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Abstract

In a world dominated by multicore processors and distributed applications, concurrent
programming is becoming the norm rather than the exception. However, concurrent pro-
gramming is also notoriously difficult, because concurrent processes, whether running
on independent cores or network nodes, require synchronization. However, a correct and
effective application of the existing low-level synchronization mechanisms like locks, bar-
riers, and semaphores, requires skill and careful analysis of the interdependencies among
all the processes in the system. Worse still, an incorrect application will lead to catas-
trophic problems like deadlocks, livelocks, race conditions, or priority inversion.

Hence distributed and multicore computing needs abstractions. Transactional Mem-
ory (TM) is an approach aiming to simplify concurrent programming by automating
synchronization while maintaining efficiency. This is accomplished by providing the pro-
grammer with the transaction abstraction. When using TM the programmer need not
understand the underlying concurrency control mechanisms, only the guarantees it pro-
vides, as expressed by liveness, progress, and safety properties. TM’s extension into dis-
tributed systems is called Distributed Transactional Memory (DTM).

Both TM and DTM usually employ the optimistic concurrency control approach,
which relies on transactions aborting and restarting if conflicts occur. This is a fairly
universal approach which only requires that transactions clean up after their own execu-
tions. However, in practice, some aborted transactions can have effects that simply cannot
be cleaned up: the effects of system calls, network communication, locking, or I/O oper-
ations. Such irrevocable operations are particularly likely to occur in distributed systems
where transactions tend to be more complex.

In such cases the pessimistic approach is a more appropriate solution. Pessimistic
transactions do not abort on conflict, but defer operations so that conflