeanalizowanych algorytmów wyszczególniamy algorytmy, które mogą być
użyte do implementacji rozproszonej pamięci transakcyjnej: algorytmy blokowania dwu-
fazowego, algorytmy wersjonowania (ang. versioning algorithms): BVA i SVA, oraz DTL2
i TFA. Algorytmy te były projektowane ze szczególnym uwzględnieniem systemów roz-
proszonych lub są w nich wykorzystywane. Spośród tych systemów BVA i SVA używają
globalnego zamka celem przyznania każdej uruchamianej transakcji numeru wersji. Jest
to problematyczne ze względu na skalowalność systemu, ponieważ wymaga, żeby każdy
klient kontaktował się z jednym konkretnym węzłem sieci. Natomiast, jak pokazano poni-
żej, globalny zamek można z tych algorytmów wyeliminować na rzecz bardziej złożonego
schematu zamków opartych na wiedzy a priori wykorzystywanej przez te algorytmy. Po-
nadto, spośród tych algorytmów, TFA jest zaprojektowany do pracy w modelu przepływu
danych, podczas gdy blokowanie dwufazowe, algorytmy wersjonowania i DTL2 działają
w modelu przepływu sterowania.

Algorytmy MS-PTM, PLE i DATM są mniej zdatne do implementacji w środowi-
sku rozproszonym, ponieważ używają globalnych zamków, które są problematyczne ze
względu na skalowalność. Ponadto, MS-PTM, PLE i DATM implementują mechanizm
bezruchu (ang. quiescence), który opóźnia zatwierdzanie transakcji do momentu kiedy
wszystkie poprzednie transakcje zakończyły proces modyfikacji zmiennych. Dzięki temu,
wszystkie transakcje mogą zakończyć się bezkonfliktowo, ale mechanizm ten wymaga
komunikacji pomiędzy procesami obsługującymi transakcje. Komunikacja taka jest nie-
praktyczna w systemie rozproszonym, gdzie klienci mogą być geograficznie rozproszeni,
oddzieleni zaporami ogniowymi (ang. firewalls) lub, w przypadku urządzeń mobilnych,
mogą nie posiadać odpowiedniej mocy obliczeniowej do obsługi wykrywania bezruchu.
W konsekwencji przed wprowadzeniem tych algorytmów do środowiska rozproszonego
należy najpierw wprowadzić metody pozwalające transakcjom na wypychanie informacji
niezbędnych do działania mechanizmu bezruchu oraz rozproszyć globalne zamki. W prze-
ciwieństwie do algorytmów wersjonowania, wymagane tutaj rozwiązania są nietrywialne.

Trudno jest wyobrazić sobie zastosowanie SemanticTM w środowisku rozproszonym
ze względu na wymaganie tego systemu co do porządku wykonywania operacji. Seman-
ticTM wymaga, żeby operacje na zmiennych były umieszczone w kolejkach odpowiednich
dla tych zmiennych w taki sposób, że dla dowolnych dwóch transakcji wszystkie opera-
cje pierwszej z nich są umieszczone we wszystkich kolejkach przed operacjami drugiej
transakcji lub vice versa. Wymaganie to jest trudne do zaspokojenia w systemie rozpro-
szonym, gdzie jego egzekwowanie wymagałoby zastosowania mechanizmu szeregującego
równie złożonego jak sama pamięć transakcyjna. Z tego powodu należy uznać Seman-
ticTM za algorytm mało praktyczny w kontekście systemów rozproszonych.

Warto zauważyć, że spośród wymienionych systemów nadających się do implementa-
cji w systemach rozproszonych, tylko blokowanie dwufazowe i algorytmy wersjonowania
wspierają operacje niewycofywalne.

10 Conclusions 215

Nowe Własności

Zarówno wykonany przegląd własności, jak i przegląd algorytmów, sugerują, że brak jest
własności dobrze opisujących praktyczne algorytmy sterowania współbieżnością w pa-
mięci transakcyjnej. W konsekwencji, wprowadzono dwie nowe własności, które wypeł-
niają ową niszę.

Nieprzezroczystość do Ostatniego Użycia
Pierwszą zaprezentowaną własnością jest własność nieprzezroczystości do ostatniego uży-
cia (ang. last-use opacity). Własność ta jest oparta o definicję nieprzezroczystości, więc
zachowuje ona silne gwarancje bezpieczeństwa. Wyjątkiem jest wymaganie, żeby trans-
akcje zawsze czytały wartości zmiennych które były zapisane przez transakcje uprzednio
zatwierdzone. Nieprzezroczystość do ostatniego użycia zezwala na czytanie danych zapi-
sanych przez transakcje niezatwierdzone pod warunkiem, że dane te były zapisane przez
ostateczne operacje zapisu (ang. closing writes). Ostateczna operacja zapisu to taka ope-
racja, po której nie wystąpi żadna inna operacja zapisu na tej samej zmiennej i będzie
to prawdą dla wszystkich potencjalnych wykonań tej transakcji.

Własność nieprzezroczystości do ostatniego użycia mówi, że transakcje, które są za-
twierdzone mogą czytać tylko wartości zapisane przez inne transakcje, które są również
zatwierdzone. Ponadto, transakcje niezatwierdzone (żywe lub wycofane) mogą czytać
wartości zapisane przez inne transakcje, jeśli transakcje te są zatwierdzone lub jeśli war-
tości te były zapisane przez ostateczną operację zapisu jakiejś niezatwierdzonej transakcji.

Określona w ten sposób własność bezpieczeństwa może być używana do opisu syste-
mów z wczesnym zwalnianiem zasobów, jednocześnie wykluczając nadpisywanie i pozwa-
lając na wycofywanie transakcji, które zwolniły zasoby wcześnie.

Gwarancje
Nieprzezroczystość do ostatniego użycia zapewnia następujące silne gwarancje względem
poprawności wykonania kodu transakcyjnego:

Uszeregowalność (ang. Serializability) Jeśli transakcja zostanie zatwierdzona, to do-
wolna wartość przez nią odczytana może być wyjaśniona przez operacje poprze-
dzających lub współbieżnych zatwierdzonych transakcji. Transakcje czytające stan
niespójny nie zostaną zatwierdzone.

Porządek Czasu Rzeczywistego (ang. Real-time Order) Kolejne transakcje nie będą
zamieniane kolejnością celem zaspokojenia uszeregowalności, wiec poprawny prze-
plot będzie odpowiadać zewnętrznemu względem systemu zegarowi.

Odzyskiwalność (ang. Recoverability) Jeśli transakcja odczyta wartość zapisaną przez
drugą transakcję, to pierwsza z nich zostanie zatwierdzona dopiero po tym, jak
druga z nich zostanie zatwierdzona.

Wykluczenie Nadpisywania (ang. Precluding Overwriting) Jeśli transakcja odczytuje
wartość zapisaną do jakiejś zmiennej przez drugą transakcję, to ta druga transakcją
nie wykona ponownie zapisu do tejże zmiennej.

Wycofywanie po Wczesnym Zwolnieniu (ang. Aborting Early Release) Transakcja,
która wykonała wczesne zwolnienie zasobu, może następnie zostać wycofana.

Wyłączny Dostęp (ang. Exclusive Access) Transakcja ma wyłączny dostęp do danej
zmiennej, od chwili wykonania pierwszej operacji na tej zmiennej i co najmniej do
momentu ostatecznego zapisu na niej.

216 10 Conclusions

między pierwszą operacją, którą wykona na tej zmiennej, i minimum do ostatecznej
modyfikacji którą wykonuje na tej zmiennej.

Niespójny Odczyt Systemu
Nieprzezroczystość do ostatniego użycia nie wyklucza sytuacji, gdzie transakcja odczytuje
wartość zapisaną przez inną transakcje, która to następnie zostanie wycofana. Rezultatem
takiej sytuacji jest odczyt niespójnego stanu systemu przez pierwszą z transakcji, co
może mieć różne implikacje dla poprawności działania programu w zależności od modelu
systemu.

W modelu systemu z transakcjami wyłącznie zatwierdzającymi transakcje nie mogą
samoczynnie zostać wycofane – mogą jednak zostać wycofane siłowo, np. w konsekwen-
cji konfliktu. Ponieważ nieprzezroczystość do ostatniego użycia wyklucza odczyt danych
zapisanych przez transakcje przed ostatecznym zapisem do danej zmiennej, transakcja
wycofana nie zapisywałaby do tej zmiennej jakiejkolwiek innej wartości. W konsekwen-
cji, wartość zapisana przez tę transakcje byłaby identyczna niezależnie, czy transakcja
ostatecznie wykonałaby zatwierdzenie czy wycofanie. Dlatego też można uważać stan
zaobserwowany przez inne transakcje za bezpieczny. Innymi słowy, jeśli wartość odczy-
tana z wycofanej transakcji spowodowałaby błąd, wystąpiłby on niezależnie od tego, czy
ta transakcja została wycofana czy zatwierdzona. W takim wypadku, programista ma
gwarancję, że odczyt technicznie niespójnego stanu nie wprowadzi niepoprawnego zacho-
wania do systemu. Warto zauważyć, że taki model systemu jest powszechnie używany
(np. [28, 5, 6]).

Alternatywnym jest model z transakcjami dowolnie wycofywanymi. W takim modelu
transakcja może wykonać operację wycofania dowolnie, także w ramach swojej „logiki
biznesowej”. W takim wypadku możliwym jest, że transakcja będzie używała operacji wy-
cofania właśnie do naprawieniu stanu systemu po zapisaniu do zmiennych niespójnych,
niebezpiecznych wartości. Przykładowo, transakcja Ti może zapisać do jakiejś zmiennej
x wartość v, po czym, jeśli v łamie predefiniowany warunek niezmienny, wykonać wy-
cofanie. Natomiast, jeśli zapisanie do x wartości v będzie ostatecznym zapisem, x może
zostać odczytane przez inną transakcję Tj , jeszcze zanim Ti wykona wycofanie. W takim
wypadku Tj może podjąć niebezpieczne działanie na podstawie wartości v. W konsekwen-
cji, używanie modelu dowolnego wycofania może powodować niebezpieczne zachowania.
Zachowań tych można uniknąć, np. nigdy nie wprowadzając do zmiennych wartości ła-
miących niezmienniki, lub przesuwając potencjalne wykonanie wycofania przed operację
ostateczną. Jeśli rozwiązania te są niewystarczające, poniżej przedstawiono silniejszą wer-
sję własności nieprzezroczystości do ostatniego użycia, która wyklucza niespójny odczyt
stanu systemu.

Wprowadzano także w pracy alternatywny wariant powyższego modelu, który na-
zwano modelem z ograniczonym wycofaniem (ang. restricted abort model). W modelu
tym zakładamy, że transakcje mogą wykonać operację wycofania dowolnie, ale operacja
ta jest umieszczana w kodzie transakcji automatycznie przez niezależne od transakcji
zdarzenia, np. awarie lub przerwania, a nie są one częścią logiki biznesowej transakcji.
Jeśli programista nie może związać logiki transakcji z operacją wycofania, własność daje
takie same gwarancje względem niespójnego stanu jak w modelu z transakcjami dążącymi
do zatwierdzenia.

Silna Nieprzezroczystość do Ostatniego Użycia
Własność silnej nieprzezroczystości do ostatniego użycia (ang. strong last-use opacity)
jest odmianą własności nieprzezroczystości do ostatniego użycia, która zachowuje się po-
dobnie, ale wykorzystuje inną definicję operacji ostatecznych. Silnie ostateczna operacja

10 Conclusions 217

Własność Zast. Def. 4 Def. 5 Def. 6 ⊆Uszeregowalne
Last-use opacity TM � × � �

Strong last-use opacity TM � × � �

Tablica 11.3: Podsumowanie dopuszczalności wczesnego zwalniania zasobów we wprowadzo-
nych własnościach.

zapisu to taka operacja, po której nie wystąpi żadna inna operacja zapisu na tej samej
zmiennej ani operacja wycofania i będzie to prawda dla wszystkich potencjalnych wy-
konań tej transakcji. Silna nieprzezroczystość do ostatniego użycia mówi, że transakcje,
które są zatwierdzone, mogą czytać wartości zapisane przez inne transakcje, które są rów-
nież zatwierdzone. Transakcje niezatwierdzone natomiast mogą czytać wartości zapisane
przez inne transakcje, o ile transakcje te są zatwierdzone, lub jeśli odczytywane wartości
były zapisane przez silnie ostateczną operację zapisu transakcji niezatwierdzonej.

Zdefiniowana w ten sposób własność daje te same własności co nieprzezroczystość
do ostatniego użycia, a ponadto wyklucza negatywne konsekwencje niespójnego stanu
we wszystkich modelach. Wiążę się to jednak z wykluczeniem potencjalnie poprawnych
wykonań. Oznacza to także, że w systemach, gdzie operacja wycofania może wystąpić
w dowolnym momencie (np. ze względu na awarie), wczesne zwalnianie zasobów jest
całkowicie wykluczone.

Nowe Algorytmy

W pracy wprowadzono nowe algorytmy pesymistycznego sterowania współbieżnością dla
pamięci transakcyjnej, które kierujemy w szczególności do systemów rozproszonej pa-
mięci transakcyjnej, w których występować mogą operacje niewycofywalne. Nowe al-
gorytmy opierają się o rodzinę algorytmów wersjonowania, a w szczególności algorytm
SVA. Algorytmy wersjonowania są pesymistyczne i pozbawione wycofań, więc nie po-
wodują błędnych wykonań operacji niewycofywalnych. Dodatkowo SVA wykorzystuje
mechanizm wczesnego zwalniania zmiennych, który może być użyty do wykonania wcho-
dzących w konflikt transakcji częściowo równolegle, co pozwala na krótsze przeploty, niż
np. algorytmy blokowania dwufazowego.

W poniższych opisach algorytmów użyto notacji x, y, z kiedy odnosimy się do zmien-
nych, natomiast obiekty (zarówno w modelu obiektów jednorodnych, jak i niejednorod-
nych) oznaczono dla odróżnienia jako dxc, dyc, dzc.

SVA
Algorytm SVA [96, 97] jest podstawowym algorytmem wersjonowania, na którym oparto
algorytmy zaproponowane w rozprawie. Algorytmy wersjonowania używają liczników
wersji w celu ustalenia, czy dana transakcja może w bieżącym momencie wykonać opera-
cję na konkretnym obiekcie współdzielonym czy owa operacja musi być opóźniona celem
uniknięcia konfliktu.

Mechanizm Wersjonowania
Intuicyjnie, liczniki te działają przez analogię do zarządzania kolejką w banku: klienci
którzy przychodzą do banku pobierają numerek z automatu i czekają z podejściem do

218 10 Conclusions

Ti
starti
pvi(dxc)←1

mi(dxc)→� tryC i→Ci
lv(dxc)←1

Tj
startj
pvj(dxc)←2

mj(dxc)

? lv(dxc)=1

→� tryC j→Cj
lv(dxc)←2

Tk
startk
pvk(dyc)←1

mk(dyc)→� tryCk→Ck

Rys. 11.1: Mechanizm wersjonowania w SVA.

okienka aż ich numerek zostanie wywołany. W analogii tej klient jest transakcją, okienko
obiektem współdzielonym, a numerek pobrany przez klienta to wersja transakcji dla tego
okienka, która jest porównywana z wywoływanym numerkiem—wersją obiektu.

Konkretnie, za każdym razem, kiedy transakcja Ti jest uruchamiana, pobiera ona
prywatną wersję pvi(dxc) dla każdego obiektu współdzielonego dxc, na którym trans-
akcja będzie wykonywać operacje (zbiór tych obiektów jest znany z góry). Wartości
wersji prywatnych dla obiektu dxc nadawane kolejnym transakcjom są kolejnymi licz-
bami naturalnymi. Dodatkowo, wartości te nadawane są atomowo w taki sposób, że
mając dwie transakcje Ti, Tj , jeśli dla jakiegoś obiektu dxc, pvi(dxc) < pvj(dxc), to
dla każdego innego obiektu dyc, na którym obie transakcje będą wykonywać operacje,
pvi(dyc) < pvj(dyc). W celu zapewnienia tego warunku SVA używa globalnego zamka,
który szereguje operacje rozpoczęcia wykonywane przez wszystkie transakcje.

Po pobraniu wersji, SVA używa wersji prywatnych do podjęcia decyzji, czy trans-
akcja Ti może wykonać operacje na obiekcie dxc, porównując pvi(dxc) z wersją lokalną
obiektu lv(dxc). Wersja lokalna obiektu jest równa wartości wersji prywatnej transakcji,
która jako ostatnia tego używała obiektu i już zakończyła jego używanie (np. już została
zatwierdzona). W takim wypadku, biorąc pod uwagę, że transakcje mają kolejne war-
tości wersji prywatnej, transakcja Ti może wykonywać operacje na dxc wtedy, gdy jej
wartość wersji prywatnej dla dxc jest kolejna względem wartości wersji lokalnej dxc, tj.
pvi(dxc)− 1 = lv(dxc). Warunek ten nazwano warunkiem dostępu.

Kiedy transakcja zakończyła wykonywanie wszystkich operacji, wykonuje ona opera-
cję zatwierdzenia, kiedy to dla wszystkich obiektów, dla których pobrała wersje prywatne,
zapisuje swoją wartość wersji prywatnej dla tego obiektu do licznika wersji lokalnej tego
obiektu. W kontekście algorytmów wersjonowania nazywa się to zwolnieniem obiektu dxc.

Na Rys. 11.1 pokazano przykład działania mechanizmu wersji. Tutaj Ti i Tj próbują
wykonać operacje na obiekcie dxc w tym samym czasie. Transakcja Ti startuje wcze-
śniej, więc pvi(dxc) = 1, natomiast Tj stratuje jako druga, więc pvj(dxc) = 2. Ponieważ
początkowo lv(dxc) = 0, to Tj nie jest w stanie wykonać operacji na dxc, więc czeka.
Z kolei dla Ti warunek pvi(dxc)−1 = lv(dxc) jest prawdziwy, więc Ti wykonuje operację
(metodę) m na dxc bez czekania (zwracana wartość nie jest istotna, więc jest oznaczona
�). Kiedy Ti zostanie zatwierdzona, ustawia lv(dxc) na pvi(dxc) czyli 1, co powoduje,
że Tj spełni teraz warunek pvj(dxc)− 1 = lv(dxc) i przejdzie do wykonania operacji na
dxc. W międzyczasie Tk może wykonać operację na dyc zupełnie równolegle.

Mechanizm wersjonowania zapewnia transakcjom wyłączny dostęp do obiektów, jed-
nocześnie powodując, że transakcje o rozłącznym zbiorach obiektów, na których wykonują
operacje, nie blokują się nawzajem.

10 Conclusions 219

Ti
starti
pvi(dxc)←1
supri(dxc)=1

mi(dxc)→�

aci(dxc)←1
? acj(dxc)=supri(dxc)

lv(dxc)←1

tryC i→Ci

Tj
startj
pvj(dxc)←2

mi(dxc)

? lv(dxc)=1

→� tryC j→Cj

Rys. 11.2: Przykład wczesnego zwalniania zmiennych w SVA.

Wczesne Zwalnianie Zasobów
Dodatkowo, SVA używa mechanizmu wczesnego zwalniania zasobów opartego o suprema.
Supremum dla obiektu dxc (oznaczone supri(dxc)) w transakcji Ti to liczba informująca
jaka jest maksymalna liczba wykonań operacji na dxc przez transakcję Ti. Jeśli supremum
jest zdefiniowane a priori w transakcji Ti, to transakcja liczy wywołania operacji na
obiekcie dxc za pomocą licznika aci(dxc), i jeśli po wywołaniu operacji na dxc liczba
wywołań jest równa supremum, to obiekt dxc zostaje zwolniony przez zapisanie wartości
wersji prywatnej transakcji do wersji lokalnej obiektu. Dzięki temu inna transakcja może
zacząć wykonywać operacje na tym obiekcie jeszcze zanim Ti zostanie zatwierdzona.
Z drugiej strony, ponieważ Ti osiągnęła supremum dla dxc, to nie wykona kolejnych
operacji na dxc.

Przykład przeplotu wygenerowanego przez SVA z użyciem wczesnego zwalniania zmien-
nych jest pokazany na Rys. 11.2. Tutaj transakcje Ti i Tj wykonują operacje na dxc. Tak
jak na Rys. 4.12, ponieważ wersja prywatna Ti dla dxc jest niższa niż w przypadku Tj ,
ta pierwsza wykonuje swoje operacje na dxc jako pierwsza, a Tj czeka aż dxc będzie
zwolniony. Tutaj natomiast Ti zna swoje supremum dla dxc, t.j. supri(dxc) = 1. Więc
wykonawszy swoją operację na dxc, Ti zwiększa aci(dxc), co oznacza, że supremum zo-
stało osiągnięte, tj. aci(dxc) = supri(dxc). W takim wypadku Ti zwalnia dxc od razu,
zamiast czekać do momentu zatwierdzenia. W rezultacie, Tj może wykonywać operacje
na dxc wcześniej. Transakcja Tj może nawet być zatwierdzona przed Ti.

Mechanizm wczesnego zwalniania zasobów przez suprema pozwala transakcjom ko-
rzystającym z tych samych obiektów na wykonywanie się z większym współczynnikiem
zrównoleglenia, niż w wypadku samego mechanizmu wersjonowania, jednocześnie zapew-
niając, że odczytany z niezatwierdzonych transakcji stan zawsze będzie prawidłowy. Po-
zwala to na efektywne i poprawne przeplatanie transakcji.

Własności
W ramach pracy zademonstrowano gwarancje bezpieczeństwa SVA. Konkretnie, wpro-
wadzono dekompozycję – technikę dowodzenia opartą na rafinacji obserwacyjnej (ang.
observational refinement) która pozwala pokazać, że dany przeplot jest nierozróżnialny
od poprawnego przeplotu nieprzezroczystego pod względem efektów wykonania operacji.
W ten sposób demonstrujemy, że mimo tego, że SVA nie jest nieprzezroczystym algoryt-
mem, to każdy przeplot wygenerowany przez SVA jest nierozróżnialny od poprawnego
przeplotu nieprzezroczystego (Twierdzenie 7). Ponadto, SVA nie powoduje zakleszczeń
oraz zapewnia silną progresywność.

Rozproszone Pobieranie Wersji
Celem zapewnienia atomowości pobierania wersji przy starcie transakcji algorytm SVA
używa globalnego zamka, który każda transakcja pobiera na początku swojej procedury

220 10 Conclusions

inicjalizacji i zwalnia na jej końcu. Zamek ten rodzi problem, jeśli algorytm ma być zaim-
plementowany w środowisku rozproszonym, ponieważ globalny zamek stanowi przeszkodę
dla skalowalności—niezależnie od tego, ile nowych węzłów dodamy do systemu, zawsze
wszyscy klienci muszą kontaktować się z jednym węzłem, który jest odpowiedzialny za
globalny zamek. Dodatkowo, jeśli węzeł, na którym znajduje się zamek, ulegnie awarii,
to taka awaria (częściowa) paraliżuje cały system.

Aby wyeliminować problemy związane z globalnym zamkiem, zaprezentowano w pracy
wariant SVA, który używa rozproszonych zamków w procedurze rozpoczęcia transakcji.
Wariant ten wymaga, żeby z każdym obiektem współdzielonym dxc związany był zamek
lk(dxc) (zlokalizowany na tym samym węźle co dxc). Wtedy każda transakcja, zamiast
pobierać globalny zamek przed pobraniem wersji, będzie pobierać zbiór zamków zwią-
zanych z obiektami, na których transakcja planuje wykonywać operacje. Oznacza to,
że transakcje, które nie współdzielą obiektów, mogą wykonywać procedurę rozpoczęcia
równolegle, a także, że nie ma pojedynczego zamka, który musi obsługiwać wszystkie
transakcje.

Dodatkowo, celem uniknięcia zakleszczeń wymagamy, żeby zamki były zawsze po-
bierane w według globalnie ustalonego porządku. Jeśli ten porządek jest zachowany, nie
mogą wystąpić cykle oczekiwań, a więc zakleszczenia są wykluczone. Jest to prostsze
rozwiązanie niż np. istniejące rozwiązanie w konserwatywnych algorytmach blokowania
dwufazowego, gdzie unikanie zakleszczeń zaimplementowane jest przez cykliczne odpy-
tywanie o stan zamków.

SVA+R
SVA jest algorytmem działającym w modelu transakcji wyłącznie zatwierdzających (a
nawet wykonania pozbawione są całkowicie wycofań). Natomiast, jeśli algorytm pamięci
transakcyjnej ma być praktyczny w dowolnym systemie, powinien on wspierać operację
wycofania, a więc działać w modelu dowolnych wycofań. Wprowadzono więc nowy algo-
rytm wersjonowania SVA+R (ang. SVA with rollback), który rozszerza SVA o operację
wycofania. Wymaga to wprowadzenia dodatkowych mechanizmów opisanych poniżej.

Odtwarzanie Obiektów
Po pierwsze, wprowadzono bufor sti(dxc), który transakcja Ti utrzymuje dla każdego
obiektu dxc, na którym wykonuje operacje. Obiekt dxc jest kopiowany do bufora sti(dxc)
w momencie kiedy transakcja po raz pierwszy spełni warunek dostępu do obiektu dxc,
czyli tuż przed wykonaniem pierwszej operacji na dxc. Bufor jest następnie używany
wewnątrz samej procedury wycofania transakcji: transakcja przed zwolnieniem obiektu
dxc przywróci go do wcześniejszej postaci, kopiując zawartość sti(dxc) z powrotem do
dxc.

Porządek Zatwierdzania
Druga modyfikacja ma na celu zapobieganie sytuacjom, gdzie transakcja Ti zwolni obiekt
dxc, pozwalając innej transakcji Tj na odczytanie jego stanu, a następnie Tj wykona
zatwierdzenie, zanim Ti zostanie zatwierdzona. Jest to problematyczne, ponieważ istnieje
możliwość, ze Ti ostatecznie zostanie wycofana, co powoduje, że Tj została zatwierdzona
wykonawszy operacje na już-niespójnym stanie.

W tym celu SVA+R porządkuje wykonania operacji zakończenia transakcji: wycofań
i zatwierdzeń, w taki sam sposób jak dostępy do obiektów. W związku z tym wprowa-
dzono lokalną końcową wersję obiektu (ang. local terminal version) oznaczoną ltv(dxc)
dla obiektu dxc. Wersja ta działa podobnie jak lv(dxc), ale transakcje zapisują tam

10 Conclusions 221

Ti
starti
pvi(dxc)←1

mi(dxc)→�

lv(dxc)←1

tryC i→Ci
ltv(dxc)←1

Tj
startj
pvj(dxc)←2

mj(dxc)→�

? lv(dxc)=1

tryC j

? ltv(dxc)=1

→Cj

Rys. 11.3: Wymuszenie porządku zatwierdzania transakcji w SVA+R.

Ti
starti
pvi(dxc)←1

mi(dxc)→�

rvi(dxc)←0
lv(dxc)←1
cv(dxc)←1
sti(dxc)←dxc

tryAi→Ai

cv(dxc)←0
ltv(dxc)←1
dxc←sti(dxc)

Tj
startj
pvj(dxc)←2

mj(dxc)→�

? lv(dxc)=1
rvj(dxc)←1

? rvj(dxc)=1
stj(dxc)←dxc

tryC j

? ltv(dxc)=1

→Aj

? rvj(dxc) > 1

Rys. 11.4: Wykrycie niespójnego stanu systemu w SVA+R.

swoją wersję prywatną tylko wtedy, gdy zakończyły wykonywać zatwierdzenie lub wyco-
fanie. Dodatkowo, każda transakcja Ti przed wykonaniem zatwierdzenia lub wycofania
czeka, aż warunek pvi(dxc) − 1 = ltv(dxc) stanie się prawdziwy. W konsekwencji, jeśli
transakcja Tj będzie operować na obiekcie zmodyfikowanym przez Ti, to zatwierdzenie
Tj będzie opóźnione tak, żeby wystąpiło po zatwierdzeniu lub wycofaniu Ti. Przykład
takiej sytuacji jest pokazany na Rys. 11.3.

Kaskadowe Wycofania
Trzecia modyfikacja to rozwiązanie sytuacji gdzie transakcja Ti zwolni obiekt dxc, po-
zwalając innej transakcji Tj na odczytanie jego stanu, a następnie Ti zostanie wycofana.
Powoduje to, że Tj operuje na technicznie niespójnym stanie, więc musi także zostać
wycofana.

SVA+R rozpoznaje tą sytuację i zmusza Tj do wykonania wycofania. Wykrywanie nie-
spójnego stanu jest osiągnięte za pomocą dwóch liczników: wersji obecnej (ang. current
version) oznaczonej cv(dxc) dla obiektu dxc i wersji naprawczej (ang. recovery version
oznaczonej rvi(dxc) dla obiektu dxc i transakcji Ti. Wersja obecna wyznacza najnowszą
spójną wersję obiektu, podczas gdy wersja naprawcza oznacza ostatnią spójną wersję
tego obiektu, która została zaobserwowana przez daną transakcje. Transakcje przypi-
sują coraz większe wartości wersji obecnej obiektu w momencie gdy transakcje te są
zatwierdzane lub zwalniają obiekt wcześnie (na podstawie swojej wersji prywatnej). Na-
tomiast, jeśli transakcja jest wycofywana, to wartość wersji obecnej obiektu jest cofana
do wartości mniejszej (na podstawie wersji naprawczej transakcji). Z kolei wartość wersji
naprawczej transakcji jest pobierana z wersji obecnej, kiedy transakcja po raz pierwszy
spełni warunek dostępu do obiektu dxc. Można więc zauważyć, że jeśli transakcja zaob-
serwowała jakąś wartość wersji obecnej obiektu, która została zapisana w liczniku wersji
naprawczej tej transakcji, a następnie jakaś wcześniejsza transakcja została wycofana
i zmniejszyła wartość wersji obecnej, to rvi(dxc) > cv(dxc). W konsekwencji transakcje
SVA+R sprawdzają warunek rvi(dxc) > cv(dxc) przed wykonaniem dowolnej operacji
oraz zatwierdzenia dla każdej zmiennej, dla której pobrana została wersja naprawcza.
Jeśli warunek jest prawdziwy, to wiadomo, że transakcja działa na niespójnym stanie,
więc będzie zmuszona do wykonania wycofania zamiast wykonania zamierzonej operacji.

222 10 Conclusions

Pokazano przykład takiego scenariusza na Rys. 11.4. Transakcje Ti i Tj wykonują ope-
racje na obiekcie dxc i mają przyznane wersje prywatne dla dxc równe odpowiednio 1 i 2.
W konsekwencji, Ti wykonuje operację na dxc jako pierwsza. W tym momencie Ti usta-
wia rvi(dxc) na obecną wartość cv(dxc) = 0 (wartość początkowa z założenia) i kopiuje
obiekt do bufora. Następnie Ti wykonuje operację na dxc i zwalnia dxc (na podstawie su-
premum), przez co Ti także podnosi cv(dxc) do wartości swojej wersji prywatnej dla dxc,
czyli 1. Następnie Tj spełnia warunek dostępu do dxc po raz pierwszy, więc kopiuje dxc
do bufora i ustawia rvj(dxc) na obecną wartość cv(dxc) = 1. Skoro rvi(dxc) = cv(dxc),
to zezwala się na wykonanie operacji. Następnie transakcja Tj próbuje wykonać zatwier-
dzenie, ale nie może tego zrobić, ponieważ Ti nie została zatwierdzona, dlatego Tj czeka.
W międzyczasie transakcja Ti zostanie arbitralnie wycofana. Powoduje to, że transak-
cja zapisuje swoją wersję naprawczą z powrotem do wersji obecnej obiektu cv(dxc) = 0
i obiekt zostaje przywrócony z bufora. Wówczas, jeśli transakcja Tj wykona jakąkolwiek
operacje lub spróbuje się zatwierdzić, to prawdziwy będzie warunek rvj(dxc) > cv(dxc),
co spowoduje, że transakcja Tj zostanie forsownie wycofana.

Własności
SVA+R nie powoduje zakleszczeń, oraz zapewnia silną progresywność, tak jak SVA.
Jednak w przeciwieństwie do SVA, nie można pokazać, że SVA+R będzie generował nie-
odróżnialne przeploty od przeplotów nieprzezroczystych. Jest tak, ponieważ może się zda-
rzyć, że transakcja odczyta stan innej transakcji, która to zostanie ostatecznie wycofana.
Natomiast, jak pokazuje Twierdzenie 8, SVA+R spełnia własność nieprzezroczystości do
ostatniego użycia.

RSVA+R
Ponieważ wprowadzenie mechanizmu dowolnego wycofywania transakcji do algorytmu
powoduje, że SVA+R pozwala na kaskadowe wycofania i niespójne widoki, to występuje
problem w kontekście operacji niewycofywalnych. To znaczy, może dojść do sytuacji,
gdzie transakcja odczyta wartość obiektu zwolnionego wcześniej przez wcześniejszą trans-
akcję i wycofanie wcześniejszej z transakcji spowoduje wycofanie obu. Jeśli którakolwiek
transakcja zawierała operacje niewycofywalne, to są one w takim przypadku obsłużone
niepoprawnie. W szczególności, transakcja zmuszona do wycofania na skutek wycofa-
nia innej, zwalniającej obiekty wcześnie transakcji nie jest w stanie takiego wycofania
przewidzieć.

Celem zażegnania tego problemu wprowadzono w pracy wariant algorytmu SVA+R
nazwany RSVA+R, który pozwala na zdefiniowane klasy transakcji niechętnych (ang.
reluctant), które nigdy nie są wycofywane. Jest tak dlatego, że forsowne wycofanie trans-
akcji w SVA+R wymaga, żeby transakcja operowała na zmiennej zwolnionej wcześnie
przez inną transakcję która zostanie ostatecznie wycofana. Można tę sytuację wykluczyć,
jeśli transakcja nie przyjmie zmiennej zwolnionej wcześniej, lecz poczeka, aż wcześniejsza
transakcja wykona zatwierdzenie lub się wycofa. Transakcję, która nie przyjmuje zmien-
nych zwolnionych wcześniej nazywamy właśnie transakcją niechętną, a implementacja tej
transakcji zmienia warunek dostępu do zmiennych z pvi(dxc)− 1 = lv(dxc) na warunek
pvi(dxc)−1 = ltv(dxc). Jeśli transakcja niechętna nigdy nie jest zmuszona do wycofania,
to jest ona podobna do transakcji niewycofywalnej, ale może ona jednocześnie wykonać
operację wycofania samodzielnie.

RSVA+R umożliwia doprowadzenie do poprawnego wykonania transakcji z opera-
cjami niewycofywalnymi. Rozwiązanie to wprowadza trade-off między poprawnością wy-
konania operacji niewycofywalnych i wydajnością systemu. Jeśli zbiór transakcji nie-
chętnych jest duży, to system pamięci transakcyjnej ma mało szans na zrównoleglenie

10 Conclusions 223

Ti
starti
pvi(x)←1

wi(x)1→oki
lv(x)←1

tryC i→Ci
ltv(x)←1

Tj
startj
pvj(x)←2

rj(x)→1 rj(x)→1 tryC j→Cj

? lv(x)=1 bufj(x)←1
lv(x)←2

? ltv(x)=1

ltv(x)←2

Tk
startk
pvk(x)←3

rk(x)

? lv(x)=2

→1 wk(x)2→okk tryCk→Ck
? ltv(x)=2

Rys. 11.5: Optymalizacja tylko-do-odczytu w OptSVA+R.

wykonań skonfliktowanych transakcji. W konsekwencji transakcje skonfliktowane nie-
chętne będą często wykonywane sekwencyjnie. Warto zauważyć, że w przeciwieństwie
do rozwiązań z [92], które wymagają, żeby transakcje niewycofywalne były wykonywane
pojedynczo, RSVA+R mimo wszystko pozwala na wykonanie niechętnych nieskonflik-
towanych transakcji równolegle. Z drugiej strony, jeśli zbiór transakcji niechętnych jest
niewielki, to algorytm RSVA+R zapewnia jednocześnie w pełni poprawne wykonanie
operacji niewycofywalnych oraz wysoki stopień zrównoleglenia transakcji.

RSVA+R spełnia te same własności co SVA+R.

OptSVA+R
Algorytmy wersjonowania zaprezentowane do tej pory działają w oparciu o model obiek-
tów niejednorodnych oraz przy założeniu, że semantyka operacji wykonywanych na obiek-
tach jest zastrzeżona lub ulega zmianom dynamicznie w trakcie działania systemu. W ta-
kich systemach traktowanie wszystkich operacji konserwatywnie jako potencjalny odczyt
i modyfikacja jest praktycznym uniwersalnym rozwiązaniem.

Z drugiej strony, w systemach takich jak rozproszone magazyny danych czy nieroz-
proszone systemy transakcyjne częściej wykorzystuje się prostsze obiekty jednorodne lub
zmienne. W takich systemach algorytmy wersjonowania są dużo mniej wydajne niż alter-
natywne pamięci transakcyjne, ponieważ nie wprowadzają one optymalizacji generowa-
nych przeplotów na podstawie semantyki operacji. Przykładowo, dwie operacje odczytu
zmiennej we współbieżnych transakcjach mogą być zawsze wykonane równolegle wzglę-
dem siebie, podczas gdy warianty SVA+R zawsze wykonają je sekwencyjnie.

W konsekwencji zaprezentowano algorytm OptSVA+R, który rozszerza algorytm
SVA+R i sprowadza go do modelu zmiennych, wykorzystując wiedzę odnośnie seman-
tyki operacji i uproszczoną definicję stanu obiektów w celu wprowadzenia optymalizacji
mających na celu maksymalne zrównoleglenie skonfliktowanych transakcji. OptSVA+R
wprowadza do SVA+R buforowanie operacji których efekty nie są widoczne na zewnątrz
transakcji celem opóźnienia sprawdzania warunku dostępu do zmiennych. Dodatkowo
OptSVA+R wprowadza nowatorski mechanizm przekazywania wykonania niektórych
operacji do osobnych wątków, jeśli operacje te opóźniłyby wykonanie transakcji, a ich
wyniki nie są niezbędne do kontynuowania obliczeń.

Zmienne Tylko-do-odczytu
Pierwszą optymalizacją możliwą dzięki rozróżnieniu operacji odczytu od zapisu jest wy-
korzystywane w większości istniejących pamięci transakcyjnych zrównoleglenie wykonań

224 10 Conclusions

transakcji tylko-do-odczytu. OptSVA+R idzie o krok dalej, pozwalając także na czę-
ściowe zrównoleglenie wykonań operacji odczytu na zmiennych tylko-do-odczytu nawet
w transakcjach, które wykonują zapisy na innych zmiennych.

W OptSVA+R suprema rozbite są na dwie wartości: maksymalna liczba odczytów
zmiennej, które transakcja Ti wykona na zmiennej x, czyli rubi(x), oraz analogiczna mak-
symalna liczba zapisów wubi(x). Jeśli transakcja Ti zastanie sytuację, gdzie dla zmiennej x
rubi(x) > 0 i wubi(x) = 0, to taka zmienna jest zmienną tylko-do-odczytu. W przypadku
takich zmiennych transakcja OptSVA+R zapisze spójną wartość zmiennej x do bufora
oznaczonego bufi(x) i wykona wszystkie odczyty nie bezpośrednio ze zmiennej, a właśnie
z bufora bufi(x). Podczas gdy zapisanie zmiennej do bufora wymaga, żeby transakcja
zsynchronizowała się z innymi transakcjami (gdyż inna transakcja może w tym samym
czasie wykonywać modyfikacje na zmiennej x), transakcja Ti musi przed wykonaniem
buforowania spełnić warunek dostępu. Natomiast, od razu po zbuforowaniu zmiennej
transakcja może już ową zmienną zwolnić, a także, biorąc pod uwagę, że zmienna nie
ulegnie modyfikacji, wykonać procedurę zatwierdzenia transakcji dla tej zmiennej.

W celu zwolnienia zmiennej jak najwcześniej buforowanie można wykonać nawet przed
pierwszym odczytem zmiennej przez transakcje, więc w OptSVA+R buforowanie zmien-
nych tylko-do-odczytu uruchamiane jest już przy starcie transakcji. Natomiast ze względu
na fakt, że buforowanie wymaga, żeby transakcja czekała na warunek dostępu, buforowa-
nie oddelegowane jest do osobnego wątku. Pozwala to transakcji nie spowalniać wykony-
wania innych operacji ze względu na buforowanie zmiennych. Z drugiej strony, operacja
odczytu na zmiennej tylko-do-odczytu może się odbyć tylko po tym jak zmienna zostanie
zbuforowana, więc operacje na takich zmiennych czekają, aż wątek zakończy procedurę
buforowania. Wykonanie buforowania w osobnym wątku pozwala transakcji na znalezienie
najlepszego możliwego momentu w czasie kiedy ta procedura może być przeprowadzona,
zwalniając zmienną najwcześniej jak to tylko możliwe, a jednocześnie blokując transakcje
na warunku dostępu tylko, jeśli jest to absolutnie niezbędne.

Przykład optymalizacji zmiennej tylko-do-odczytu jest zilustrowany na Rys. 11.5.
W momencie startu transakcja Tj uruchamia osobny wątek celem zbuforowania zmien-
nej x. Operacje wykonywane w osobnym wątku są zaprezentowane poniżej linii głównego
wątku transakcji. Wątek wykonuje dwie kolejne operacje: buforowanie i zatwierdzanie
pojedynczej zmiennej. Buforowanie zmiennej może odbyć się dopiero, gdy spełniony jest
warunek dostępu do zmiennej x, więc wątek czeka do momentu, aż Ti zwolni zmienną x.
Od razu po zbuforowaniu zmiennej, wątek zwalnia zmienną x i przechodzi do wykonania
procedury zatwierdzenia. Pozwala to transakcji Tk na wykonanie operacji na x jak tylko
Tj ją zbuforuje, lecz nie wymaga czekania aż Tj wykona na niej wszystkie swoje opera-
cje. Dodatkowo, Tk może także zakończyć się wcześniej, ponieważ transakcja Tj wykona
procedurę zatwierdzenia dla x jeszcze przed zakończeniem samej transakcji. Warto za-
uważyć, że w wypadku wycofania samej Tj wartość zmiennej x nie musi być zmieniona,
więc nie ma potrzeby zmuszać Tk do wycofania się, natomiast w przypadku gdyby Ti
została wycofana, zarówno Ti jak i Tj będą wycofane.

Synchronizacja przy Pierwszym Odczycie
Jeśli pierwszą (lub jedyną) operacją na jakiejś zmiennej jest zapis, to zapis ten można
wykonać na buforze, bez odniesienia do aktualnego stanu zmiennej. Wykonanie operacji
na buforze nie wymaga synchronizacji z innymi transakcjami, więc pierwsza operacja
zapisu na zmiennej może się odbyć bez sprawdzania warunku dostępu. Dodatkowo, po-
nieważ wszystkie kolejne operacje zapisu lub odczytu na tej zmiennej mogą być wykonane
na buforze, transakcja może odsunąć sprawdzanie warunku dostępu aż do ostatniego za-
pisu. Ostatecznie warunek dostępu musi być spełniony celem zapisania wartości zmiennej
z bufora do zmiennej właściwej, co może zostać wykonane w dowolnym momencie między

10 Conclusions 225

Ti
starti
pvi(x)←1

ri(x)→→0

? lv(x)=0

wi(x)1→oki
lv(x)←1

tryC i→Ci

Tj
startj
wubj(x)=1
pvj(x)←2

wj(x)2→okj
bufj(x)←2
wcj(x)←1

? wcj(x)=wubj(x)

rj(x)→2 tryC j→Cj

? lv(x)=1 x←2

Rys. 11.6: Opóźniona synchronizacja przy pierwszym zapisie w OptSVA+R.

Ti
starti
wubi(x)=1
pvi(x)←1

ri(x)→0 wi(x)1→oki
bufi(x)←1
wci(x)←1

? wci(x)=wubi(x)

ri(x)→1 tryC i→Ci

lv(x)=1
x←1

Tj
startj
pvj(x)←2

rj(x)

? lv(x)=1

→1 wj(x)2→okj tryC j→Cj

Rys. 11.7: Wczesne zwalnianie przy ostatnim zapisie w OptSVA+R.

ostatnim zapisem a zatwierdzeniem transakcji. Ponieważ moment jest dowolny, to zada-
nie czekania na warunek dostępu i uaktualnienia zmiennej z bufora jest oddelegowane do
osobnego wątku.

Przykład takiego przeplotu jest pokazany na Rys. 11.6, gdzie transakcja Ti ma dostęp
do zmiennej x, ale Tj jednocześnie wykonuje operację zapisu na x, stosując bufor, a po
wykonaniu tej operacji uruchamia wątek, który czeka na warunek dostępu (aż Ti zwolni
x) i, gdy ten jest spełniony, zapisuje wartość z bufora do zmiennej.

Optymalizacja ta pozwala transakcji na wykonanie dodatkowych operacji na danym
obiekcie (używając bufora), zanim spełniony zostanie warunek dostępu dla tego obiektu.
W konsekwencji oznacza to, że konfliktujące ze sobą transakcje wykonują się bardziej
równolegle niż było to możliwe w przypadku SVA+R.

Wczesne Zwalnianie przy Ostatnim Zapisie
Ponieważ OptSVA+R rozróżnia odczyty od zapisów, można zastosować kolejną opty-
malizację. Jeśli wykonywać wszystkie zapisy na lokalnym buforze i wprowadzać mo-
dyfikacje do zmiennych dopiero przy ostatnim zapisie, to odczyty, które następują po
zapisach, mogą także korzystać z bufora. W konsekwencji, jeśli zmienna została zbufo-
rowana i wszystkie zapisy zostały wykonane, zmienna może być zwolniona, a wszystkie
kolejne odczyty mogą korzystać z wartości zmiennej zapisanej w buforze. Powoduje to,
że wczesne zwalnianie zmiennych jest wykonywane wcześniej, niż w innych algorytmach
wersjonowania.

Scenariusz taki jest zilustrowany na Rys. 11.7. Ti po wykonaniu wszystkich swoich
zapisów na zmiennej x (tzn. jednego) zwalnia zmienną i wykonuje kolejne odczyty na
buforze. Pozwala to transakcji Tj na wykonywanie operacji na zmiennej x mimo tego,
że Ti wykonuje dalsze odczyty na tej zmiennej (korzystając z bufora). Powoduje to, że
przeplot transakcji jest bardziej zrównoleglony, a więc wykonanie jest bardziej efektywne.

Zaprezentowana optymalizacja pozwala transakcjom na zwalnianie obiektów wcze-

226 10 Conclusions

śniej, niż w przypadku SVA+R, ponieważ transakcje OptSVA+R nie muszą czekać na
wykonanie wszystkich operacji odczytu na zmiennej, zanim zmienna zostanie zwolniona.
Powoduje to zwiększenie stopnia współbieżności między transakcjami operującymi na
tych samych zmiennych, co przekłada się na efektywność algorytmu. Co więcej, wyko-
rzystanie wszystkich trzech optymalizacji powoduje, że transakcje wymagają wyłącznego
dostępu do zmiennych w bardzo krótkich interwałach:

a) zmienne, które są tylko czytane, są trzymane na wyłączność tylko w momencie
buforowania,

b) zmienne, do których się tylko zapisuje, są trzymane na wyłączność tylko w momen-
cie przepisywania stanu z bufora do pamięci po ostatniej operacji zapisu,

c) zmienne, z których zarówno się czyta jak i do których się pisze, ale gdzie pierwszą
operacją jest zapis, są również trzymane na wyłączność tylko w momencie przepi-
sywana stanu z bufora do pamięci po ostatniej operacji zapisu,

d) pozostałe zmienne są trzymane na wyłączność tylko między pierwszym odczytem
a ostatnim zapisem.

Własności
W przypadku OptSVA+R formalnie porównano przeploty wygenerowane przez ten al-
gorytm z przeplotami generowanymi przez SVA+R i pokazujemy, że przeploty wygene-
rowane przez OptSVA+R są zawsze nie dłuższe, a zazwyczaj krótsze, niż te wytworzone
przez SVA+R. W konsekwencji OptSVA+R zapewnia większą wydajność niż jego po-
przednik.

Jednocześnie OptSVA+R daje te same gwarancje bezpieczeństwa co SVA+R: speł-
nia nieprzezroczystość do ostatniego użycia. Natomiast ze względu na sposób, w jaki
OptSVA+R oddziela wykonanie operacji od efektu, jaki dana operacja ma na zmienną,
staje się trudnym udowodnienie tej własności wprost. W konsekwencji wprowadzono nową
technikę dowodzenia nazwaną harmonią śladów (ang. trace harmony). Ślad definiujemy
jako historię wykonania danego programu, w której ujęte są wykonania operacji trans-
akcyjnych oraz wykonania instrukcji niskopoziomowych, takich jak dostępy do pamięci.
Jeśli operacje i instrukcje w śladach spełniają zestaw cząstkowych wymagań określo-
nych w Definicjach 29–52, to przeplot pokazany w danym śladzie jest nieprzezroczysty
do ostatniego użycia, co pokazano w Twierdzeniu 9. Następnie w Lemacie 70 i Wnio-
sku 22 pokazujemy, że każdy ślad wygenerowany przez OptSVA+R jest harmoniczny,
więc OptSVA+R jest nieprzezroczysty do ostatniego użycia.

Dodatkowo OptSVA+R jest także wolny od zakleszczeń i silnie progresywny.

Warianty
Przez analogię do SVA+R i RSVA+R wprowadzono w pracy ROptSVA+R, wariant Opt-
SVA+R, który pozwala na zdefiniowanie klasy transakcji niechętnych, które nigdy nie są
zmuszane do wycofania kosztem wykonywania operacji na zmiennych zwolnionych wcze-
śniej. Ponadto wprowadzono OptSVA, wariant OptSVA+R, który usuwa z algorytmu
możliwość wykonania ręcznej operacji wycofania, co prowadzi do całkowitego wyelimino-
wania wycofań w algorytmie. Algorytm ten jest prostszy od OptSVA+R, ale nadaje się
do użycia jedynie w modelu systemu z transakcjami dążącymi do zatwierdzenia.

OptSVA-CF+R
Ograniczenie OptSVA+R do modelu obiektów-zmiennych pozwala na wprowadzenie du-
żej liczby optymalizacji względem SVA+R. Natomiast przyjęcie tego modelu powoduje,

10 Conclusions 227

że OptSVA+R nie jest stosowalny w wielu typach aplikacji. W szczególności, jeśli Opt-
SVA+Rmiałby zostać wykorzystany do tworzenia rozproszonych systemów pamięci trans-
akcyjnych działających w modelu przepływu sterowania, które z kolei byłyby aplikowane
w złożonych systemach rozproszonych, założenia które OptSVA+R czyni względem stanu
zmiennych i operacji które te zmienne wspierają są zbyt silne. W konsekwencji wprowa-
dzono kolejny algorytm, OptSVA-CF+R, który ma zaaplikować optymalizacje wprowa-
dzone w OptSVA+R do obiektów jednorodnych i niejednorodnych zarazem stanowiąc
kompromis pomiędzy wydajnością a ogólnością stosowanego modelu.

Obiekty Niejednorodne
Jeśli przyjąć, że OptSVA-CF+R nie posiada żadnej wiedzy na temat obiektów na których
operuje, żadna z wprowadzonych w OptSVA+R optymalizacji nie jest stosowalna. Nie
można jednak oczekiwać od uniwersalnego rozwiązania, żeby znana i brana pod uwagę
była semantyka każdej operacji każdego obiektu w modelu niejednorodnym. W konse-
kwencji wprowadzono kompromis, który wymaga kategoryzacji każdej operacji każdego
obiektu w jednej z trzech klas:

a) operacja odczytu to operacja, która wykonuje dowolny kod (także z efektami ubocz-
nymi), który może zwracać dowolną wartość, ale który nie modyfikuje stanu obiektu,

b) operacja zapisu to operacja, która wykonuje dowolny kod, który może modyfikować
stan obiektu, ale który nie czyta stanu obiektu ani nie zwraca wartości,

c) operacja aktualizacji to dowolna operacja która wykonuje dowolny kod i może za-
równo odczytywać, jak i modyfikować stan obiektu, oraz zwracać wartość.

Klasyfikacja ta pozwala określić semantykę operacji w stopniu pozwalającym na zaapli-
kowanie optymalizacji. Rozróżnienie operacji „czystego” zapisu od operacji aktualizacji
pozwala nam w szczególności na aplikowanie optymalizacji związanych z buforowaniem
operacji zapisu. W wypadku gdy semantyka jakiejś operacji jest nieznana, może ona za-
wsze być sklasyfikowana jako operacja aktualizacji bez groźby niepoprawnego wykonania.

Buforowanie Obiektów
Ponieważ operacje zapisu na zmiennych mają prostą semantykę, która wiąże się z nadpi-
saniem całego stanu zmiennej, tj. jej wartości, możliwe jest wykonywanie operacji zapisu
na „pustych” buforach. Nie jest to możliwe jednak w przypadku obiektów, których stan
jest złożony: po wykonaniu operacji zapisu nie ma pewności, że następna operacja od-
czytu będzie korzystać z tego samego pola, które zostało zapisane przez operację zapisu.

Celem rozwiązania tego problemu wprowadzono kolejny typ bufora: dziennik (ang. log
buffer). Dziennik ma taki sam interfejs jak obiekt, z którym jest związany, ale operacja
zlecona do wykonania nie zostaje wykonana de facto, a jedynie dodana do listy operacji
do wykonania. Następnie taki dziennik może być zaaplikowany do obiektu, z którym jest
związany, co spowoduje wykonanie wszystkich zleconych operacji. Dziennik może być
użyty do odsuwania wykonań operacji zapisu i nie wymaga on uprzedniej inicjalizacji,
tak jak jest to konieczne w przypadku standardowych buforów.

Asynchroniczne Buforowanie
OptSVA-CF+R obsługuje obiekty tylko-do-odczytu przez analogię do OptSVA+R. Po-
dobnie jest w przypadku buforowania obiektów, na których wykonywany jest zapis,
chociaż w tym wypadku procedura jest bardziej złożona i konserwatywna ze względu
na użycie dwóch typów buforów. W wypadku, gdy pierwsza operacja na danym typie
obiektu jest zapisem, zapis ten jest wykonywany bez synchronizacji na dzienniku dla

228 10 Conclusions

tego obiektu. Jeśli po zapisie występują kolejne zapisy, to one także są kierowane do
dziennika obiektu. Natomiast, jeśli po zapisach występuje aktualizacja lub odczyt, to
należy dziennik zaaplikować do obiektu, żeby uzyskać zaktualizowany stan. Oznacza to,
że OptSVA-CF+R w takim wypadku musi dokonać synchronizacji i czekać na warunku
dostępu do danej zmiennej, co nie jest konieczne w przypadku OptSVA+R. Dodatkowo,
w przeciwieństwie do OptSVA+R, gdzie zapisy zawsze wykonywane są przy użyciu bu-
fora, transakcje OptSVA-CF+R, które wykonują zapisy, wykonują je bezpośrednio na
obiekcie właściwym, jeśli warunek dostępu został uprzednio spełniony podczas odczytu
lub aktualizacji. W końcu, OptSVA-CF+R, podobnie jak OptSVA+R, wykonuje kopię
obiektu do bufora przy ostatnim zapisie lub aktualizacji (ostatniej potencjalnej mody-
fikacji dowolnego typu). W wypadku, gdy na obiekcie wykonywane były tylko zapisy,
buforowanie wymaga także, aby dziennik był zaaplikowany do obiektu przed skopiowa-
niem go do bufora.

Różnice między optymalizacjami zaaplikowanymi w OptSVA+R i OptSVA-CF+R są
ilustruje Rys. 11.8. Pokazano tam wykonanie tego samego programu przy użyciu Opt-
SVA+R (Rys. 11.8a) i OptSVA-CF+R (Fig. 11.8b). W obu przykładach dxc jest ko-
mórką z referencją; prostym obiektem który, zawiera pojedyncze pole stanowiące jego
stan i interfejs analogiczny do zmiennej. W obu zaprezentowanych przeplotach transak-
cja Ti uruchamia się jako pierwsza, ale wykonuje operację zapisującą 2 do zmiennej x
(obiektu dxc) dopiero po długim opóźnieniu. W międzyczasie transakcja Tj wykonuje
własny zapis do x (dxc), zapisując 1. Ponieważ jest to początkowy zapis, to OptSVA+R
wykonuje go na buforze bufj(x), a OptSVA-CF+R na dzienniku logj(dxc), więc żaden
z algorytmów nie powoduje, że Tj czeka na Ti. Następnie Tj wykonuje operację odczytu
na x (dxc). W OptSVA+R ta operacja jest wykonana na buforze bufj(x), co nie wymaga
synchronizacji, więc operacja wykonuje się bez czekania. Natomiast w OptSVA-CF+R
operacja odczytu nie może być wykonana na dzienniku, ponieważ dziennik nie zna stanu
obiektu. Niezbędnym więc jest w OptSVA-CF+R, żeby Tj w tym momencie czekała, aż Ti
nie zwolni obiektu dxc. Dopiero wtedy Tj może zaaplikować logj(dxc) do dxc i wykonać
odczyt. W efekcie Tj wykonuje się dłużej w OptSVA-CF+R niż w OptSVA+R.

Przykład pokazuje więc, że generalizacja modelu niesie ze sobą potencjalny spadek
efektywności wykonania. Jest to nieuniknione, biorąc pod uwagę złożoność obsługiwanych
obiektów. Z drugiej strony, OptSVA-CF+R wciąż cechuje się bardzo wysokim stopniem
zrównoleglenia transakcji skonfliktowanych i, jak pokazano poniżej, osiąga wysoką wy-
dajność w praktyce.

Warianty
Tak samo, jak w przypadku OptSVA+R i SVA+R, OptSVA-CF+R ma wariant z transak-
cjami niechętnymi (ROptSVA-CF+R) oraz wariant działający w modelu z transakcjami
dążącymi do zatwierdzenia (OptSVA-CF).

Własności
Pokazujemy, że OptSVA-CF+R jest nieprzezroczysty do ostatniego użycia przez analogię
do OptSVA+R, oraz że jest on wolny od zakleszczeń i silnie progresywny.

Podsumowanie
Wprowadzone algorytmy są podsumowane w Tablicy 11.4. Wszystkie algorytmy są pe-
symistyczne, blokujące i pozbawione zakleszczeń. Algorytmy z transakcjami niechętnymi
zapewniają poprawne wykonanie transakcji niechętnych ze względu na operacje niewyco-
fywalne, a algorytmy bez wycofań zapewniają poprawne wykonanie wszystkich transakcji

Ti
starti
wubi(x)=1
pvi(x)←1

wi(x)2→oki
lv(x)←1

tryC i→Ci

Tj
startj
wubj(x)=1
pvj(x)←2

wj(x)1→okj
bufj(x)←1

? wubj(x)= wcj(x)

rj(x)→1 rj(y)→0 tryC j→Cj

? lv(x)=1 x←logj(x)

(a) OptSVA+R.

Ti
starti
wubi(dxc)=1
pvi(dxc)←1

writei(dxc)2→oki
lv(dxc)←1

tryC i→Ci

Tj
startj
wubj(dxc)=1
pvj(dxc)←2

writej(dxc)1→okj
execute writej on logj(dxc)

? wubj(dxc)= wcj(dxc)

readj(dxc)

join with :write_buffer

→1

execute readj on bufj(dxc)

readj(dyc)→0 tryC j→Cj

? lv(dxc)=1 dxc←logj(dxc)
bufj(dxc)←dxc

(b) OptSVA-CF+R.

Rys. 11.8: Obsługa buforowania w OptSVA+R vs OptSVA-CF+R.

Algorytm Modyfikacje Wycofania A priori Obiekty Bezpie- Zwalnianie Operacje
czeństwo zasobów niewycofywalne

SVA p. wykonania bez wycofania ASet, supr niejednorodne opaque-equivalent tak Ti ∈ T
SVA+R p. wykonania dowolne, przy kaskadzie ASet, supr niejednorodne last-use opaque tak ∅

RSVA+R p. wykonania dowolne, przy kaskadzie ASet, supr, R niejednorodne last-use opaque tak Ti ∈ R
OptSVA p. zatwierdzeniu bez wycofania ASet, wub, rub, zmienne last-use opaque* tak Ti ∈ T
OptSVA+R p. zatwierdzeniu dowolne, przy kaskadzie ASet, wub, rub, zmienne last-use opaque tak ∅

ROptSVA+R p. zatwierdzeniu dowolne, przy kaskadzie ASet, wub, rub, R zmienne last-use opaque tak Ti ∈ R
OptSVA-CF p. zatwierdzeniu bez wycofania ASet, wub, rub, klasy operacji dowolne last-use opaque* tak Ti ∈ T
OptSVA-CF+R p. zatwierdzeniu dowolne, przy kaskadzie ASet, wub, rub, klasy operacji dowolne last-use opaque tak ∅

ROptSVA-CF+R p. zatwierdzeniu dowolne, przy kaskadzie ASet, wub, rub, R, klasy operacji dowolne last-use opaque tak Ti ∈ R

Tablica 11.4: Podsumowanie wprowadzonych algorytmów wersjonowania.

10 Conclusions 231

ze względu na operacje niewycofywalne. Dodatkowo, algorytmy bez wycofania, poza speł-
nianiem nieprzezroczystości do ostatniego użycia, generują przeploty nierozróżnialne od
przeplotów nieprzezroczystych pod względem efektów.

Implementacje

Zaimplementowano dwa z zaproponowanych algorytmów: SVA+R i OptSVA-CF+R (wraz
z wariantami pozwalającymi na definicje transakcji niechętnych) jako systemy rozpro-
szonej pamięci transakcyjnej oparte na Java RMI, nazwane odpowiednio Atomic RMI
i Atomic RMI 2. Implementacje dostarczają mechanizmów niezbędnych do praktycznego
funkcjonowania systemu w środowisku rozproszonym, takich jak obsługa awarii częścio-
wych, serializacja obiektów, implementacja buforów, oraz instrumentacja kodu w spo-
sób ukrywający algorytmy sterowania współbieżnością przed programistą. Architektura
zaimplementowanych systemów rozproszonej pamięci transakcyjnej rozszerza architek-
turę Java RMI o obiekty pełnomocników (ang. proxy), które implementują algorytmy
sterowania współbieżnością przechwytując komunikację między klientami-transakcjami
a obiektami współdzielonymi.

Implementacje zostały przetestowane pod względem wydajności przy użyciu pro-
gramu wzorcowego (ang. benchmarks) EigenBench [47] przystosowanego do ewaluacji
rozproszonej pamięci transakcyjnej. Ewaluacja porównuje Atomic RMI i Atomic RMI 2
z wysokiej klasy optymistycznym systemem rozproszonej pamięci transakcyjnej, HyFlow2
[86]. Dodatkowo porównano zaimplementowane w ramach pracy systemy z implementa-
cjami algorytmów blokowania dwufazowego opartymi na zamkach z rozróżnieniem opera-
cji odczytu i zapisu (R/W) lub traktującymi operacje jednakowo (Mutex), a także z im-
plementacją zamka globalnego. Implementacje przetestowano na 16-węzłowym klastrze
obliczeniowym połączonym siecią o prędkości 1Gb. Każdy węzeł posiada dwa czterordze-
niowe procesory quad-core Intel Xeon L3260 taktowane 2.83 GHz z 4 GB pamięci RAM.
Na każdym węźle działa system operacyjny OpenSUSE 13.1 (jądro 3.11.10, architektura
x86_64). Użyto języka Groovy w wersji 2.3.8 oraz 64-bitowej Java HotSpot(TM) JVM
w wersji 1.8 (build 1.8.0_25-b17).

Wyniki ewaluacji pokazane są na Rys. 11.9–11.10. Miarą wydajności jest przepusto-
wość mierzona w liczbie operacji wykonanych na sekundę. Rys. 11.9 pokazuje, że wraz
ze wzrostem liczby klientów (a więc i ze wzrostem współzawodnictwa o zasoby) spada
przepustowość wszystkich systemów. Spadek wydajności jest szczególnie stromy do liczby
256 klientów i stabilizuje się dla 1024 klientów. Wszystkie algorytmy przewyższają wy-
dajnością wykonanie sekwencyjne przy użyciu zamka globalnego. W scenariuszu, gdzie
stosunek odczytów do zapisów wynosi 90%, HyFlow2 i Atomic RMI 2 wykonują się
z wydajnością znacznie przewyższającą wydajność pozostałych systemów o 9–267%, lecz
porównywalną względem siebie. W pozostałych dwóch scenariuszach wszystkie implemen-
tacje tracą na efektywności, z wyjątkiem Atomic RMI 2, który działa 9–359% lepiej od
pozostałych implementacji (w tym HyFlow2). Różnica wydajności jest wynikiem optyma-
lizacji operacji zapisu w Atomic RMI 2, która pozwala na skracanie przeplotów transakcji,
gdy występują długie sekwencje operacji zapisu. Pozostałe implementacje nie optyma-
lizują zapisów w takim stopniu. W szczególności HyFlow2 i 2PL opierają się głównie
o zrównoleglenie odczytów. Degradacja wydajności Atomic RMI 2 jest wyjaśniona po-
trzebą zarządzania wątkami w celu obsługi asynchronii lokalnej. Powoduje to, że każdy
węzeł musi obsłużyć więcej działających jednocześnie wątków niż w innych implemen-
tacjach. Spośród pozostałych implementacji, warianty C2PL działają zawsze lepiej, niż
odpowiadające im warianty CS2PL, natomiast warianty R/W działają lepiej niż Mutex.

64 128 256 512 768 1024

Klienty
0

100

200

300

400

500

600

700

P
rz

ep
us

to
w

oś
ć

[o
p/

s]

Atomic RMI 2
Atomic RMI
HyFlow2
R/W CR2PL
R/W C2PL
Mutex CR2PL
Mutex C2PL
GLock

(a) 90% odczytów, 10% zapisów.

64 128 256 512 768 1024

Klienty
0

100

200

300

400

500

600

P
rz

ep
us

to
w

oś
ć

[o
p/

s]
(b) 50% odczytów, 50% zapisów.

64 128 256 512 768 1024

Klienty
0

100

200

300

400

500

600

700

P
rz

ep
us

to
w

oś
ć

[o
p/

s]

(a) 10% odczytów, 90% zapisów.

Rys. 11.9: Przepustowość (ang. throughput) vs liczba klientów.

4 8 12 16

Wierzchołki
0

50

100

150

200

250

300

P
rz

ep
us

to
w

oś
ć

[o
p/

s]

Atomic RMI 2
Atomic RMI
HyFlow2
R/W CR2PL
R/W C2PL
Mutex CR2PL
Mutex C2PL
GLock

(b) 90% odczytów, 10% zapisów, 10 tablic.

4 8 12 16

Wierzchołki
0

20

40

60

80

100

120

140

160

180

P
rz

ep
us

to
w

oś
ć

[o
p/

s]

(c) 50% odczytów, 50% zapisów, 10 tablic.

4 8 12 16

Wierzchołki
0

50

100

150

200

250

P
rz

ep
us

to
w

oś
ć

[o
p/

s]

(d) 10% odczytów, 90% zapisów, 10 tablic.

Rys. 11.10: Przepustowość (ang. throughput) vs liczba węzłów.

10 Conclusions 233

Atomic RMI działa porównywalnie pod względem wydajności do C2PL i zdecydowanie
gorzej niż Atomic RMI 2.

Rys. 11.10 pokazuje zmianę w przepustowości wraz z dodawaniem nowych węzłów
do systemu (ale przy stałej przepustowości). Wraz z poszerzaniem systemu o dodatkową
moc obliczeniową, przepustowość systemu wzrasta, dzięki powiększającej się liczbie po-
tencjalnie wykonywanych równolegle operacji. Porównanie pokazuje, że Atomic RMI 2
zdecydowanie przewyższa wydajnością pozostałe implementacje, w tym także Atomic
RMI i HyFlow2. Różnica ta uwydatnia się znów w wypadku gdy scenariusz jest zdomi-
nowany przez operacje zapisu, które są lepiej zoptymalizowane w Atomic RMI 2 niż w in-
nych implementacjach. Ze względu na stosunkowo dużą liczbę obiektów współdzielonych
w systemie (10 tablic na każdym z węzłów), sposób generowania transakcji powoduje, że
Atomic RMI 2 jest także w stanie często zwalniać obiekty wcześnie, prowadząc do więk-
szego współczynnika zrównoleglenia transakcji. Spodziewać się można, że gdyby liczba
obiektów była ograniczona, różnica między HyFlow2 i Atomic RMI 2 wyrównałaby się
w przypadku scenariuszy analogicznych do Rys. 11.9b i 11.9c.

Istotnym jest także, że w ewaluacji liczba transakcji wycofanych przez Atomic RMI
i Atomic RMI 2 wynosiła 0, podczas gdy HyFlow2 musiał wycofać i ponowić 60–89%
transakcji (w zależności od scenariusza). Oznacza to, że w praktyce Atomic RMI 2 za-
chowuje się bezpiecznie względem operacji niewycofywalnych, podczas gdy w HyFlow2
mogą one być wykonane wielokrotnie.

Statyczna Analiza i Prekompilator

Dodatkowym elementem prezentowanym w pracy, poza algorytmami i ich własnościami,
są dwa narzędzia mające na celu poprawienie praktyczności i wydajności zaprezentowa-
nych systemów: prekompilator i moduł szeregowania transakcji.

Ze względu na fakt, że algorytmy wersjonowanie wymagają znajomości a priori obiek-
tów używanych przez poszczególne transakcje, zadaniem prekompilatora jest analiza sta-
tyczna kodu każdej z transakcji i wydobycie tej informacji w sposób automatyczny.
Dodatkowo, prekompilator bada kod, poszukując poszczególnych wywołań operacji na
obiektach współdzielonych i oblicza przybliżone suprema dla każdego z obiektów we-
wnątrz transakcji. Prekompilator uwalnia programistę od potrzeby przygotowywania tej
informacji ręcznie.

Podsumowanie

Aby udowodnić główną tezę niniejszej pracy zostały przeanalizowane istniejące własno-
ści bezpieczeństwa oraz ich przydatność w kontekście pamięci transakcyjnej z wczesnym
zwalnianiem zmiennych (Rozdział 3). Następnie wprowadzone zostały własności bezpie-
czeństwa, które mają praktyczne zastosowanie dla tego typu pamięci transakcyjnych:
nieprzezroczystość do ostatniego użycia i silna nieprzezroczystość do ostatniego użycia
(Rozdział 5).

W dalszej kolejności opisano istniejące pesymistyczne algorytmy sterowania współ-
bieżnością dla pamięci transakcyjnej, zarówno te rozproszone jak i nierozproszone, oraz
optymistyczne algorytmy sterowania współbieżnością w rozproszonej pamięci transak-
cyjnej, a także algorytmy używające wczesnego zwalniania zasobów (Rozdział 4). Na

234 10 Conclusions

podstawie tej analizy wybrano rodzinę algorytmów wersjonowania jako podstawę do dal-
szych badań. Następnie zmodyfikowano algorytm SVA, eliminując zależność od global-
nego zamka, oraz pozwalając na swobodne wycofywanie transakcji (Rozdział 6, Sekcje 6.1
i 6.2).

Dalej zaprezentowano algorytmy OptSVA+R i OptSVA-CF+R oraz ich warianty. Są
to nowatorskie algorytmy pesymistycznego sterowania współbieżnością rozszerzające ist-
niejące algorytmy wersjonowania i stosujące optymalizacje, które pozwalają na wykonanie
skonfliktowanych transakcji z większym stopniem zrównoleglenia niż było to możliwe do
tej pory (Rozdział 6, Sekcje 6.3–6.4). Opracowane pesymistyczne algorytmy sterowania
współbieżnością zostały użyte do implementacji dwóch systemów rozproszonej pamięci
transakcyjnej. W pracy pokazano, że system oparty na OptSVA-CF+R i ROptSVA-
CF+R jest w stanie uzyskać lepszą wydajność, niż wysokiej klasy implementacja opty-
mistycznej pamięci transakcyjnej, jednocześnie nie powodując konieczności wycofania
transakcji (Rozdział 8).

Pokazano także, że choć zastosowane algorytmy reprezentują bardziej ogólne i wy-
dajne podejście, zachowują one silne gwarancje bezpieczeństwa. Zostało to w pracy zade-
monstrowane przeprowadzając formalne dowody poprawności tych algorytmów, co wy-
magało wprowadzenia nowych technik dowodzenia poprawności algorytmów sterowania
współbieżnością (Rozdział 7).

Ponadto, zaproponowano dodatkowy praktyczny moduł dla opracowanych systemów
pamięci transakcyjnej, tj. prekompilator, który automatycznie generuje wiedzę a priori
używaną do wczesnego zwalniania obiektów w algorytmach wersjonowania przez sta-
tyczną analizę kodu programu (Rozdział 9).

Dowód Tezy
Jako dowód postawionej w pracy tezy:

Przedstawiono Atomic RMI 2, system rozproszonej pamięci transakcyjnej w modelu prze-
pływu sterowania, implementujący pesymistyczne algorytmy OptSVA-CF+R i ROptSVA-
CF+R.

a) W Sekcji 8.2.2 pokazano, że Atomic RMI 2 przewyższa wydajnością wysokiej klasy
optymistyczny system rozproszonej pamięci transakcyjnej, a więc Atomic RMI 2
jest systemem wydajnym.

b) Twierdzeniem 10 pokazano, że OptSVA-CF+R jest nieprzezroczysty do ostatniego
użycia, Twierdzeniem 4 pokazano, że jest on silnie progresywny, a Twierdzeniem 3
pokazano, że jest on pozbawiony zakleszczeń. W konsekwencji OptSVA-CF+R speł-
nia silne gwarancje bezpieczeństwa, postępu i żywotności.

c) W Sekcji 8.2.2 pokazano, że OptSVA-CF+R w praktyce nie doprowadza do wycofań
transakcji, a więc operacje niewycofywalne wykonywane są (w praktyce) poprawnie.
Ponadto, ROptSVA-CF+R całkowicie wyklucza możliwość wycofywania transakcji
niechętnych, a więc operacje niewycofywalne zawsze będą wykonywane popraw-
nie w przypadku ogólnym, zakładając, że będą wykonywane w ramach transakcji
niechętnych.

d) OptSVA-CF+R wspiera dowolne wycofywanie transakcji, i operuje na niejedno-
rodnym modelu obiektowym. Dodatkowo, nie ma pojedynczego punktu awarii. Po-
nadto, informacje niezbędne do działania tego algorytmu mogą być wygenerowane
a priori przez prekompilator. W konsekwencji OptSVA-CF+R można uznać za
algorytm mający praktyczne zastosowanie.

Reasumując, teza jest spełniona. �

Bibliography

[1] Y. Afek, A. Matveev, and N. Shavit. Pessimistic software lock-elision. In Pro-
ceedings of DISC’12: the 26th International Symposium on Distributed Computing,
Oct. 2012.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: principles, tech-
niques, and tools. Addison Wesley, 2nd edition, Aug. 2006.

[3] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham, and I. Watson. Lee-TM:
A non-trivial benchmark for transactional memory. In Proceedings of ICA3PP’08:
the 8th International Conference on Algorithms and Architectures for Parallel Pro-
cessing, June 2008.

[4] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and B. Parady.
SPEComp: A new benchmark suite for measuring parallel computer performance.
In Proceedings of WOMPAT’01: the International Workshop on OpenMP Applica-
tions and Tools: OpenMP Shared Memory Parallel Programming, July 2001.

[5] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. A programming language per-
spective on transactional memory consistency. In Proceedings of PODC’13: the
32nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
2013.

[6] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. Safety of live transactions in
transactional memory: TMS is necessary and sufficient. In Proceedings of DISC’14:
the 28th International Symposium on Distributed Computing, 2014.

[7] H. Attiya and S. Hans. Transactions are back—but how different they are? In Pro-
ceedings of TRANSACT’14: the 7th ACM SIGPLAN Workshop on Transactional
Computing, Feb. 2014.

[8] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of deferred update in trans-
actional memory. In Proceedings of ICDCS’13: the 33rd International Conference
on Distributed Computing Systems, July 2013.

[9] H. Attiya and E. Hillel. Single-version STMs can be multi-version permissive. In
Proceedings of ICDCN’11: the 12th International Conference on Distributed Com-
puting and Networking, Jan. 2011.

236 11 Bibliography

[10] H. Avni, S. Dolev, P. Fatourou, and E. Kosmas. Abort free semantic TM by depe-
dency aware scheduling of transactional instructions. In Proceedings of NETYS’14:
the International Conference on Networked Systems, May 2014.

[11] J. Baranowski, P. Kobyliński, K. Siek, and P. T. Wojciechowski. Helenos: A realistic
benchmark for distributed transactional memory. Journal of Systems and Software,
Mar. 2016. arXiv:1603.07899 [cs.DC] (revision).

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. Addison-Wesley, 1987.

[13] A. Bieniusa, A. Middelkoop, and P. Thiemann. Brief announcement: Actions in
the twilight—concurrent irrevocable transactions and inconsistency repair. In Pro-
ceedings of PODC’10: the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, July 2010.

[14] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software transactional memory
for large scale clusters. In Proceedings of PPoPP’08: the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2008.

[15] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and A. Silberschatz. On rig-
orous transaction scheduling. IEEE Transactions on Software Engineering, 17(9),
Sept. 1991.

[16] W. Cellary, E. Gelenbe, and T. Morzy. Concurrency control in distributed database
systems. North-Holland, 1988.

[17] J. C. Corbett and et al. Spanner: Google’s globally-distributed database. In Pro-
ceedings of OSDI’12: the 10th USENIX Symposium on Operating Systems Design
and Implementation, Oct. 2012.

[18] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM: Dependable
distributed software transactional memory. In Proceedings of PRDC’13: the 15th
IEEE Pacific Rim International Symposium on Dependable Computing, Nov. 2009.

[19] D. Cunningham, K. Gudka, and S. Eisenbach. Keep off the grass: Locking the right
path for atomicity. In Proceedings of CC’08: the 17th International Conference on
Compiler Construction, part of Part of ETAPS’08: the Joint European Conferences
on Theory and Practice of Software, Mar. 2008.

[20] D. Dice, A. Matveev, and N. Shavit. Implicit privatization using private transac-
tions. In Proceedings of TRANSACT’10: the 5th ACM SIGPLAN Workshop on
Transactional Computing, Apr. 2010.

[21] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Proceedings
of DISC’06: the 20th International Symposium on Distributed Computing, Sept.
2006.

[22] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying
and verifying transactional memory. Formal Aspects of Computing, 25(5), Sept.
2013.

[23] S. Dolev, P. Fatourou, and E. Kosmas. Abort free semantic TM by depedency
aware scheduling of transactional instructions. In Proceedings of TRANSACT’13:
the 8th ACM SIGPLAN Workshop on Transactional Computing, Mar. 2013.

11 Bibliography 237

[24] S. Dolev, D. Hendler, and A. Suissa. CAR-STM: Scheduling-based collision avoid-
ance and resolution for software transactional memory. In Proceedings of PODC’08:
the 28th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Comput-
ing, Aug. 2008.

[25] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh. Preventing vs curing:
Avoiding conflicts in transactional memories. In Proceedings of PODC’09: the
28th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Aug. 2009.

[26] D. Dziuma, P. Fatourou, and E. Kanellou. Consistency for transactional memory
computing. Bulletin of the EATCS, 113, 2014.

[27] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop bound
analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In Proceedings of WCET ’07: the 7th International Workshop
on Worst-Case Execution Time Analysis, July 2007.

[28] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In Proceedings
of DISC’09: the 23rd International Symposium on Distributed Computing, Sept.
2009.

[29] C. Ferdinand and R. Heckmann. AiT: Worst-case execution time prediction by
static program analysis. In Proceedings of WCC ’04: the 18th International Feder-
ation for Information Processing World Computer Congress, Aug. 2004.

[30] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-
life processor. In Proceedings of EMSOFT’01: the 1st International Workshop on
Embedded Software, Oct. 2001.

[31] É. M. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler framework.
In Proceedings of TOOLS ’98: the 26th International Conference on Technology of
Object-Oriented Languages and Systems, Aug. 1998.

[32] R. Guerraoui and M. Kapałka. On the correctness of transactional memory. In
Proceedings of PPoPP’08: the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Feb. 2008.

[33] R. Guerraoui and M. Kapałka. Principles of Transactional Memory. Morgan &
Claypool, 2010.

[34] R. Guerraoui, M. Kapałka, and J. Vitek. STMBench7: A benchmark for soft-
ware transactional memory. In Proceedings of EuroSys’07: the 2nd ACM SIGOPS
European Conference on Somputer Systems, June 2007.

[35] J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a flow analysis for embedded
system C programs. In Proceedings of WORDS’05: the 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems, Sept. 2005.

[36] V. Hadzilacos. A theory of reliability in database systems. Journal of the ACM,
35(1), Jan. 1988.

[37] T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad. A modular worst-case
execution time analysis tool for Java processors. In Proceedings of RTAS’08: the
14th IEEE Real-Time and Embedded Technology and Applications Symposium, Apr.
2008.

238 11 Bibliography

[38] T. Harris. Exceptions and side-effects in atomic blocks. Science of Computer
Programming, 58(3), 2005.

[39] T. Harris and K. Fraser. Language Support for Lightweight Transactions. In Pro-
ceedings of OOPSLA’03: the 18th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Oct. 2003.

[40] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan & Claypool,
2nd edition, 2010.

[41] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory
transactions. In Proceedings of PPoPP’05: the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, June 2005.

[42] J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In Proceedings
of ESOP’86: the 1st European Symposium on Programming, 1986.

[43] M. Herlihy, V. Luchangco, M. Moir, and I. W. N. Scherer. Software transac-
tional memory for dynamic-sized data structures. In Proceedings of PODC’03: the
22nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
July 2003.

[44] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of ISCA’93: the 20th International Sym-
posium on Computer Architecture, pages 289–300, May 1993.

[45] M. Hicks, J. S. Foster, and P. Prattikakis. Lock inference for atomic sections. In
Proceedings of TRANSACT’06: the 1st ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing, June 2006.

[46] N. Holsti, T. Långbacka, and S. Saarinen. Worst-case execution-time analysis for
digital signal processors. In Proceedings of EUSIPCO 2000: the 10th European
Signal Processing Conference, Sept. 2000.

[47] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and K. Olukotun.
Eigenbench: A simple exploration tool for orthogonal TM characteristics. In Pro-
ceedings of IISWC’10: the IEEE International Symposium on Workload Character-
ization, 2010.

[48] D. Imbs, J. R. de Mendivil, and M. Raynal. On the consistency conditions or
transactional memories. Technical Report 1917, IRISA, Dec. 2008.

[49] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. C. Kirkham, and I. Watson.
DiSTM: A software transactional memory framework for clusters. In Proceedings
of ICPP’08: the 37th IEEE International Conference on Parallel Processing, Sept.
2008.

[50] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering, SE-3(2), Mar. 1977.

[51] Y.-F. Lee, B. G. Ryder, and M. E. Fiuczynski. Region analysis: A parallel elimina-
tion method for data flow analysis. IEEE Transactions on Software Engineering,
21, Nov. 1995.

[52] M. Lesani and J. Palsberg. Decomposing opacity. In Proceedings of DISC’14: the
28th International Symposium on Distributed Computing, 2014.

11 Bibliography 239

[53] Y.-T. S. Li and S. Malik. Performance analysis of real-time embedded software.
Springer, Nov. 1998.

[54] T. Lundqvist and P. Stenström. An integrated path and timing analysis method
based on cycle-level symbolic execution. Real-Time Systems, 17(2-3), 1999.

[55] N. Lynch. Distributed algorithms. 1996.

[56] A. Matveev and N. Shavit. Towards a fully pessimistic STM model. In Proceedings
of TRANSACT ’12: the 7th ACM SIGPLAN Workshop on Transactional Comput-
ing, Aug. 2012.

[57] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: Synchronization in-
ference for atomic sections. In Proceedings of POPL’06: the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Jan. 2006.

[58] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford trans-
actional applications for multi-processing. In Proceedings of IISWC’08: the IEEE
International Symposium on Workload Characterization, Sept. 2008.

[59] J. Navas, M. Méndez-Lojo, and M. V. Hermenegildo. User-definable resource us-
age bounds analysis for Java bytecode. Electronic Notes in Theoretical Computer
Science, 253(5), Dec. 2009.

[60] C. H. Papadimitrou. The serializability of concurrent database updates. Journal
of the ACM, 26(4), 1979.

[61] D. Peng and F. Dabek. Large-scale incremental processing using distributed trans-
actions and notifications. In Proceedings of OSDI ’10: 9th USENIX Symposium on
Operating Systems Design and Implementation, Oct. 2010.

[62] D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In
Proceedings of PODC’10: the 29th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, July 2010.

[63] P. Pratikakis, J. S. Foster, and M. Hicks. Existential label flow inference via CFL
reachability. In Proceedings of SAS’06: the 13th International Symposium on Static
Analysis, Aug. 2006.

[64] W. Pugh. The Omega Test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM, 8, 1992.

[65] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Committing conflicting trans-
actions in an STM. In Proceedings of PPoPP’09: the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, Feb. 2009.

[66] H. E. Ramadan, I. Roy, and E. Witchel. Dependence-aware transactional mem-
ory for increased concurrency. In Proceedings of MICRO’08: the 41st annual
IEEE/ACM International Symposium on Microarchitecture, Nov. 2008.

[67] M. M. Saad and R. B. Transactional forwarding: Supporting highly-concurrent
STM in asynchronous distributed systems. In Proceedings of SBAC-PAD’12: the
24th IEEE International Symposium on Computer Architecture and High Perfor-
mance Computing, Oct. 2012.

[68] M. M. Saad and B. Ravindran. HyFlow: A high performance distributed trans-
actional memory framework. In Proceedings of HPDC ’11: the 20th International
Symposium on High Performance Distributed Computing, June 2011.

240 11 Bibliography

[69] M. M. Saad and B. Ravindran. Transactional forwarding algorithm. Technical
report, Department of Electrical and Computer Engineering, Virginia Tech., Jan.
2011.

[70] I. W. N. Scherer and M. L. Scott. Advanced contention management for dy-
namic software transactional memory. In Proceedings of PODC’05: the 24th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, July 2005.

[71] N. Shavit and D. Touitou. Software transactional memory. In Proceedings
of PODC’95: the 14th ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, Aug. 1995.

[72] K. Siek and P. T. Wojciechowski. Brief announcement: Statically computing up-
per bounds on object calls for pessimistic concurrency control. In Proceedings
of EC 2’10: the Workshop on Exploiting Concurrency Efficiently and Correctly, July
2010.

[73] K. Siek and P. T. Wojciechowski. A Formal Design of a Tool for Static Analysis of
Upper Bounds on Object Calls in Java. In Proceedings of FMICS’12: the 17th In-
ternational Workshop on Formal Methods for Industrial Critical Systems, number
7437 in Lecture Notes in Computer Science, Aug. 2012.

[74] K. Siek and P. T. Wojciechowski. Brief announcement: Towards a fully-articulated
pessimistic distributed transactional memory. In Proceedings of SPAA’13: the
25th ACM Symposium on Parallelism in Algorithms and Architectures, July 2013.

[75] K. Siek and P. T. Wojciechowski. Atomic RMI: a distributed transactional memory
framework. In Proceedings of HLPP’14: the 7th International Symposium on High-
level Parallel Programming and Applications, July 2014.

[76] K. Siek and P. T. Wojciechowski. Brief announcement: Relaxing opacity in pes-
simistic transactional memory. In Proceedings of DISC’14: the 28th International
Symposium on Distributed Computing, Oct. 2014.

[77] K. Siek and P. T. Wojciechowski. Zen and the art of concurrency control: An
exploration of tm safety property space with early release in mind. In Proceedings
of WTTM’14: the 6th Workshop on the Theory of Transactional Memory, July
2014.

[78] K. Siek and P. T. Wojciechowski. Atomic RMI: A distributed transactional memory
framework. International Journal of Parallel Programming, 44(3), June 2015.

[79] K. Siek and P. T. Wojciechowski. Last-use opacity: A strong safety property for
transactional memory with early release support. ACM Transactions on Program-
ming Languages and Systems, June 2015. arXiv:1506.06275 [cs.DC] (submit-
ted).

[80] K. Siek and P. T. Wojciechowski. Proving opacity of transactional memory with
early release. foundations of computing and decision sciences. Foundations of Com-
puting and Decision Sciences, 40(4), Dec. 2015.

[81] K. Siek and P. T. Wojciechowski. Transactions scheduled while you wait. Journal
of Grid Computing, Oct. 2015. (submitted).

[82] K. Siek and P. T. Wojciechowski. Atomic RMI 2: Highly parallel pessimistic dis-
tributed transactional memory. Transactions on Parallel and Distributed Systems,
Apr. 2016. arXiv:1606.03928 [cs.DC] (submitted).

11 Bibliography 241

[83] T. Skare and C. Kozyrakis. Early release: Friend or foe? In Proceedings of WTW’06:
the Workshop on Transactional Memory Workloads, June 2006.

[84] J. Staschulat, J. Braam, R. Ernst, T. Rambow, R. Schlor, and R. Busch. Cost-
efficient worst-case execution time analysis in industrial practice. In Proceedings
of ISoLA’06: the 2nd International Symposium on Leveraging Applications of For-
mal Methods, Verification and Validation, Nov. 2006.

[85] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by
separated cache and path analyses. Real-Time Systems, 18:157–179, May 2000.

[86] A. Turcu, B. Ravindran, and R. Palmieri. HyFlow2: A high performance dis-
tributed transactional memory framework in scala. In Proceedings of PPPJ’13: the
10th International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools, Sept. 2013.

[87] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot—a
Java optimization framework. In Proceedings of CASCON’99: the Conference of
the Centre for Advanced Studies on Collaborative Research, Nov. 1999.

[88] R. Vallée-Rai and L. J. Hendren. Jimple: Simplifying Java bytecode for analyses
and transformations. Technical Report 1998-4, McGill University, July 1998.

[89] W. Vogels. Eventually consistent. Communications of the ACM, 52(1), Jan. 2009.

[90] W. E. Weihl. Local atomicity properties: modular concurrency control for abstract
data types. ACM Transactions on Programming Languages and Systems, 11(2),
Apr. 1989.

[91] G. Weikum and G. Vossen. Transactional information systems: Theory, algorithms,
and the practice of concurrency control and recovery. Morgan Kaufmann Publish-
ers, 2002.

[92] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions and their
applications. In Proceedings of SPAA’08: the 20th ACM Symposium on Parallelism
in Algorithms and Architectures, June 2008.

[93] R. Wilhelm. Determining bounds on execution times. In Handbook on Embedded
Systems, chapter 14. CRC Press, 2006.

[94] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution time
problem—overview of methods and survey of tools. ACM Transactions on Embed-
ded Computing Systems, 7(3), Apr. 2008.

[95] A. Wojciechowski and K. Siek. Barcode scanning from mobile-phone camera photos
delivered via MMS: Case study. In Advances in Conceptual Modeling—Challenges
and Opportunities, volume 5232 of Lecture Notes in Computer Science, Oct. 2008.

[96] P. T. Wojciechowski. Isolation-only transactions by typing and versioning. In
Proceedings of PPDP’05: the 7th ACM SIGPLAN International Symposium on
Principles and Practice of Declarative Programming, July 2005.

[97] P. T. Wojciechowski. Language design for atomicity, declarative synchronization,
and dynamic update in communicating systems. Publishing House of Poznań Uni-
versity of Technology, 2007.

242 11 Bibliography

[98] P. T. Wojciechowski. Extending atomic tasks to distributed atomic tasks. In
Proceedings of EC 2’10: the Workshop on Exploiting Concurrency Efficiently and
Correctly, July 2008.

[99] P. T. Wojciechowski, T. Kobus, and M. Kokociński. Model-driven comparison
of state-machine–based and deferred-update replication schemes. In Proceedings
of SRDS’12: the 31st IEEE International Symposium on Reliable Distributed Sys-
tems, Oct. 2012.

[100] P. T. Wojciechowski, O. Rütti, and A. Schiper. SAMOA: A framework for a
synchronisation-augmented microprotocol approach. In Proceedings of IPDPS’04:
the 18th IEEE International Parallel and Distributed Processing Symposium, Apr.
2004.

[101] P. T. Wojciechowski and K. Siek. Having your cake and eating it too: Combining
strong and eventual consistency. In Proceedings of PaPEC’14: the 1st Workshop
on the Principles and Practice of Eventual Consistency, Apr. 2014.

[102] P. T. Wojciechowski and K. Siek. The optimal pessimistic transactional memory
algorithm, May 2016. arXiv:1605.010361 [cs.DC] (in submission).

[103] F. Wolf, R. Ernst, and W. Ye. Path clustering in software timing analysis. IEEE
Transactions on Very Large Scale Integrated Systems, 9, Dec. 2001.

[104] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 programs: characterization and methodological considerations. In Proceedings
of ISCA’95: the 22nd Annual International Symposium on Computer Architecture,
May 1995.

[105] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for transactional
memory systems. In Proceedings of SPACC’08: the 20thACM Symposium on Par-
allelism in Algorithms and Architectures, June 2008.

A
Proofs

Property Strength

Last-use Opacity
Below we compare last-use opacity to other properties and consistency conditions to
determine their relative strength.

Opacity
Opacity is strictly stronger than last-use opacity.

Lemma 71. For any history S and transaction Ti ∈ S, if Vis(S, Ti) is legal, then
LVis(S, Ti) is legal.

Proof. By definition of Vis(S, Ti), if operation op ∈ Vis(S, Ti), then op ∈ Vis(S, Ti) only if
op ∈ H|Tj and either i = j or Tj ≺S Ti and Tj is committed. By definition of LVis(S, Ti),
given transactions Ti, Tj and operation op ∈ S|Tj , if i = j or Tj ≺S Ti and Tj is
committed, then S|Tj ⊆ LVis(S, Ti). Therefore LVis(S, Ti) ≡ Vis(S, Ti). Since Vis(S, Ti)
and LVis(S, Ti) preserve the order of operations in S, then LVis(S, Ti) = Vis(S, Ti).
Hence, if Vis(S, Ti) is legal, then LVis(S, Ti) is legal.

Lemma 72. Any final-state last-use opaque history H is final-state last-use opaque.

Proof. From Def. 12, for any final-state opaque history H, there is a sequential history
S ≡ Compl(H) s.t. S preserves the real time order of H and every transaction Ti in S is
legal in S. Thus, for every transaction Ti in S Vis(S, Ti) is legal. From the definition of
completion, any Ti is either committed or aborted in Compl(H) and therefore likewise
completed or aborted in S. If Ti is committed in S, then it is legal in S, so Vis(S, Ti)
is legal, and therefore Ti is last-use legal in S. If Ti is aborted in S, then it is legal in
S, so Vis(S, Ti) is legal, and therefore, from Lemma 71, LVis(S, Ti) is also legal, so Ti
is last-use legal in S. Given that all transactions in S are last-use legal in S, then, from
Def. 23, H is final-state last-use opaque.

Lemma 73. Any opaque history H is last-use opaque.

244 A Proofs

Proof. If H is opaque, then, from Def. 13, any prefix P of H is final-state opaque. Since
any prefix P of H is final-state opaque, then, from Lemma 72, any P is also final-state
last-use opaque. Then, by Def. 24 H is last-use opaque.

Serializability
Last-use opacity is strictly stronger than serializability.

Lemma 74. Any last-use opaque history H is serializable.

Proof. From Lemma 23.

Virtual World Consistency
VWC is incomparable to last-use opacity.

Lemma 75. There exists a last-use opaque history H that is not virtual world consistent.

Proof. Since last-use opacity supports aborting early release (Lemma 27), then by Def. 4
and by Def. 6 there exists some last-use opaque history where some transaction reads
from a live transaction and aborts. Since, by Lemma 16 VWC, does not support aborting
releasing transactions, then, by the same definitions, such a history is not VWC. Hence
a history with a transaction releasing early may be last-use opaque but not VWC.

Lemma 76. There exists a virtual world consistent history H that is not last-use opaque.

Proof. Since each transaction in a VWC history can be explained by a different causal
past from other transactions, it is possible that in a correct VWC history transactions
do not agree on the order of operations in the sequential witness history. However, in
order for H to to be last-use opaque the legality of transactions needs to be established
using a single sequential history with a single order of operations. Thus, it is possible for
a VWC history not to be last-use opaque.

Transactional Memory Specification
TMS1 is incomparable to last-use opacity.

Lemma 77. There exists a last-use opaque history H that is not TMS1.

Proof. Since last-use opacity supports aborting early release (Lemma 27), then by Def. 6
it supports early release, so by Def. 4 there exists some last-use opaque history where
some transaction reads from a live transaction and aborts. Since, by Lemma 13 TMS1,
does not support early release, then, by the same definitions, histories containing early
release are not TMS1. Hence a history with a transaction releasing early may be last-use
opaque but not TMS1.

Lemma 78. There exists a TMS1 history H that is not last-use opaque.

Proof. Let history H be the history presented in Fig. A.1. In [22] (Fig. 6 therein) the
authors show that the history satisfies TMS1. The same history is not last-use opaque.
Note that if Vis(S, Ti) is to be legal, in any S equivalent to H, Ti ≺S Tj , because Ti reads
0 from x and Tj writes 2 to x (and commits). In addition, Tj ≺S Tl, because Tl reads 2
from x and Tk ≺S Tl, because Tl reads z from Tk. Then, by extension Ti ≺S Tj ≺S Tl.
However, note that in any S it must be that Tl ≺S Ti, because Tl reads y from Ti, which
is a contradiction. Thus, H is not last-use opaque.

TMS2 is strictly stronger than last-use opacity.

A Proofs 245

Ti
starti ri(x) →0 wi(y)1→oki tryC i →Ci

Tj
startj wj(x)2→okj tryC j →Cj

Tk
startk rk(x) →0 wk(z)3→okk tryCk →Ak

Tl
startl rl(x) →2 rl(y) →0 rl(z)→3 tryC l→Al

Figure A.1: TMS1 history example [22].

Ti
starti ri(z)→0 wi(x)1→oki ri(y)→0 wi(y)1→oki tryC i→Ci

Tj
startj rj(x)→1 wi(x)2→okj tryC j→Cj

Figure A.2: Last-use opaque history that does not satisfy elastic opacity.

Proposition 1. All TMS2 histories are last-use opaque.

Proof. The authors of [22] believe (but do not demonstrate) that all opaque histories
satisfy TMS2. If this is the case, then, since all opaque histories are last-use opaque
(Lemma 88), then it is true that all last-use opaque histories satisfy TMS2. Thus, we
believe the proposition is true, pending a demonstration that all opaque histories satisfy
TMS2.

Elastic Opacity
Last-use opacity and elastic opacity are incomparable.

Lemma 79. There exists an elastic opaque history H that is not last-use opaque.

Proof. Since elastic opaque histories may not be serializable [28], and since, as all last-use
opaque histories trivially require serializability then some elastic opaque histories are not
last-use opaque.

Lemma 80. There exists a last-use opaque history H that is not elastic opaque.

Proof. Let history H be the history presented in Fig. A.2. It should be straightforward
to see that H is last-use opaque for an equivalent sequential history S = H|Ti · H|Tj .
Operations on z are always justified in any sequential equivalent history since they are
all within Ti and their effects are not visible in Tj . The read operation on y is expected
to read 0 since it is not preceded in S by any write, and it does read 0. Thus operations
on y and z will not break legality of either Ti or Tj . With that in mind, the history can
be shown to be last-use opaque by analogy to Lemma 82.

On the other hand, let Ti be an elastic transaction. The only possible well-formed
cut of H|Ti is Ci = {[r (z)0,w(x)1, r (y)0, w(y)1]}. (In particular, the following cut is
not well-formed, since w(x)1 and w(y)0 are in two different subhistories of the cut:
C ′i = {[r (z)0,w(x)1], [r (y)0, w(y)1]}). Let fC(H) be a cutting function that applies cut
C. Then, since the cut contains only one subhistory, it should be straightforward to
see that fC(H) = H. Then, we note that H contains an operation in H|Tj that reads

246 A Proofs

Ti
starti wi(x)1→oki tryC i→Ci

Tk
startk rk(x)→1 rk(y)→3 tryCk→Ak

Tj
startj wj(x)2→okj wi(y)3→okj tryC j→Cj

Figure A.3: Cascadeless history that does not satisfy last-use opacity.

the value of x from H|Ti and Ti is live. That means that in the prefix P of H s.t.
H = P · [tryC i→Ci, tryC j→Cj] both transactions will be aborted in any completion
of P , so for any sequential equivalent history S Vis(S, Ti) will not contain S|Tj , since
either Tj is aborted in any S. Therefore Vis(S, Ti) will not justify reading 1 from x and
will not be legal, causing P not to be final state opaque (Def. 12), which in turn means
that H is not opaque (Def. 13).

Recoverability
Last-use opacity is strictly stronger than recoverability.

Lemma 81. Any last-use opaque history H is recoverable.

Proof. From Lemma 25.

Cascadelessness
Cascadelessness is incomparable to last-use opacity.

Lemma 82. There exists a last-use opaque history H that is not cascadeless.

Proof. Let H be the history in Fig. 5.2. Since Ti reads from Tj in H1 and rj(x)→v ≺H1

tryC i→Ci the history is not cascadeless, since it contradicts Def. 10. Let C = Compl(H)
s.t. H = C, and let ŜH be a sequential history s.t. ŜH = C|Ti ·C|Tj . Then Vis(ŜH , Ti) =
ŜH |Ti = [wi(x)1→ oki] and LVis(ŜH , Tj) = ŜH |Ti · ŜH |Tj = [wi(x)1→ oki, rj(x)→ 1].
Trivially, Vis(ŜH , Ti) and LVis(ŜH , Tj) are both legal, so Ti is committed and legal, and
Tj is last-use legal. Thus H is final-state last-use opaque. By analogy, all prefixes of H
are also final-state last-use opaque, so H is last-use opaque.

Lemma 83. There exists a cascadeless history H that is not last-use opaque.

Proof. The history in Fig. A.3 is shown to be cascadeless (ACA) in [7]. However, note,
that Compl(H) = H, and given any sequential S ≡ Compl(H) Tk Tk must follow both
Ti and Tk in S because Tk reads form both transactions. Since Ti ≺H Tj and Ti ≺H Tk,
then Ti must precede both other transactions in S. Hence, S = H|Ti · H|Tj · H|Tk,
so Vis(S, Tk) = S and therefore Vis(S, Tk) is illegal because rk(x)→ 1 is preceded in
Vis(S, Tk)|x by rk(x)→2.

Strictness
Strictness and last-use opacity are also incomparable.

Lemma 84. There exists a last-use opaque history H that is not strict.

Proof. Since any strict history is also ACA [7], and since Lemma 82 shows that not all
last-use opaque histories are ACA, then not all last-use opaque histories are strict.

A Proofs 247

Lemma 85. There exists a strict history H that is not last-use opaque.

Proof. The history in Fig. A.3 is shown to be strict in [7]. However, as we show in
Lemma 83, this history is not last-use opaque.

Rigorousness
Rigorousness is strictly stronger than last-use opacity.

Lemma 86. Any rigorous history H is last-use opaque.

Proof. Since [7] demonstrates that rigorous histories are opaque, and since we show in
Lemma 88 that opaque histories are also last-use opaque, then all rigorous histories are
last-use opaque.

Live Opacity
Live opacity is stronger than last-use opacity.

Lemma 87. Any live opaque history H is last-use opaque.

Proof. Since H is live opaque there exists a sequential history S that justifies serializabil-
ity of H and an extension S′ of S where if transaction Ti is not in S then it is replaced
in S′ by T gri containing only non-local reads. S′ is legal and preserves the real-time order
of H (accounting for replaced transactions). In addition, from Lemma 19, no transaction
in H reads from a live transaction (in any prefix of H). Therefore, since S′ is legal, any
read operation opi = ri(x)→v in H that is preceded wj(x)v→u in H, Tj is committed
in S and is included in S′ in full.

Let S′′ be a sequential history constructed by replacing the operations removed to
create S′ where if Ti ∈ H and Ti 6∈ S then Ti is aborted in S′′. S′′ preserves the real
time order of H and S′′ ≡ H. Note that, since S′ is legal, if some write opw is in S′′

and not in S′, then there is no non-local read operation opr reading the value written by
opw. Hence any operation reading the value written by opw is local, and since all local
reads in transactions that are replaced in S′ read legal values (by Def. 18), then all reads
reading from any opw read legal values in S′′. Since S′ is legal, then all reads reading
from transactions that are in S read legal values in S′. Since S′′ ≡ H, then these read and
write operations also read legal values in S′′. Because of this, and since no transaction
reads from another live transaction, Vis(S′′, Ti) will be legal for any transaction in S′′. In
addition, LVis(S′′, Ti) will be legal for any aborted transaction in S′′. Therefore any live
opaque H will be final state last-use opaque. Since any prefix of H is also live opaque,
then any prefix will also be final-state last-use opaque, hence H is last-use opaque.

Markability
Lemma 88. Any markable history H is last-use opaque.

Proof. Trivially from Lemma 88.

Commitment Order Preservation
CO and last-use opacity are incomparable.

Lemma 89. There exists a last-use opaque history H that is not CO.

248 A Proofs

Proof. Let H be the history in Fig. 5.9. Since both H|Ti and H|Tj each single write oper-
ation on x, then for any equivalent sequential history ŜH , all of Vis(ŜH , Ti), Vis(ŜH , Tj),
LVis(ŜH , Ti), and LVis(ŜH , Tj) are always legal. Hence, H is final-state last-use opaque.
Since the conclusion follows for any prefix of H, then any prefix is final-state last-use
opaque, and H is last-use opaque. However, since Ti and Tj conflict, and since Ti executes
its write on x before Tj , but Tj commits before Ti, then H is not CO.

Lemma 90. There exists a CO history H that is not last-use opaque.

Proof. We show in Lemma 5 that CO supports overwriting, so by Def. 5, there exists
some H that contains overwriting and satisfies CO. We show in Lemma 26 that last-use
opacity precludes overwriting, so such H is not last-use opaque.

SVA+R Last-use Opacity

Since the values used within writes are under the control of the program (rather than
SVA+R) we simply assume that they are within the domain of the variables (Assump-
tion 5).

Definition 54 (Operation Execution Conditional). Given predicate P and operation op
P ⇁ op denotes that P is true only if op executes.

Definition 55 (Operation Execution Converse). Given predicate P and operation op
P ↽ op denotes that op executes only if P is true.

Let there be any P,Π, H |= E(P,Π), opi ∈ H|Ti.

Definition 56. opi is closing access on x in Ti, denoted opi = öpx
i if both:

a) opi is closing read on x in Ti or opi is closing write on x in Ti, and
b) @op′i ∈ H s.t. opi ≺H op′i and op′i is closing read on x in Ti or op′i is closing write

on x in Ti.

Let there be any P,Π, H |= E(P,Π), opi ∈ H|Ti, opi = ri(x)→v or wi(x)v→oki.

Lemma 91 (Access Condition). lv(x) = pvi(x)− 1 ↽ opi.

Proof. Condition at line 11 dominates access at line 16.

Lemma 92 (Abort Condition). ltv(x) = pvi(x)− 1 ↽ resi
[
Ai

]
.

Proof. Access condition at line 35 dominates :dismiss at line 36 in procedure abort for
each variable. Hence, all variables must pass line 35 before abort concludes.

Lemma 93 (Commit Condition). ltv(x) = pvi(x)− 1 ↽ resi
[
Ci
]
.

Proof. By analogy to Lemma 92.

Lemma 94 (Early Release). If opi = öpx
i then lv(x) = pvi(x) ⇁ opi.

Proof. lv(x) can be set by Ti at line 59 and at line 47. The former is set during the last
access on some x in Tj (line 18 dominates line 59). The latter is set during commit, which
means that if any closing access was present, it was executed prior to commit.

Let ri = resi
[
Ai

]
or resi

[
Ci
]
.

A Proofs 249

Lemma 95 (Release). If @op′i ∈ H|Ti s.t. op′i = öpx
i and x ∈ ASeti then lv(x) =

pvi(x) ⇁ ri.

Proof. If op′i is not closing access then line 18 will not be passed, so only assignment of
lv(x) is in line 47 which execute only during commit or abort.

Lemma 96 (Terminal Release). If x ∈ ASeti then lv(x) = pvi(x) ⇁ ri.

Proof. ltv(x) can be set only in line 39 or line 30, which are part of abort and commit,
respectively.

Let there be any H, Ti ∈ H, Tj ∈ H, opi ∈ H|Ti, opi = ri(x)→ u, opj ∈ H|Tj ,
opj = wj(x)v→okj .

Lemma 97 (No Buffering). If opj ≺≺H|x opi and not opj ≺H resj
[
Aj

]
≺H opi then

u = v.

Lemma 98 (Revert On Abort). If opj ≺≺H|x opi and opj ≺H resj
[
Aj

]
≺H opi then

u 6= v.

Proof. If abort is executed then the :recover procedure is executed for all x ∈ ASeti.
Thus, line 54 restores x to value v′ which is acquired before the any operation on x is
executed by Ti, hence v′ 6= v, so u 6= v.

Let H|start be a subhistory of H that for each Tj ∈ H contains only the operation
startj .

Lemma 99 (Consecutive Versions). If x ∈ ASeti ∩ ASetj and invi
[
starti

]
≺≺H|start

invi
[
startj

]
then pvi(x)− 1 = pvj(x).

Proof. If Ti returns at line 3 for x then no Tj s.t. x ∈ ASetj returns at line 3 until Ti
executes line 7 for x. Hence, Ti alone increments gv(x) at line 5 and sets pvi(x) to the
new value of gv(x). If starti ≺≺H|start startj then Ti will return at line 3 and Tj will
return next. No other transaction will return at line 3 between Ti and Tj .

Lemma 100 (Unique Versions). If x ∈ ASeti ∩ ASetj then pvi(x) 6= pvj(x).

Proof. From Lemma 99.

Lemma 101 (Monotonic Versions). If x ∈ ASeti ∩ ASetj and invi
[
starti

]
≺H|start

invi
[
startj

]
then pvi(x) < pvj(x).

Proof. From Lemma 99, Lemma 100.

Definition 57 (Version Order). Let ≺x be an order s.t. Ti ≺x Tj iff pvi(x) < pvj(x).

Lemma 102 (Forced Abort Condition). rvi(x) < cv(x) ⇁ resi
[
Ai

]
.

Proof. Condition at line 14 dominates abort at line 15. Condition at line 27 dominates
abort at line 28.

Let there be any P,Π, H |= E(P,Π), opi ∈ H|Ti, opi = ri(x)→v or wi(x)v→oki.

Lemma 103. cv(x) < rvi(x) ↽ opi.

Proof. Condition at line 14 dominates abort at line 15.

Lemma 104 (Current Version Early Release). If opi = öpx
i then cv(x) = rvi(x) ⇁ opi.

Proof. By analogy to Lemma 94.

250 A Proofs

Lemma 105 (Current Version Release). If @opi ∈ H|Ti s.t. opi = öpx
i and x ∈ ASeti

then cv(x) = rvi(x) ⇁ ri.

Proof. By analogy to Lemma 95.

Lemma 106. cv(x) = rvi(x) ↽ resi
[
Ai

]
.

Proof. From Lemma 95 and Lemma 105.

Let there be any P,Π, H |= E(P,Π), Ti ∈ H, Tj ∈ H, opi ∈ H|Ti, opj ∈ H|Tj ,
opi = ri(x)→v or wi(x)v→oki, opj = rj(x)→v or wj(x)v→okj .

Lemma 107 (Access Order). pvi(x) < pvj(x)⇔ opi ≺H opj.

Proof. From Lemma 91 and Lemma 101.

Let there be any H, Ti ∈ H, Tj ∈ H, opi ∈ H|Ti, opi = ri(x)→ u, opj ∈ H|Tj ,
opj = wj(x)v→okj . Let there be any P,Π, H |= E(P,Π).

Lemma 108 (Access Prefix). If lv(x) = pvj(x) then ∀Tk ∈ H s.t. pvx(k) < pvi(x)
either resk

[
Ck
]
∈ H|Tk, resk

[
Ak

]
∈ H|Tk, or öpx

k ∈ H|Tk.

Proof.

∀Tl, Tk ∈ H s.t. pvx(l) = pvx(k)− 1 : (A.1)
Lemma 91 =⇒ lv(x) = pvx(k)− 1 ↽ opk (A.2)
(A.1) ∧ (A.2) =⇒ lv(x) = pvx(l) ↽ opk (A.3)
Lemma 94 =⇒ lv(x) = pvx(l) ⇁ öpx

l (A.4)
Lemma 95 =⇒ lv(x) = pvx(l) ⇁ r where r = resi

[
Ai

]
or r = resi

[
Ci
]

(A.5)
(A.4) ∧ (A.5) =⇒ Tl is committed, aborted or decided on x (A.6)

Trivially extends for any Tl, Tk s.t. pvx(l) < pvx(k).

Lemma 109. If ltv(x) = pvj(x) then ∀Tk ∈ H s.t. pvx(k) < pvi(x) either resk
[
Ck
]
∈

H|Tk, or resk
[
Ak

]
∈ H|Tk.

Proof.

∀Tl, Tk ∈ H s.t. pvx(l) = pvx(k)− 1 : (A.7)
Lemma 93 =⇒ ltv(x) = pvx(k)− 1 ↽ resk

[
Ci
]

(A.8)
(A.7) ∧ (A.8) =⇒ ltv(x) = pvx(l) ↽ opk (A.9)
Lemma 96 =⇒ ltv(x) = pvx(l) ⇁ r where r = resi

[
Ai

]
or r = resi

[
Ci
]

(A.10)
(A.10) =⇒ Tl is committed or aborted (A.11)

Trivially extends for any Tl, Tk s.t. pvx(l) < pvx(k).

Let there be any H, Ti ∈ H, Tj ∈ H, opi ∈ H|Ti, opi = ri(x)→ u, opj ∈ H|Tj ,
opj = wj(x)v→okj .

Lemma 110 (Forced Abort). If x ∈ ASeti ∩ ASetj and resj
[
Aj

]
∈ H|Tj and opi ≺H

resj
[
Aj

]
then resi

[
Ai

]
∈ H|Ti.

A Proofs 251

Proof.

resj
[
Aj

]
∈ H|Tj ∧ Lemma 106 =⇒ cv(x) = pvjx ↽ resj

[
Aj

]
(A.12)

Lemma 101 =⇒ pvj(x) < pvi(x) (A.13)

(A.12) ∧ (A.13) =⇒ cv(x) < pvix ↽ resj
[
Aj

]
(A.14)

Lemma 103 =⇒ cv(x) = rvi(x) ↽ opi =⇒ rvi(x) = pvj(x) (A.15)

(A.15) ∧ (A.13) =⇒ rvi(x) > pvx(i) (A.16)
(A.16) ∧ (A.14) =⇒ rvi(x) < cv(x) (A.17)
(A.17) =⇒ rvi(x) < cv(x) ⇁ resi

[
Ai

]
=⇒ resi

[
Ai

]
∈ H|Ti (A.18)

Let there be any P,Π, H |= E(P,Π), Ti ∈ H, Tj ∈ H, opi ∈ H|Ti, opj ∈ H|Tj ,
opi = ri(x)→v or wi(x)v→oki, opj = rj(x)→v or wj(x)v→okj .

Definition 58 (Completion Construction). HC = Compl(H) s.t. ∀Tk ∈ H, resk
[
Ck
]
6∈

H|Tk ⇔ resk
[
Ak

]
∈ HC |Tk

Definition 59 (Sequential History Construction). ŜH is a sequential history s.t. ŜH ≡
HC and Ti ≺HC

Tj =⇒ Ti ≺ŜH
Tj and Ti ≺x Tj =⇒ Ti ≺ŜH

Tj.

Let there be any H, Ti ∈ H, Tj ∈ H, opi ∈ H|Ti, opi = ri(x)→ u, opj ∈ H|Tj ,
opj = wj(x)v→okj .

Lemma 111. If Ti reads x from Tj then Tj is committed in H or Tj is decided on x in
H.

Proof.

Ti reads x from Tj =⇒ opi = ri(x)→v ∧ opj = wj(x)v→oki ∧ opj ≺H opi (A.19)
Lemma 91 =⇒ lv(x) = pv−(x)1 ↽ opi (A.20)
Lemma 107 ∧ opj ≺H opi =⇒ pvj(x) < pvi(x) (A.21)

(A.21) ∧ Lemma 108 =⇒ Tj is committed, aborted, or decided on x (A.22)

Let us assume that Tj is aborted:

opi ≺ resj
[
Aj

]
: Lemma 99 =⇒ v 6= v =⇒ contradiction (A.23)

resj
[
Aj

]
≺H opi : Lemma 94 =⇒ lv(x) = pv⇁(x)opi ∧ opi = öpx

i (A.24)

Thus, Ti is committed or decided on x.

Corollary 23. If P is any prefix of H, then if Ti reads x from Tj in P then Tj is
committed in P or Tj is decided on x in P .

Lemma 112. If Ti reads x from Tj and Tj is committed in H then Tj is committed in
H.

252 A Proofs

Proof.

Ti reads x from Tj =⇒ opi = ri(x)→v ∧ opj = wj(x)v→oki ∧ opj ≺H opi (A.25)
Lemma 93 =⇒ ltv(x) = pvx(k)− 1 ↽ resi

[
oki
]

(A.26)
Lemma 107 ∧ opj ≺H opi =⇒ pvj(x) < pvi(x) (A.27)

Lemma 109 ∧ (A.26) ∧ (A.27) =⇒ r ∈ H|Tj where r = resj
[
Aj

]
or r = resj

[
Cj
]
(A.28)

Lemma 110 =⇒ if resj
[
Aj

]
∈ H|Tj then resj

[
Aj

]
∈ H|Tj =⇒ contradiction (A.29)

(A.29) =⇒ resi
[
Ai

]
∈ H|Ti (A.30)

Let there be any P,Π, H |= E(P,Π), Ti ∈ H, opi = ri(x)→v, opi ∈ H|Ti.

Lemma 113. If resi
[
Ci
]
∈ ŜH |Ti then ∃opj = wj(x)v→okj ∈ Vis(ŜH , Ti).

Proof. If i = j then trivially opj ∈ Vis(ŜH , Ti). Otherwise:

i 6= j ∧ Lemma 97 =⇒ ∃Tj ∧ opj ∈ HC |Tj (A.31)
(A.31) ∧ Lemma 112 ∧ resi

[
Ci
]
∈ HC |Ti =⇒ ∃resj

[
Cj
]
∈ HC |Tj (A.32)

Def. 59 ∧ (A.32) =⇒ resj
[
Cj
]
∈ ŜH |Tj ∧ Tj ≺ŜH

Ti (A.33)

(A.33) =⇒ ŜH |Tj ⊆ Vis(ŜH , Ti) =⇒ opj ∈ Vis(ŜH , Ti) (A.34)

Lemma 114. ∃opj = wj(x)v→okj ∈ LVis(ŜH , Ti).

Proof. If i = j then trivially opj ∈ LVis(ŜH , Ti). Otherwise:

i 6= j ∧ Lemma 97 =⇒ ∃Tj ∧ opj ∈ HC |Tj (A.35)
(A.35) ∧ Lemma 111 ∧ resi

[
Ci
]
∈ HC |Ti =⇒ either ∃resj

[
Cj
]
∈ HC |Tj or ∃öpx

j ∈ HC |Tj
(A.36)

Def. 59 ∧ (A.36) =⇒ resj
[
Cj
]
∈ ŜH |Tj ∧ Tj ≺ŜH

Ti (A.37)

(A.37) =⇒ ŜH |Tj ⊆ LVis(ŜH , Ti) =⇒ opj ∈ LVis(ŜH , Ti) (A.38)

(A.36) =⇒ öpx
j ∈ ŜH |Tj ∧ Tj ≺ŜH

Ti (A.39)

(A.39) ∧ ŜH |̂Tj ⊆ LVis(ŜH , Ti) =⇒ opj ∈ LVis(ŜH , Ti) (A.40)

Lemma 115. Given ŜH and any two transactions Ti, Tj ∈ ŜH s.t. there is an operation
execution wj(x)v → okj ∈ ŜH |Tj and ri(x) → v ∈ ŜH |Ti then there is no operation
wk(x)u → okk (executed by some Tk ∈ ŜH) in Vis(ŜH , Ti) s.t. wk(x)u → okk precedes
ri(x)→v in Vis(ŜH , Ti) and follows wj(x)v→okj in Vis(ŜH , Ti).

Proof. For the sake of contradiction, assume that opk exists as specified.
If k = i, then opk ≺H|Ti

opi, which contradicts Lemma 97 (assuming unique writes).
If k = j, then from Lemma 111 Tj is either committed or decided on x in ŜH . If Ti

commits, then opi reading v contradicts Lemma 97. If Ti does not commit in P , then
this contradicts Lemma 112.

Otherwise, ∃Tk ∈ H s.t. opk ∈ H|Tk from Lemma 111 Tj is either committed or
decided on x in ŜH and from Lemma 112 Tk is committed in H. Since Tk commits, this
contradicts Lemma 97.

A Proofs 253

Lemma 116. Given ŜH and any two transaction Ti, Tj ∈ ŜH s.t. there is an operation
execution wj(x)v → okj ∈ ŜH |Tj and ri(x) → v ∈ ŜH |Ti then there is no operation
wk(x)u→ okk (executed by some Tk ∈ ŜH) in LVis(ŜH , Ti) s.t. wk(x)u→ okk precedes
ri(x)→v in Vis(ŜH , Ti) and follows wj(x)v→okj in Vis(ŜH , Ti).

Proof. By analogy to Lemma 115.

Proof for Lemma 38. Given ŜH , let Ti ∈ ŜH be any transaction that is committed in ŜH .
In that case, from Lemma 113 and Lemma 115, every read operation execution ri(x)→v
in Vis(ŜH , Ti) is preceded in Vis(ŜH , Ti) by a write operation execution wj(x)v→okj (for
some Tj). In addition, from Assumption 5, every write operation execution wi(x)v→oki
in Vis(ŜH , Ti) trivially writes v ∈ D. Therefore, for every variable x, Vis(ŜH , Ti)|x ∈
Seq(x), so Vis(ŜH , Ti) is legal. Consequently Ti in ŜH is legal in ŜH .

Given the same ŜH , let Ti ∈ ŜH be any transaction that is not committed in ŜH (so
it is aborted in ŜH). From Lemma 114 and Lemma 116, every read operation execution
ri(x) → v in LVis(ŜH , Ti) is preceded in LVis(ŜH , Ti) by a write operation execution
wj(x)v → okj (for some Tj). In addition, from Assumption 5, every write operation
execution wi(x)v → oki in LVis(ŜH , Ti) trivially writes v ∈ D. Therefore, for every
variable x, LVis(ŜH , Ti)|x ∈ Seq(x), so LVis(ŜH , Ti) is legal. Thus, Ti in ŜH is last-use
legal in ŜH .

Since all committed transactions in ŜH are legal in ŜH and since all aborted transac-
tions in ŜH are last-use legal in ŜH , then, by Def. 23 H is final-state last use opaque.

Last-use Opacity from Trace Harmony

Composition Rules
Given trace T and a history H = Hist(T), let Ĉ = Compl(H) be a completion of H s.t.
for every Ti ∈ H, if Ti is live or commit-pending in H, then Ti is aborted in HC . Let T̂i
such a transaction in Ĉ that corresponds to a completion of Ti in Ĉ.

Definition 60 (Equivalent Sequential History Construction). Let ŜH be a sequential
history s.t. ŜH ≡ HC and, given two transactions Ti, Tj ∈ Ĉ:

1. if Ti ≺T Tj, then Ti ≺ŜH
Tj,

2. otherwise, if Ti≺̇T Tj for any variable x, then Ti ≺ŜH
Tj,

3. otherwise, if ∃opj = wj(x)�→ okj ∈ T |Tj and ∃ei = gi(x)� ∈ T |Ti or ei =
◦si(x)� ∈ T |Ti, then Ti ≺ŜH

Tj.

Definition 61 (Last-use Visible History Construction). Given transactions Ti and Tj
in T :

1. if Tj is committed in T , then T̂j is included in LVis(ŜH , Ti) as a whole, otherwise
2. if Tj is aborted in T and Tj ≺T Ti, T̂j is not included in LVis(ŜH , Ti) at all,

otherwise
3. if there exists ξ(T , Tj , Ti), then ŜH

�

|T̂j is included in LVis(ŜH , Ti), otherwise
4. Tj is not included in LVis(ŜH , Ti) at all.

254 A Proofs

Auxiliary Lemmas
Lemma 117. Let there be a consonant, isolation-ordered, trace T in obbligato and
H = Hist(T) from which ŜH is generated, and Ti, Tj ∈ T . Given any non-local opi =
ri(x) → v ∈ T |Ti s.t. ∃ei = gi(x)v ∈ T |Ti and opi ;ei and given any non-local
opj = wj(x)v→ okj ∈ T |Tj s.t. ∃ej =∈ ◦si(x)v ∈ T |Tj and opj ; ej, and ej lT ei,
then @Tk ∈ T s.t. Tk opk = wj(x)v′→ okj s.t. opi ≺ŜH

opk ≺ŜH
opj and Tk is either

committed or decided on x in trace T .

Proof. Assume for the sake of contradiction that such Tk exists in T . Since both opi and
opj are non-local, then i 6= j 6= k.

If Tk is committed, then, from the definition of commit write obbligato, ∃ek =
◦sk(x)v′ ∈ T |Tk if invk

[
wk(x)v′

]
is the invocation event of opk then invk

[
wk(x)v′

]
≺T

ek ≺T resk
[
Ck
]
.

If Tk is decided on x in T , then, from the definition of closing write obbligato, ∃ek =
◦sk(x)v′ ∈ T |Tk s.t. if invk

[
wk(x)v′

]
is the invocation event of opk then invk

[
wk(x)v′

]
≺T

ek ≺T ei.
Thus, in either of the above cases, ej ≺T ek and either ek ≺ ei or ei ≺ ek. If then

ek ≺ ei, it is not true that ej lT ei, which is a contradiction. Alternatively, if ei ≺ ek,
then, since T is isolation-ordered, Ti≺̇x

T Tk, which implies that Ti ≺ŜH
Tk. In this case,

opi ≺ŜH
opk, which is a contradiction.

Therefore, there can be no such Tk, which satisfies the lemma.

Lemma 118. Given a consonant trace T , and Ti ∈ T , if Tj is the first element of
ψT (Tj , x), then ∃ev = gj(x)v ∈ T |Tj that is initial and non-local, and either

a) v = 0 and @Tk ∈ T s.t. eu = sk(x)v ∈ T |Tk and eu ≺T ev,
b) v 6= 0 and ∃Tk ∈ T s.t. eu = sk(x)v ∈ T |Tk and eu lT ev.

Proof. Since Tj is in ψT (Ti, x) then by definition, either k = i or ea = ◊sj(x)v ∈ T |Tj .
In either case ev = gj(x)v ∈ T |Tj s.t. ev is initial and non-local (in the former case by
definition of ψT (Ti, x) and in the latter by definition of recovery update consonance).

Since ev is consonant and non-local, then either:

a) v = 0 and @Tk ∈ T s.t. eusk(x)v′ ∈ T |Tk eu ≺T er,
b) v 6= 0 and ∃Tk ∈ T s.t. eu = ◦sj(x)v ∈ T |Tk, i 6= k, eu lT er, eu is consonant,

and eu is the ultimate routine update on x in T |Tk, or
c) ∃eu ∈ T s.t. eu = ◊sj(x)v for some trk, j 6= k, eulT er, eu is a consonant recovery

event, and is the ultimate update on x in T |Tk.

In the latter-most case, if such eu exists in Tk then, Tk ∈ ψT (Tj , x) so that Tk
preceded Tj in ψT (Tj , x). Thus, Tk would precede Tj in ψT (Ti, x), and therefore Tj is
not the first element of ψT (Ti, x). Thus, the latter-most case is impossible.

Lemma 119. Given a consonant trace T , and Ti ∈ T , ∀Tj ∈ ψT (Ti, x) (i 6= j), Tj is
aborted or live in T .

Proof. Since i 6= j then ∀Tj ∈ T , ∃ea = ◊sj(x)vT |Tj . Since T is consonant, then ea is
consonant, so ea is dooming. Thus Tj is aborted or live in T .

Lemma 120. Given a consonant, abort abiding trace T in obbligato, and a pair of trans-
action Ti, Tj ,∈ T , and Tj is the first element in ψT (Ti, x), ∀Tk ∈ T if Tj≺̇x

T Tk≺̇
x
T Ti

and opkwk(x)v→okk ∈ T |Tk then Tk is aborted or live in T .

A Proofs 255

Proof. If i = j, then the lemma is vacuously true.
Since Tj≺̇x

T Tk≺̇
x
T Ti, then ∃eu = ◦sk(x)v′ ∈ T |Tk or ev = gk(x)v′ ∈ T |Tk. Hence,

either eu exists in T |Tk or it does not.
If eu does not exist, then, from commit write obbligato, Tk cannot commit in trace,

so Tk is either live or aborted in T .
If eu exists, then, since Tj≺̇x

T Tk≺̇
x
T Ti and from the definition of ψT (Ti, x), there is

some pair of transactions Tα and Tβ ∈ T s.t. Tα, Tβ ∈ ψT (Ti, x) and Tα immediately
precedes Tβ in ψT (Ti, x) and Tα≺̇x

T Tk≺̇
x
T Tβ . Therefore ∃eα = ◊sα(x)vα ∈ T |Tα and

eβ = gβ(x)vβ ∈ T |Tβ s.t. eα lT eβ . In addition, since eα is consonant, then it is
needed, so ∃e′α = ◦sα(x)v′α ∈ T |Tα s.t. e′αlT eα. Also, from definition of isolation order,
e′α ≺T eu ≺T eβ . Then, e′α ≺T eu ≺α lT eβ . Therefore, from the definition of abort
accord, Tk is either live or aborted in T .

Lemma 121. Given a consonant trace T , and Ti ∈ T , ∀Tj , Tk ∈ ψT (Ti, x) (i 6= j), if
Tj precedes Tk in ψT (Ti, x) then Tj≺̇x

T Tk.

Proof. Given ψT (Ti, x), from Lemma 119, ∀Tk ∈ ψT (Ti, x), Tk is aborted or live in T .
In addition, since for all Tm ∈ ψT (Ti, x) except the first, where emv = gm(x)v ∈ T |Tm
there is some Tn that directly precedes Tm in ψT (Ti, x) and contains ena = ◊sn(x)v s.t.
ena lT emv . Since ena is conservative, there is a preceding view env = gn(x)v s.t. env lT ena .
Thus env lT emv , so Tn≺̇x

T Tm.

Corollary 24. Given a consonant trace T , and Ti ∈ T , ∀Tj ∈ ψT (Ti, x) (i 6= j),
Tj≺̇x

T Ti.

Lemma 122. Given Ti, Tj s.t. T̂j
�
⊆ LVis(ŜH , Ti), ∀Tk if T̂k

�
⊆ LVis(ŜH , Tj), then

T̂k
�
⊆ LVis(ŜH , Ti) and LVis(ŜH , Ti)|Tk = LVis(ŜH , Tj)|Tk

Proof. If Tk is committed in T and T̂
�
⊆ LVis(ŜH , Tj ,) then ŜH |T̂k ⊆ LVis(ŜH , Tj ,) and

T̂k ≺ŜH
T̂j . Since Tj

�
⊆ LVis(ŜH , Ti,) , then T̂j ≺ŜH

T̂i. Since Tk is committed in T and
T̂j ≺ŜH

T̂i, then ŜH |T̂k ⊆ LVis(ŜH , Ti).

If Tk is not committed in T and T̂
�
⊆ LVis(ŜH , Tj ,) then ŜH

�

|T̂k = LVis(ŜH , Tj , |)Tk
and T̂k ≺ŜH

T̂j and Tk ⊀T Tj and ∃ξ(T , Tk, Tj) (from Def. 61).
Since Tk is not committed in T , and since T is commit abiding, then from Lemma 124,

there cannot be ξ(T , Tk, Tj) s.t. Tj is committed. Thus Tj is not committed in T . Thus,
if ŜH

�

|T̂j then T̂j ≺ŜH
T̂i and Tj ⊀ Ti and ∃ξ(T , Tj , Ti).

If ∃ξ(T , Tk, Tj) and ∃ξ(T , Tj , Ti) then ∃T TkTi.
Either Tk aborts in T (i.e. resk

[
Ak

]
) or Tk is live in T . In the latter case trivially

Tk ⊀T Ti. In the former case, from Lemma 125, also Tk ⊀T Ti.
Since ∃ξ(T , TTk

, TTi) and T̂k ≺ŜH
T̂i and Tk ⊀T Ti then ŜH

�

|T̂k = LVis(ŜH , Ti, |)Tk
(from Def. 61).

Lemma 123. Given Ti, Tj s.t. T̂j
�
⊆ LVis(ŜH , Ti), ∀Tk if T̂k

�
* LVis(ŜH , Tj) and

∃ξ(T , TTk
, TTj

) then T̂k
�
⊆ LVis(ŜH , Ti).

Proof. If Tk
�
* LVis(ŜH , Tj) and T̂k ≺ŜH

T̂j then T̂k is not committed in T .
If ŜH

�

|T̂k 6⊂ LVis(ŜH , Tj) and T̂k ≺ŜH
T̂j then either Tk ≺T Tj or @ξ(T , Ti, Tj). The

latter case contradicts the assumptions of the lemma, hence Tk ≺T Tj .
If Tk ≺T Tj , then ∃r = resk

[
Ak

]
∈ T |Tk s.t. for every event e in T |Tj , r ≺T e.

Since ∃ξ(T , Tj , Ti) then there is some view event eiv in T |Ti and some update event eju
in T |Tj s.t. eju ≺T eiv. Therefore r ≺T eju ≺T eiv.

256 A Proofs

Since no events can occur in T |Tk after v, then for all events in e in T |Tk apart
from r, e ≺T r. So, for any ξ(T , Tk, Ti) for any update event eku = ◦sk(x)v ∈ T |Tk,
eku ≺T r ≺T eiv.

From abort coda, ∃ela = ◊sl(x)v′ s.t. eku ≺T ela ≺T r, and, from conservatism and
unique routine updates, v 6= v′. Thus, since eku ≺T ela ≺T eiv and v 6= v′, there cannot
be such ξ(T , Tk, Ti) that satisfies chain isolation, and therefore @ξ(T , Tk, Ti).

Therefore, from Lemma 61, ŜH
�

|T̂k * LVis(ŜH , Ti).

Thus, ŜH |T̂i
�
* LVis(ŜH , Ti).

Lemma 124. Given ξ(T , Ti, Tj), if Tj is committed in T , then ∀Tk ∈ ξ(T , Ti, Tj), Tk
is committed in T .

Proof. Given a pair of transaction Tl, Tm ∈ T s.t. Tm ¨;Tl, from commit accord, if Tm is
committed in T , then Tl is also committed in T .

If ξ(T , Ti, Tj) = Ti · Tj , then n since Tj is committed in T , then so is Ti.
Since, ξ(T , Ti, Tj) = Tiξ(T , Ti, Tk) · Tj and Tk is such that Tj ¨;Tk, then since Tj is

committed in T , then so is Tk. This follows recursively for ξ(T , Ti, Tk).
Thus every transaction in ξ(T , Ti, Tj) is committed in T .

Lemma 125. Given ξ(T , Ti, Tj), if Ti aborts in T , then Ti ⊀T Tj.

Proof. Assume for the sake of contradiction that Ti ≺T Tj .
Thus, there exists Tk ∈ ξ(T , Ti, Tj) s.t. Tk ¨;Ti, so ∃eiu = ◦si(x)v ∈ T |Ti and ekv =

gk(x)v ∈ T |Tk and eiu ≺T ekv .
If Ti is aborted, then, from abort coda, ∃ela = ◦sl(x)v′ s.t. eiu ≺T ela ≺T resi

[
Ai

]
and from unique routine updates v 6= v′.

Since Tj is in ξ(T , Ti, Tj), ∃ejv = gj(y)v′′ and since Ti ≺T Tj , then resi
[
Ai

]
≺T ejv.

Thus, eiu ≺T ela ≺T ejv.
This contradicts chain isolation, so it is not true that Ti ≺T Tj , so Ti ⊀T Tj .

Main Lemmas
Let there be a harmonious trace T and H = Hist(T) from which ŜH is generated. Let
there be such Ti ∈ T that Ti is committed in T . Then:

Lemma 126 (Unique Routine Updates). If T is consonant, and T has unique writes,
then given any si(x)v and sj(x)v′ s.t. v 6= v′.

Proof. Since both events are consonant, then for si(x)v there exists opi = wi(x)vi→oki
s.t. v = vi, and for sj(x)v′ there exists opj = wj(x)vj→ okj s.t. v′ = vj . Since T has
unique writes, then vi 6= vj , so v 6= v′.

Lemma 127 (Non-local Read Consistency). For any opi ∈ T |Ti s.t. opi = ri(opi)→v
and opi is non-local, then either:

1. v 6= 0 and ∃opj ∈ Vis(ŜH , T̂i) for some Tj s.t. opj = wj(x)v→okj, opj lVis(ŜH ,T̂i)
opi, or

2. v = 0 and @opj ∈ Vis(ŜH , T̂i) s.t. opj = wj(x)v→okj and opj ≺Vis(ŜH ,T̂i) opi.

Proof for Lemma 127. Since opi is consonant and non-local, then ∃ev = gi(x)v ∈ T , s.t.
opi ;ev and ev is consonant. Then, from ev’s consonance, either:

A Proofs 257

a) v = 0 and @eu = sj(x)v′ ∈ T for some Tj ∈ T s.t. eu ≺T ev.
In which case, if @opjwj(x)v′→oki ∈ T |Tj s.t. opj ≺T gi(x)v, then, @Tj ∈ T s.t.
Tj≺̇T Ti and opj ∈ T |Tj . Thus, from construction of ŜH , @T̂j ∈ T s.t. T̂j ≺ŜH

T̂i

and opj ∈ ŜH |T̂j . Thus, from construction of Vis(ŜH , T̂i), for any such Tj , ŜH |T̂j *
Vis(ŜH , T̂i), so for any such Tj , wj(x)v→okj 6∈ Vis(ŜH , T̂i) and v = 0.
On the other hand, if ∃opjwj(x)v′→ oki ∈ T |Tj s.t. opj ≺T gi(x)v, then if Ti is
committed in T , then, from the definition of commit write obbligato, ◦sj(x)v′ ∈
T |Tj , which contradicts the assumption of case a)). Thus, Ti is not committed in
T , so T̂i is not committed in ŜH , and therefore ŜH |T̂i * Vis(ŜH , T̂j). Thus for any
such Tj , wj(x)v′→okj 6∈ Vis(ŜH , T̂i) and v = 0.

b) v 6= 0 and ∃eu = ◦sj(x)v ∈ T for some Tj ∈ T s.t. eulT ev and eu is consonant.
Since eu is consonant, then ∃opj = wj(x)v→okj ∈ T |Tj s.t. opj is non-local and
consonant, and opjl◦sj(x)v. Thus, since eulT ev, Tj≺̇x

T Ti, then, by construction,
T̂j ≺ ŜH T̂i.
Since Ti is committed in T and Ti ¨;Tj , and since T is commit-abiding, then
Tj must be committed in T . Thus T̂j is also committed in ŜH . Thus, ŜH |T̂j ⊆
Vis(ŜH , Ti), and therefore opj ≺Vis(ŜH ,Ti) opi. Then, from Lemma 117, opjlVis(ŜH ,Ti)
opi. Thus, wj(x)v→okj lVis(ŜH ,T̂i) opi and v 6= 0.

c) ∃ea = ◊sj(x)v ∈ T for some Tj ∈ T s.t. ea lT ev and eu is consonant.
Given ψT (Ti, x), from Lemma 119, ∀Tk ∈ ψT (Ti, x), Tk is aborted or live in T .
So, by construction, T̂k is aborted in ŜH , and therefore excluded from Vis(ŜH , Ti).
Thus for any Tk ∈ ψT (Ti, x), ∀opk = wk(x)v→∈T |Tk, opk 6∈ Vis(ŜH , Ti).
Given ψT (Ti, x), from Lemma 118, ∃e′v = gk(x)v ∈ T |Tk s.t. Tk is the first element
of ψT (Ti, x) that is initial and non-local, and either of the following is true:

i) v = 0 and @Tl ∈ T s.t. e′u = sl(x)v ∈ T |Tl and e′u ≺T e′v.
Then, either ∃e′u ∈ sl(x)v ∈ T |Tl and e′v ≺T e′u or @e′u = sl(x)v ∈ T |Tl.
If ∃e′u ∈ sl(x)v′ ∈ T |Tl and e′v ≺T e′u, then from Lemma 118, e′u = ◦sl(x)v′.
Thus, be definition of isolation order, Tk≺̇x

T Tl. Thus, if Tl≺̇
x
T Tj , then, from

Lemma 120, Tl is aborted or live in T , so, by construction, T̂l is aborted in
ŜH . Therefore T̂l * Vis(ŜH , Ti), so for any write operation execution opl =
wl(x)v′→ okl in any such Tl, opl 6∈ Vis(ŜH , Ti) (and v = 0). Alternatively, if
Tj≺̇x

T Tl, then since ea lT ev, then it is not possible that ea ≺T e′u ≺ ev.
By corollary, from the definition of isolation order, it is not possible that
Tj≺̇x

T Tl≺̇
x
T Ti. Then, by construction, T̂i ≺ŜH

T̂l, so T̂l * Vis(ŜH , Ti). There-
fore, for any write operation execution opl = wl(x)v′→ okl in any such Tl,
opl 6∈ Vis(ŜH , Ti) (and v = 0).
On the other hand, if @e′u ∈ sl(x)v ∈ T |Tl, then either T |Tl contains some
write operation opl = wl(x)v′ → okl or it does not. If it does not, then
vacuously, for any write operation execution opl = wl(x)v′ → okl in any
such Tl, opl 6∈ Vis(ŜH , Ti) (and v = 0). On the other hand, if opl ∈ T |Tl,
then from commit write obbligato, since @e′u = ◦sl(x)v ∈ T |Tl, then Tl
is not committed in T . Thus, T̂l is aborted in ŜH and T̂l * Vis(ŜH , Ti).
Thus, for any write operation execution opl = wl(x)v′→ okl in any such Tl,
opl 6∈ Vis(ŜH , Ti) (and v = 0).

ii) v 6= 0 and ∃Tl ∈ T s.t. e′u = ◦sl(x)v ∈ T |Tl and e′u lT e′v.
Since T is consonant, then e′u is consonant, so ∃opl = wl(x)v→okl s.t opl ;
e′u.
Since for all Tm ∈ ψT (Ti, x), e′′v = gm(x)v′′ there is some Tn that directly

258 A Proofs

precedes Tm in ψT (Ti, x) and contains e′′a = ◊sn(x)v′′ s.t. e′′a lT e′′v . Since e′′a
is conservative, there is a preceding view e′′′v = gn(x)v′′ s.t. e′′′v lT e′′a. Thus
e′′′v lT e′′v , so Tn≺̇

x
T Tm. Therefore, Tk≺̇x

T Ti, and, by extension, since e′ulT e′v,
Tl≺̇x

T Tk, then Tl≺̇
x
T Ti. Since Ti is committed in T , then since Tl≺̇x

T Ti, then,
from commit coherence, Tl is either committed or aborted in Tj .
Transaction Tli cannot be aborted in T , as follows. Let us assume by con-
tradiction that Tl is aborted (i.e. ∃ra = resl

[
Al

]
∈ T |Tl). Then, since T has

coda, then for some Tn, ∃e′′′a = ◊sn(x)v′′′ s.t. e′u ≺T e′′′a ≺T r. Since e′a is
consonant, then since it is clean and Tl≺̇x

T Tk, then there is no recovery event
following e′v and preceding e′a. In addition from commit coherence, Tl must
abort before Ti commits, so, by extension e′′′a must precede resi

[
Ci
]
in T .

Thus either e′′′a ≺T e′v or e′a ≺T e′′′a ≺T ra. In the former case, if e′′′a ≺T e′u,
then this contradicts that e′′′a is consonant (ending), and if e′u ≺T e′′′a ≺T e′v,
it contradicts that e′u lT e′v. On the other hand, if e′a ≺T e′′′a ≺T ra, then
one of three scenarios is possible. If for some Tm ∈ ψT (Ti, x), s.t. i 6= m and
gm(x)� ≺T e′′′a ≺T ◊sm(x)�, then this contradicts that ◊sm(x)� is clean.
Alternatively, if for a pair Tm, Tn ∈ ψT (Ti, x), s.t. Tm directly precedes Tn
in ψT (Ti, x), and ◊sm(x)� ≺T e′′′a ≺T gn(x)�, then this contradicts that
◊sm(x)� lT gn(x)�. Finally, if ev ≺ e′′′a , then this violates abort coda of
T (case b), and is also a contradiction. Thus, there cannot be such e′′′a , and
therefore Tl cannot be aborted in T .
Hence, Tl must be committed in T . Then since Tl≺̇x

T Ti (so T̂l ≺ŜH
T̂i),

opl ∈ Vis(ŜH , Ti).
Since e′u is non-local, then it is not followed in T |Tl by another e′′u = ◦sl(x)v.
Since opl ; e′u, @op′l = wl(x)v′→okl s.t. opl ≺T |Ti

op′l.
Let Tm be a transaction in T s.t. Tl≺̇x

T Tm≺̇
x
T Tj . If Tm ∈ ψT (Ti, x), then

from Lemma 119, Tm is not committed in T . If Tm 6∈ ψT (Ti, x), then from
Lemma 120, Tm is also not committed in T . In either case, T̂m is aborted
in ŜH . Thus, for any Tm s.t. Tl≺̇x

T Tm≺̇
x
T Tj , ŜH |T̂m * Vis(ŜH , i). Therefore,

for any write operation execution opm = wm(x)v′′ → okm ∈ T |Tm, opm 6∈
Vis(ŜH , Ti).
Let Tm ∈ T be any transaction s.t. Tj≺̇x

T Tm≺̇
x
T Ti. Since ea consonant, it

is is needed, so ∃e′′u = sj(x)v′′ ∈ T |Tj s.t. e′′u ≺T ea. In addition, since
Tj≺̇x

T Tm≺̇
x
T Ti, then by definition of isolation order, ∃e = sm(x)v′′′ ∈ T |Tm,

or e = gm(x)v′′′ ∈ T |Tm, so e′′u ≺T e ≺T ev. Since ea lT ev, then e′′u ≺T

e ≺T eu. Thus, by definition of abort accord, Tm is not committed in T , so,
by construction, T̂m is aborted in ŜH . Thus, for any Tm s.t. Tj≺̇x

T Tm≺̇
x
T Ti,

ŜH |T̂m * Vis(ŜH , i). Therefore, for any write operation execution opm =
wm(x)v′′→okm ∈ T |Tm, opm 6∈ Vis(ŜH , Ti).
Since no other write operation execution follows opl in T |Tm, and since
there is no transaction Tm ∈ T s.t. T̂l ≺ŜH

T̂m ≺ŜH
T̂i (and therefore

T̂l ≺Vis(ŜH ,T̂i) T̂m ≺Vis(ŜH ,T̂i) T̂i) s.t. ∃opm = wm(x)v′′→ okm ∈ T |Tm and
opm ∈ Vis(ŜH , T̂i), then wl(x)v→okl lVis(ŜH ,T̂i) opi and v 6= 0.

Corollary 25 (Total Non-local Read Consistency). By extension of the above, since, by
definition, if for some sequential history S, ŜH |trj ∈ Vis(S, Ti), then Vis(ŜH , Tj) is a
prefix of Vis(S, Ti), then for any opj ∈ T |Tj s.t. opj = ri(opj)→v either:

1. v 6= 0 and ∃opk ∈ Vis(ŜH , Tk) for some Tk s.t. opk = wk(x)v→okj, opklVis(ŜH ,T̂i)
opj, or

A Proofs 259

2. v = 0 and @opk ∈ Vis(ŜH , Ti) s.t. opk = wk(x)v→okk and opk ≺Vis(ŜH ,Ti) opj.

Lemma 128 (Local Read Consistency). For any opi ∈ T |Ti s.t. opi = ri(opi)→v and
opi is local, then ∃op′i ∈ Vis(ŜH , Ti) s.t. op′i = wi(x)v→oki, op′i lVis(ŜH ,Ti) opi.

Proof. From local read consonance it follows that For any opi ∈ T |Ti s.t. opi is local,
then ∃op′i ∈ T |Ti and op′i lT |Ti

opi. Thus, op′i lŜH |T̂i
opi. Since Ti ⊆ Vis(ŜH , Ti) then

op′i lVis(ŜH ,Ti) opi.

Corollary 26 (Total Local Read Consistency). For any opi ∈ T |Ti s.t. opi = ri(opi)→
v and opi is local, then for any Tj, ∃op′i ∈ Vis(ŜH , Tj) s.t. op′i = wi(x)v → oki,
op′i lVis(ŜH ,Tj) opi.

Let there instead be such Ti ∈ T that Ti is either committed or not committed T .
Then:

Lemma 129 (Non-local Read Last-use Consistency). For any opi ∈ T |Ti s.t. opi =
ri(opi)→v and opi is non-local, then either

i) v 6= 0 and ∃opj ∈ LVis(ŜH , T̂i) for some Tj s.t. opj = wj(x)v→okj, opjlLVis(ŜH ,T̂i)
opi, or

ii) v = 0 and @opj ∈ LVis(ŜH , T̂i) s.t. opj = wj(x)v→okj and opj ≺LVis(ŜH ,T̂i) opi.

Proof. Since opi is consonant and non-local, then ∃ev = gi(x)v ∈ T , s.t. opi ;ev. Then,
since T is consonant, then ev is also consonant, so one of the following is true:

a) v = 0 and @eu = sj(x)� ∈ T for some Tj ∈ T s.t. eu ≺T ev.
In which case, if @opj = wj(x)�→oki ∈ T |Tj s.t. opj ≺T gi(x)v, then, @Tj ∈ T

s.t. Tj≺̇T Ti and opj ∈ T |Tj . Thus, from construction of ŜH , @T̂j ∈ T s.t. T̂j ≺ŜH

T̂i and opj ∈ ŜH |T̂j . Thus, from construction of LVis(ŜH , T̂i), for any such Tj ,
ŜH |T̂j * LVis(ŜH , T̂i), so for any such Tj , wj(x)v→okj 6∈ LVis(ŜH , T̂i) and v = 0.
On the other hand, if ∃opjwj(x)� → oki ∈ T |Tj s.t. opj ≺T gi(x)v, then if
Tj is committed in T , then, from the definition of commit write obbligato, ∃ ◦
sj(x)� ∈ T |Tj , which contradicts the assumption of case a)). If, however, Tj is not
committed in T , then either Tj is decided on x in T , or it is not. In the former of
those two cases, from the definition of closing write obbligato, ∃ ◦ sj(x)� ∈ T |Tj ,
which also contradicts the assumption of case a)). In the latter case, since T̂j is
neither committed in T nor decided on x in T , then neither is it committed in
ŜH nor decided on x in ŜH . Therefore, by definition of LVis(ŜH , T̂i), ŜH |T̂j |x *
LVis(ŜH , T̂i). Thus for any such Tj , wj(x)�→okj 6∈ LVis(ŜH , T̂i) and v = 0.

b) v 6= 0 and ∃eu = ◦sj(x)v ∈ T for some Tj ∈ T s.t. eu lT ev.
Since eu is consonant, then ∃opj = wj(x)v→okj ∈ T |Tj s.t. opj is non-local and
consonant, and opjl◦sj(x)v. Thus, since eulT ev, Tj≺̇x

T Ti, then, by construction,
T̂j ≺ŜH

T̂i.
If Ti is not committed in T , since Ti ¨;Tj , and since T is decisive, then Tj is
decided on x in T . Thus, from Def. 61, ŜH |T̂j |x ⊆ LVis(ŜH , Ti), and therefore
opj ≺LVis(ŜH ,Ti) opi. Alternatively, if Ti is committed in T , then, from commit
accord, Tj is also committed in T . Then, by definition of LVis(ŜH , Ti), ŜH |T̂j ⊆
LVis(ŜH , Ti), and thus opj ≺LVis(ŜH ,Ti) opi. Then, from Lemma 117, opjlLVis(ŜH ,Ti)
opi. Thus, wj(x)v→okj lLVis(ŜH ,T̂i) opi and v 6= 0.

c) ∃eja = ◊sj(x)v ∈ T |Tj s.t. eja lT ev.
Since T is consonant, then eja is consonant, so eja is conservative, and thus ∃ejv =
gj(x)v ∈ T |Tj .

260 A Proofs

From Corollary 24 ∀Tn ∈ ψT (Ti, x) (n 6= i) Tn≺̇x
T Ti. So, by construction, for every

such Tn, T̂n is aborted in ŜH and therefore not included as a whole in LVis(ŜH , Ti).
In addition, since ena is needed there is a preceding routine update enu = ◦sn(x)v′.
Because of unique writes, v′ 6= v. Therefore, it is not true that Ti ...;Tn. Furthermore,
since enu ≺T ena and ena ≺T eja and eja ≺T ev, then, enu ≺T ena ≺T ev, so, from chain
isolation, @ξ(T , Tn, Tm). Thus, from Def. 61 ŜH

�

|Tn is not included in LVis(ŜH , Ti).
Thus for any Tn ∈ ψT (Ti, x) (n 6= i), ∀opn = wn(x)v→∈T |Tn, opn 6∈ LVis(ŜH , Ti).
Given ψT (Ti, x), from Lemma 118, ∃ekv = gk(x)v ∈ T |Tk s.t. Tk is the first element
of ψT (Ti, x) that is initial and non-local, and either of the following is true:

i) v = 0 and @Tl ∈ T s.t. elu = sl(x)� ∈ T |Tl and elu ≺T ekv .
Then, either ∃elu = sl(x)v ∈ T |Tl and ekv ≺T elu or @elu = sl(x)� ∈ T |Tl.
If ∃elu = sl(x)� ∈ T |Tl and ekv ≺T elu, then from Lemma 118, elu = ◦sl(x)� ∈
T |Tl. Thus, by definition of isolation order, Tk≺̇x

T Tl.
Thus, if Tl≺̇x

T Ti, then, from Lemma 120, Tl is aborted or live in T , so, by
construction, T̂l is aborted in ŜH . Since T̂l is not committed in ŜH , then
T̂l|ŜH is not included as a whole in LVis(ŜH , Ti). Furthermore, ŜH

�

|Tl can
be omitted from LVis(ŜH , Ti). From unique routine updates, there cannot be
Tn ∈ ξ(T , Tl, Ti) s.t. ∃ ◦ sn(x)0, so since v = 0 and from self-containment,
@ξ(T , Tl, Ti). Thus, from Def. 61, ŜH

�

|Tk * LVis(ŜH , Ti). Then, for any write
operation execution opl = wl(x)v′→okl in any such Tl, opl 6∈ LVis(ŜH , Ti) (and v = 0).
Alternatively, if Ti≺̇x

T Tl, then since ea lT ev, then ev ≺T elu, so Ti≺̇
x
T Tl,

and thus Ti ≺ŜH
Tl, which means that ŜH

�

|Tk * LVis(ŜH , Ti). In either
case for any write operation execution opl = wl(x)v′ → okl in any such Tl,
opl 6∈ Vis(ŜH , Ti) (and v = 0).
On the other hand, if @elu = sl(x)� ∈ T |Tl, either Tl≺̇T Ti, or Tl⊀̇T Ti. In
the latter case, if Ti≺̇T Tl, then, trivially, no subset of ŜH |T̂l is contained
in LVis(ŜH , Tl). If Ti⊀̇T Tl, then there does not exist ξ(T , Tl, Ti), so, from
Def. 61, no subset of ŜH |T̂l is contained in LVis(ŜH , Tl). If Tl≺̇T Ti, then either
T |Tl contains some write operation opl = wl(x)v′→okl or it does not. How-
ever, from view write obbligato, since Tl≺̇T Ti, there must be sl(x)� ∈ T |Tl,
so, there is no such opl. Then vacuously, for any write operation execution
opl = wl(x)�→okl in any such Tl, opl 6∈ LVis(ŜH , Ti) (and v = 0).

ii) v 6= 0 and ∃Tl ∈ T s.t. elu = ◦sl(x)v ∈ T |Tl and e′u lT e′v.
Since T is consonant, then elu is consonant, so ∃opl = wl(x)v→okl s.t opl ;
elu.
Let us first assume that Tl is committed in T . Then since Tl≺̇x

T Ti (so T̂l ≺ŜH

T̂i), opl ∈ LVis(ŜH , Ti).
If, on the other hand, Tl is not committed in T , then, since ekv is conso-
nant, then elu is the ultimate routine update event in T |Tl. Therefore, from
decisiveness, elu is either the closing routine update event on x in T |Tl, or
elu ≺T resl

[
Cl
]
≺T ev. Since Tl is not committed in ŜH , elu is the closing rou-

tine update event, so opl is the closing write on x in Tl. Because of this, and
since T̂l ≺ŜH

T̂i, ŜH
�

|Tl can be included in LVis(ŜH , Ti). Then, since Ti ...;Tl,
then there exists ξ(T , Tl, Ti), so according to Def. 61, ŜH

�

|T̂l is included in
LVis(ŜH , Ti), and therefore opl ∈ LVis(ŜH , Ti).
From minimalism, elu is not followed in T |Tl by another ◦sl(x)�. Since opl ;
elu, @op′l = wl(x)�→okl s.t. opl ≺T |Ti

op′l.
Let Tm be any transaction in T s.t. Tl≺̇T Tm≺̇T Ti. If @wm(x)�→ okm ∈
T |Tm, then trivially, for any such Tm @wm(x)v→okm ∈ LVis(ŜH , Ti). Thus,

A Proofs 261

let there be opm = wm(x)v′→okm ∈ T |Tm.
If Tm ∈ ψT (TT , x)i, then, as shown above, ŜH |T̂m * LVis(ŜH , Ti) and there-
fore opm 6∈ LVis(ŜH , Ti). Hence, let Tm 6∈ ψT (TT , x)i.
Either trm≺̇T Ti or trm⊀̇T Ti. In the latter case, if Tm is not committed,
Tm can be excluded from LVis(ŜH , Ti). Since in that case there doe not
exist ξ(T , Tm, Ti), then, by Def. 61, ŜH |T̂m * LVis(ŜH , Ti) and therefore
opm 6∈ LVis(ŜH , Ti). If Tm is committed, then if wm(x)v′→okm ∈ T |Tm, then
by commit write obbligato, there would have to exist emu = ◦sm(x)v′ ∈ T |Tm,
which would imply that Tm≺̇x

T Ti, which contradicts the assumption that
trm⊀̇T Ti. Therefore, there is no such transaction.
If Tm≺̇T Ti, then, if Tm≺̇T Tl, then T̂m ≺ŜH

T̂l, and therefore opm ≺LVis(ŜH ,Ti)
opl, which has no bearing on whether opi is preceded by a corresponding write
operation. Hence, let Tl≺̇T Tm≺̇T Ti. Then, Tm is either committed in T or
not.
If Tm is committed, then from commit write obbligato ∃emu = ◦sm(x)v′ ∈
T |Tm. From isolation, it is impossible that Ti≺̇x

T Tm or Tm≺̇x
T Tl, then Tl≺̇

x
T Tm≺̇

x
T Ti.

Then, if Tj≺̇x
T Tm≺̇

x
T Ti, since ea is consonant, it is is needed, so ∃eju =

sj(x)� ∈ T |Tj s.t. eju ≺T ea. In addition, since Tj≺̇x
T Tm≺̇

x
T Ti, then by

definition of isolation, ∃e = sm(x)� ∈ T |Tm, or egm(x)� ∈ T |Tm, so
eju ≺T e ≺T ev. Since ea lT ev, then eju ≺T e ≺T eu. Thus, by defini-
tion of abort accord, Tm cannot be in T , thus there is no such Tm.
If Tl≺̇x

T Tm≺̇
x
T Tj , then, since Tm 6∈ ψT (TT , x)i, then, from Lemma 120, Tm

cannot be committed in T , thus, there is also no such Tm.
Since there is no such Tm that is both committed and contains an operation
execution such as opm, then for any such Tm, ŜH |T̂m * LVis(ŜH , Ti) and
therefore opm 6∈ LVis(ŜH , Ti).
On the other hand, if Tm is not committed in T , then, since opm is consonant,
either opm ; emu where emu = ◦sm(x)v′ ∈ T |Tm, or @◦sm(x)� ∈ T |Tm. Since,
from view write obbligato the latter case is impossible, then ∃emu = ◦sm(x)v′ ∈
T |Tm. Then, from the definition of isolation order, Tl≺̇x

T Tm≺̇
x
T Ti. Since Tm is

not committed, then T̂m can be omitted in LVis(ŜH , Ti). Due to unique routine
updates, there cannot be any Tn ∈ T s.t. ◦sn(x)v′′ where v′′ = v. Therefore,
given any ξ(T , Tm, Ti) and there is no transaction to satisfy self-containment.
Thus, there is no such ξ(T , Tm, Ti). Thus, by Def. 61, ŜH |T̂m * LVis(ŜH , Ti)
and therefore opm 6∈ LVis(ŜH , Ti).
Because there is no Tm s.t. ŜH |T̂m ⊆ LVis(ŜH , Ti) and opm ∈ LVis(ŜH , Ti),
then there is no write operation execution op′ on x s.t. opl ≺LVis(ŜH ,Ti)
op′ ≺LVis(ŜH ,Ti) opi. Therefore wl(x)v→okl lVis(ŜH ,T̂i) opi and v 6= 0.

Lemma 130 (All Non-local Read Last-use Consistency). If for some sequential history
S, ŜH |trj ∈ Vis(S, Ti), for any opj ∈ T |Tj s.t. opj = ri(opj)→v either:

1. v 6= 0 and ∃opk ∈ Vis(ŜH , T̂k) for some Tk s.t. opk = wk(x)v→okj, opklVis(ŜH ,T̂i)
opj, or

2. v = 0 and @opk ∈ Vis(ŜH , T̂i) s.t. opk = wk(x)v′→okk and opk ≺Vis(ŜH ,T̂i) opj.

Proof. Either v 6= 0 or v = 0.

1. If v 6= 0,from Lemma 129, since v 6= 0 then ∃opk = wk(x)v → okk ∈ T |Tk s.t.
opk lLVis(ŜH ,Tj) opj .

262 A Proofs

From Lemma 122, ∀Tl if T̂l
�
⊆ LVis(ŜH , Tj) then T̂l

�
⊆ LVis(ŜH , Ti) and LVis(ŜH , Ti)|Tl =

LVis(ŜH , Tj)|Tl. Hence, Tk
�
⊆ LVis(ŜH , Ti) and opk ∈ LVis(ŜH , Ti). Furthermore,

if Tk
�
⊆ LVis(ŜH , Tj), then Tk ≺ŜH

Tj , so opk ≺LVis(ŜH ,Ti) opj .
For the sake of contradiction, let us assume there exists opl = wl(x)v→okl ∈ T |Tl
s.t. opk ≺LVis(ŜH ,Ti) opl ≺LVis(ŜH ,Ti) opj . Since from Lemma 129, there is no

such transaction in LVis(ŜH , Ti), then Tl is such that T̂l
�
⊆ LVis(ŜH , Ti) s.t. and

T̂l
�
* LVis(ŜH , Tj) (and T̂l ≺ŜH

T̂j).

If T̂l
�
⊆ LVis(ŜH , Ti), then, by definition, Tl is not committed in T .

If Tl≺̇xT Tj , then this is a contradiction by analogy to Lemma 129.
If Tj≺̇xT Tl, then, from Def. 60, T̂j ≺ŜH

T̂l, which implies that opj ≺LVis(ŜH ,Tj) opl,
which is a contradiction.
If Tl⊀̇xT Tj , then @eku = ◦sl(x)� ∈ T |Tl. Hence, from Def. 60 , T̂j ≺ŜH

T̂l, which
imp‘lies that opj ≺LVis(ŜH ,Tj) opl, which, again, is a contradiction.
Thus, there is no such Tl, and, therefore, opk lLVis(ŜH ,Ti) opj (and v 6= 0).

2. If v = 0, let us assume by contradiction, that there exists such Tk and opk. From
Lemma 129, since v = 0 then @opl = wl(x)�→okl ∈ T |Tl s.t. opl ≺LVis(ŜH ,Tj) opj .

Hence, Tk must be such that T̂k
�
⊆ LVis(ŜH , Ti) s.t. and T̂k

�
* LVis(ŜH , Tj) (and

Tk ≺ŜH
Tj).

From Lemma 123, ∀Tl if T̂l
�
* LVis(ŜH , Tj) and ∃ξ(T , Tl, Tj) then T̂l

�
⊆ LVis(ŜH , Ti).

Thus, if Tk is such that T̂k
�
⊆ LVis(ŜH , Tj) and T̂k

�
⊆ LVis(ŜH , Ti), then @ξ(T , Tk, Tj).

If T̂k
�
⊆ LVis(ŜH , Ti), then, by definition, Tk is not committed in T .

If Tk≺̇xT Tj , then this is a contradiction by analogy to Lemma 129.
If Tj≺̇xT Tk, then, from Def. 60, T̂j ≺ŜH

T̂k, which implies that opj ≺LVis(ŜH ,Tj)
opk, which is a contradiction.
If Tk⊀̇xT Tj , then @eku = ◦sk(x)� ∈ T |Tk. Hence, from Def. 60, T̂j ≺ŜH

T̂k, which
implies that opj ≺LVis(ŜH ,Tj) opk, which, again, is a contradiction.

Thus, there is no such Tk, and, therefore, @opk ∈ LVis(ŜH , T̂i) s.t. opk = wk(x)v′→
okk and opk ≺LVis(ŜH ,T̂i) opj (and v = 0).

Lemma 131 (Local Read Last-use Consistency). For any opi ∈ T |Ti s.t. opi =
ri(opi)→v and opi is local, then ∃op′i ∈ LVis(ŜH , Ti) s.t. op′i = wi(x)v→oki, op′ilLVis(ŜH ,Ti)
opi.

Proof. From local read consonance it follows that for any opi ∈ T |Ti s.t. opi is local,
then ∃op′i ∈ T |Ti and op′i lT |Ti

opi. Thus, op′i lŜH |T̂i
opi. Since opi and opj operate

on the same variable, then trivially, opi ∈ LVis(ŜH , Ti) ⇐⇒ op′iLVis(ŜH , Ti). Hence,
op′i lVis(ŜH ,Ti) opi.

Corollary 27 (Total Local Read Last-use Consistency). For any opi ∈ T |Ti s.t. opi =
ri(opi)→v and opi is local, then for any Tj, ∃op′i ∈ LVis(ŜH , Tj) s.t. op′i = wi(x)v→oki,
op′i lLVis(ŜH ,Tj) opi.

Lemma 132 (Total Write Consistency). For any Ti, Tj, ∀opi ∈ LVis(ŜH , Tj) s.t. opi =
wi(opi)v→oki ∈ T |Ti, v is in the domain of x.

Proof. Follows from write consonance.

A Proofs 263

Proof for Theorem 9
Proof for Theorem 9: Trace Last-use Opacity. For every transaction Ti ∈ T , given ŜH
constructed by Def. 60,

i) If Ti is committed in H, from Corollary 25, ∀opj ∈ H|Tj s.t. opj = ri(x)→ v and
opj is non-local, either:

a) v 6= 0 and ∃opk ∈ Vis(ŜH , T̂k) for some Tk s.t. opk = wk(x)v→okj , opklVis(ŜH ,T̂i)
opj , or

b) v = 0 and @opk ∈ Vis(ŜH , T̂i) s.t. opk = wk(x)v→ okk and opk ≺Vis(ŜH ,T̂i)
opj .

In addition, from Corollary 26, ∀opj ∈ H|Tj s.t. opj = ri(opj)→v and opj is local,
∃opj ∈ Vis(ŜH , T̂j) s.t. op′j = wj(x)v→okj , op′j lVis(ŜH ,T̂i) opj
Furthermore, from Lemma 132, ∀op′j ∈ H|Tj s.t. opj = wi(opj)v→okj , v is in the
domain of x.
Thus, Vis(ŜH , Ti) is legal, and therefore Ti is legal.

ii) If Ti is not committed in H, from Lemma 130, ∀opj ∈ H|Tj s.t. opj = ri(x)→ v
and opj is non-local, either:

a) v 6= 0 and ∃opk ∈ LVis(ŜH , T̂k) for some Tk s.t. opk = wk(x)v → okj ,
opk lLVis(ŜH ,T̂i) opj , or

b) v = 0 and @opk ∈ LVis(ŜH , T̂i) s.t. opk = wk(x)v→okk and opk ≺LVis(ŜH ,T̂i)
opj .

In addition, from Corollary 27, ∀opj ∈ H|Tj s.t. opj = ri(x)→ v and opj is local,
∃opj ∈ LVis(ŜH , T̂j) s.t. op′j = wj(x)v→okj , op′j lLVis(ŜH ,T̂i) opj
Furthermore, from Lemma 132, ∀op′j ∈ H|Tj s.t. opj = wi(x)v→ okj , v is in the
domain of x.
Thus, LVis(ŜH , Ti) is legal, and therefore Ti is last-use legal.

Since every committed transaction Ti ∈ H is legal if it is committed and last-use legal
if it is not committed, then H is final-state last-use opaque.

Since a prefix of a harmonious T is trivially also harmonious, then for every prefix T ′

of T , H ′ = Hist(T ′) is also final-state last-use opaque. Thus, H is last-use opaque.

Miscellaneous

A History with Early Release is not Opaque
Let Her represent the history in Fig. 7.1:

Her =
[

starti → oki, startj → okj ,wi(x)1→oki, rj(x)→1, tryC i → Ci, tryC j → Cj
]
.

Lemma 133. Her is final-state opaque.

Proof. The completion Compl(Her) of Her is identical to Her, because Her contains only
committed transactions (that is: for any transaction Ti ∈ Her it is true that Her|Ti =
H ′i · [tryC i → Ci]).

264 A Proofs

Note that there exists a sequential history S = Her|Ti ·Her|Tj that is equivalent to
Her. Since all transactions are concurrent in Her, the real time order of Her is empty
(≺er= ∅). Then, trivially, ≺er⊆≺S . So S satisfies Def. 12a.

S contains operations of transactions T = {Ti, Tj} on objects Var = {x}. Subhistory
Vis(S, Ti) = S|Ti is legal since Vis(S, Ti)|x = [wi(x)1→oki] ∈ Seq(x) and the value i is
in the domain of x (N0). Hence Ti in S is legal in S. Subhistory Vis(S, Tj) = S|Ti · S|Tj
is legal as well, since Vis(S, Tj)|x = [wi(x)1→oki, rj(x)→1], since i is in the domain of
x and rj(x)→1 is directly preceded by an operation writing i to x. Hence Tj in S is legal
in S.

Since every Ti in S is legal in S, then sequential history S satisfies Def. 12b. Therefore,
Her is final-state opaque.

Lemma 134. Her is not opaque.

Proof. let history P be a prefix of Her created by removing the last 4 events of Her, i.e.:

P =
[

starti → oki, startj → okj ,wi(x)1→oki, rj(x)→1
]
.

Furthermore, let P ′ = Compl(P) s.t., P ′|Ti = P |Ti · [tryC i → Ai] and P ′|Tj = P |Tj ·
[tryC j → Aj]. Note that, from definition of completion, P ′ is the only possible completion
of P because only case (d) applies to both transactions in P .

There are two possible sequential histories equivalent to P ′. The first one is S′ =
P ′|Ti · P ′|Tj . Since Ti is aborted in P ′, then Vis(S′, Tj) = P ′|Tj (that is, operation
executions from P ′|Ti are excluded from Vis(S′, Tj)). However, Vis(S′, Tj) is not legal
because it contains operation execution rj(x)→1 that is not preceded by any write and
v0 6= i. Hence Ti in S′ is not legal in S′. So S′ does not bear out Def. 12b.

The second sequential history equivalent to P ′ is S′′ = P ′|Tj ·P ′|Ti. Here, Vis(S′′, Tj) =
P ′|Tj (because Tj is not preceded by any other transaction in S′′). Since, Vis(S′′, Tj) =
Vis(S′, Tj), then by analogy to the discussion above Vis(S′′, Tj) is not legal, so Tj in S′′
is not legal in S′′. Thus, S′′ does not satisfy Def. 12b either.

In effect, there is no sequential history equivalent to P ′ that satisfies Def. 12. There-
fore, P does not satisfy Def. 12, and, since P is a prefix of Her, then Her does not satisfy
Def. 13 and so it is not opaque.

B
Algorithms

This chapter contains full pseudocode of the various secondary variants of new algorithms
introduced and discussed in the main text. Where pertinent, we highlight the changes
from the original algorithm. We provide the pseudocode in this way for the sake of
completeness, and for the convenience of any potential implementers.

1 proc start(Transaction Ti) {
2 for dxc ∈ ASeti in order {
3 R ← location(dxc)
4 if owner(lk(R)) 6= Ti

5 lock lk(R)→ W
6 }
7 for dxc ∈ ASeti {
8 gv(dxc)← gv(dxc) + 1
9 pvi(dxc)← gv(dxc)

10 }
11 for dxc ∈ ASeti {
12 R ← location(dxc)
13 if owner(lk(R)) = Ti

14 unlock lk(R)
15 }
16 }
17 proc access(Transaction Ti, Object dxc, Method m) {
18 wait until pvi(dxc) - 1 = lv(dxc)
19 execute m on dxc returning v
20 return v
21 }
22 proc commit(Transaction Ti) {
23 for dxc ∈ ASeti {
24 wait until pvi(dxc) - 1 = lv(dxc)
25 lv(dxc)← pvi(dxc)
26 }
27 return Ci

28 }

1 proc start(Transaction Ti) {
2 for dxc ∈ ASeti in order {
3 R ← location(dxc)
4 if owner(lk(R)) 6= Ti

5 lock lk(R)→ W
6 }
7 for dxc ∈ ASeti {
8 gv(dxc)← gv(dxc) + 1
9 pvi(dxc)← gv(dxc)

10 }
11 for dxc ∈ ASeti {
12 R ← location(dxc)
13 if owner(lk(R)) = Ti

14 unlock lk(R)
15 }
16 }
17 proc access(Transaction Ti, Object dxc, Method m) {
18 wait until pvi(dxc) - 1 = lv(dxc)
19 execute m on dxc returning v
20 aci(dxc)← aci(dxc) + 1
21 if aci(dxc) = supri(dxc)
22 lv(dxc)← pvi(dxc)
23 return v
24 }
25 proc commit(Transaction Ti) {
26 for dxc ∈ ASeti {
27 wait until pvi(dxc) - 1 = ltv(dxc)
28 if pvi(dxc) - 1 = lv(dxc)
29 lv(dxc)← pvi(dxc)
30 ltv(dxc)← pvi(dxc)
31 }
32 return Ci

33 }

(a) BVA. (b) SVA.

Figure B.1: Versioning algorithms with CGL version acquisition.

1 proc start(Transaction Ti) {
2 // Acquire private versions.
3 for dxc ∈ ASeti in order
4 lock lk(dxc)→ W
5 for dxc ∈ ASeti {
6 gv(dxc)← gv(dxc) + 1
7 pvi(dxc)← gv(dxc)
8 unlock lk(dxc)
9 }

10 // Asynchronously buffer read−only variables.
11 for dxc ∈ ASeti: wubi(dxc) = 0
12 async run :read_buffer(Ti, dxc)
13 when pvi(dxc) - 1 = lv(dxc)
14 return oki

15 }
16 proc read(Transaction Ti, Object dxc, Method m) {
17 // Read−only object.
18 if dxc is read-only {
19 join with :read_buffer(Ti,dxc)
20 execute m on bufi(dxc) returning v
21 rci(dxc)← rci(dxc) + 1
22 return v
23 }
24 // Object not previously released.
25 if (wci(dxc) < wubi(dxc)
26 or uci(dxc) < uubi(dxc)) {
27 if wci(dxc) = 0 and uci(dxc) = 0 {
28 wait until pvi(dxc) - 1 = lv(dxc)
29 if (wci(dxc) > 0)
30 apply logi(dxc) to dxc
31 }
32 execute m on dxc returning v
33 rci(dxc)← rci(dxc) + 1
34 if (rci(dxc) = rubi(dxc)
35 and wci(dxc) = wubi(dxc)
36 and uci(dxc) = uubi(dxc))
37 :release(Ti,dxc)
38 return v
39 }
40 // Object previously released.
41 if (wci(dxc) = wubi(dxc)
42 and uci(dxc) = uubi(dxc)) {
43 if write_buffer(Ti,dxc) is running
44 join with :write_buffer(Ti,dxc)
45 execute m on bufi(dxc) returning v
46 rci(dxc)← rci(dxc) + 1
47 return v
48 }
49 }
50 proc update(Transaction Ti, Object dxc, Method m) {
51 if rci(dxc) = 0 and uci(dxc) = 0 {
52 wait until pvi(dxc) - 1 = lv(dxc)
53 if wci(dxc) > 0
54 apply logi(dxc) to dxc
55 }
56 execute m on dxc returning v
57 uci(dxc)← uci(dxc) + 1
58 if (wubi(dxc) = wci(dxc)
59 and uubi(dxc) = uci(dxc)) {
60 bufi(dxc)← dxc
61 :release(Ti,dxc)
62 }
63 return v
64 }

65 proc write(Transaction Ti, Object dxc, Method m) {
66 // No preceding reads or updates.
67 if rci(dxc) = 0 and uci(dxc) = 0 {
68 execute m on logi(dxc)
69 wci(dxc)← wci(dxc) + 1
70 if wci(dxc) = wubi(dxc)
71 async run :write_buffer(Ti,dxc)
72 when pvi(dxc) - 1 = lv(dxc)
73 }
74 // Some preceeding reads or updates.
75 if rci(dxc) > 0 or uci(dxc) > 0 {
76 execute m on dxc
77 wci(dxc)← wci(dxc) + 1
78 if wci(dxc) = wubi(dxc) {
79 bufi(dxc)← dxc
80 :release(Ti, dxc)
81 }
82 }
83 }
84 proc commit(Transaction Ti) {
85 for(dxc ∈ ASeti) {
86 if wubi(dxc) = 0
87 join with read_comit(Ti,dxc)
88 else {
89 if (wci(dxc) = wubi(dxc)
90 and rci(dxc) = uci(dxc) = 0)
91 join with write_buffer(Ti,dxc)
92 else {
93 if wci(dxc) + rci(dxc) = uci(dxc) = 0
94 wait until pvi(dxc) - 1 = lv(dxc)
95 apply logi(dxc) to dxc
96 }
97 }
98 wait until pvi(dxc) - 1 = ltv(dxc)
99 if pvi(dxc) - 1 = lv(dxc)

100 lv(dxc)← pvi(dxc)
101 }
102 ltv(dxc)← pvi(dxc)
103 }
104 return oki

105 }
106 proc :read_buffer(Transaction Ti, Object dxc) {
107 bufi(dxc)← dxc
108 :release(Ti,dxc)
109 async run :read_commit(Ti,dxc)
110 when pvi(dxc) - 1 = ltv(dxc)
111 }
112 proc :read_commit(Transaction Ti, Object dxc) {
113 if ∃dyc: rvi(dyc) > cv(dyc)
114 return abort(Ti)
115 ltv(dxc)← pvi(dxc)
116 }
117 proc :write_buffer(Transaction Ti, Object dxc) {
118 apply logi(dxc) to dxc
119 bufi(dxc)← dxc
120 :release(Ti,dxc)
121 }
122 proc :release(Transaction Ti, Object dxc) {
123 lv(dxc)← pvi(dxc)
124 }

Figure B.2: OptSVA-CF (commit-only).

1 proc start(Transaction Ti) {
2 // Acquire private versions.
3 for dxc ∈ ASeti in order
4 lock lk(dxc)→ W
5 for dxc ∈ ASeti {
6 gv(dxc)← gv(dxc) + 1
7 pvi(dxc)← gv(dxc)
8 unlock lk(dxc)
9 }

10 // Asynchronously buffer read−only variables.
11 for dxc ∈ ASeti: wubi(dxc) = 0
12 if Ti ∈ R
13 async run :read_buffer(Ti, dxc)
14 when pvi(dxc) - 1 = ltv(dxc)
15 else
16 async run :read_buffer(Ti, dxc)
17 when pvi(dxc) - 1 = lv(dxc)
18 return oki

19 }
20 proc read(Transaction Ti, Object dxc, Method m) {
21 // Read−only object.
22 if dxc is read-only {
23 join with :read_buffer(Ti,dxc)
24 if ∃dyc: rvi(dyc) 6= cv(dyc)
25 return abort(Ti)
26 execute m on bufi(dxc) returning v
27 rci(dxc)← rci(dxc) + 1
28 return v
29 }
30 // Object not previously released.
31 if (wci(dxc) < wubi(dxc)
32 or uci(dxc) < uubi(dxc)) {
33 if wci(dxc) = 0 and uci(dxc) = 0 {
34 if Ti ∈ R
35 wait until pvi(dxc) - 1 = ltv(dxc)
36 else
37 wait until pvi(dxc) - 1 = lv(dxc)
38 :checkpoint(Ti,dxc)
39 if (wci(dxc) > 0)
40 apply logi(dxc) to dxc
41 }
42 if ∃dyc: rvi(dyc) 6= cv(dyc)
43 return abort(Ti)
44 execute m on dxc returning v
45 rci(dxc)← rci(dxc) + 1
46 if (rci(dxc) = rubi(dxc)
47 and wci(dxc) = wubi(dxc)
48 and uci(dxc) = uubi(dxc))
49 :release(Ti,dxc)
50 return v
51 }
52 // Object previously released.
53 if (wci(dxc) = wubi(dxc)
54 and uci(dxc) = uubi(dxc)) {
55 if write_buffer(Ti,dxc) is running
56 join with :write_buffer(Ti,dxc)
57 if ∃dyc: rvi(dyc) 6= cv(dyc)
58 return abort(Ti)
59 execute m on bufi(dxc) returning v
60 rci(dxc)← rci(dxc) + 1
61 return v
62 }
63 }
64 proc update(Transaction Ti, Object dxc, Method m) {
65 if rci(dxc) = 0 and uci(dxc) = 0 {
66 if Ti ∈ R
67 wait until pvi(dxc) - 1 = ltv(dxc)
68 else
69 wait until pvi(dxc) - 1 = lv(dxc)
70 :checkpoint(Ti,dxc)
71 if wci(dxc) > 0
72 apply logi(dxc) to dxc
73 }
74 if ∃dyc: rvi(dyc) 6= cv(dyc)
75 return abort(Ti)
76 execute m on dxc returning v
77 uci(dxc)← uci(dxc) + 1
78 if (wubi(dxc) = wci(dxc)
79 and uubi(dxc) = uci(dxc)) {
80 bufi(dxc)← dxc
81 :release(Ti,dxc)
82 }
83 return v
84 }

85 proc write(Transaction Ti, Object dxc, Method m) {
86 // No preceding reads or updates.
87 if rci(dxc) = 0 and uci(dxc) = 0 {
88 execute m on logi(dxc)
89 wci(dxc)← wci(dxc) + 1
90 if wci(dxc) = wubi(dxc)
91 if Ti ∈ R
92 async run :write_buffer(Ti,dxc)
93 when pvi(dxc) - 1 = ltv(dxc)
94 else
95 async run :write_buffer(Ti,dxc)
96 when pvi(dxc) - 1 = lv(dxc)
97 }
98 // Some preceeding reads or updates.
99 if rci(dxc) > 0 or uci(dxc) > 0 {

100 if ∃dyc: rvi(dyc) 6= cv(dyc)
101 return abort(Ti)
102 execute m on dxc
103 wci(dxc)← wci(dxc) + 1
104 if wci(dxc) = wubi(dxc) {
105 bufi(dxc)← dxc
106 :release(Ti, dxc)
107 }
108 }
109 }
110 proc commit(Transaction Ti) {
111 for(dxc ∈ ASeti) {
112 if wubi(dxc) = 0
113 join with read_comit(Ti,dxc)
114 else {
115 if (wci(dxc) = wubi(dxc)
116 and rci(dxc) = uci(dxc) = 0)
117 join with write_buffer(Ti,dxc)
118 else {
119 if wci(dxc) + rci(dxc) = uci(dxc) = 0
120 wait until pvi(dxc) - 1 = lv(dxc)
121 if (wci(dxc) > 0
122 and rci(dxc) = uci(dxc) = 0) {
123 :checkpoint(Ti,dxc)
124 if ∃dyc: rvi(dyc) 6= cv(dyc)
125 return abort(Ti)
126 apply logi(dxc) to dxc
127 }
128 }
129 wait until pvi(dxc) - 1 = ltv(dxc)
130 if pvi(dxc) - 1 = lv(dxc)
131 lv(dxc)← pvi(dxc)
132 if (rci(dxc) + wci(dxc) + uci(dxc) > 0
133 and rvi(dxc) = cv(dxc)
134 and pvi(dxc) - 1 > lv(dxc))
135 cv(dxc)← pvi(dxc)
136 }
137 }
138 if ∃dyc: rvi(dyc) > cv(dyc)
139 return abort(Ti)
140 for dxc ∈ ASeti

141 ltv(dxc)← pvi(dxc)
142 return oki

143 }
144 proc abort(Transaction Ti) {
145 for dxc ∈ ASeti {
146 wait until pvi(dxc) - 1 = ltv(dxc)
147 if (rci(dxc) + wci(dxc) + uci(dxc) > 0
148 and pvi(dxc) - 1 > lv(dxc)
149 and rvi(dxc) = cv(dxc)
150 and wubi(dxc) + uubi(dxc) > 0) {
151 if wci(dxc) = wubi(dxc)
152 join with :write_buffer(Ti,dxc)
153 :recover(Ti,dxc)
154 }
155 if pvi(dxc) - 1 = lv(dxc)
156 lv(dxc)← pvi(dxc)
157 ltv(dxc)← pvi(dxc)
158 }
159 return Ai

160 }

Figure B.3: ROptSVA-CF+R.

161 proc :read_buffer(Transaction Ti, Object dxc) {
162 rvi(dxc)← cv(dxc)
163 bufi(dxc)← dxc
164 :release(Ti,dxc)
165 async run :read_commit(Ti,dxc)
166 when pvi(dxc) - 1 = ltv(dxc)
167 }
168 proc :read_commit(Transaction Ti, Object dxc) {
169 if ∃dyc: rvi(dyc) > cv(dyc)
170 return abort(Ti)
171 ltv(dxc)← pvi(dxc)
172 }
173 proc :write_buffer(Transaction Ti, Object dxc) {
174 :checkpoint(Ti,dxc)
175 apply logi(dxc) to dxc
176 bufi(dxc)← dxc
177 :release(Ti,dxc)
178 }

179 proc :checkpoint(Transaction Ti, Object dxc) {
180 sti(dxc)← dxc
181 rvi(dxc)← cv(dxc)
182 }
183 proc :recover(Transaction Ti, Object dxc) {
184 dxc ← sti(dxc)
185 cv(dxc)← rvi(dxc)
186 }
187 proc :release(Transaction Ti, Object dxc) {
188 cv(dxc)← pvi(dxc)
189 lv(dxc)← pvi(dxc)
190 }

Figure B.3: ROptSVA-CF+R.

Copyright c© 2016 Konrad Siek

Institute of Computing Science
Faculty of Computing
Poznań University of Technology

Typeset using LATEX.

BibTEX:
@phdthesis{Sie16,

author = "Konrad Siek",
title = "{Distributed Pessimistic Transactional Memory: Algorithms and Properties}",
school = "Pozna{\’n} University of Technology",
address = "Pozna{\’n}, Poland",
year = "2016"

}

TEX source statistics:
files: 129, characters: 1728610,
words: 128950, dollar signs: 24544,
lines: 37268, backslashes: 38575,
comment lines: 10655, vspaces: 31,
empty lines: 3483, macros: 577,
emphs: 641, expletives: 2.

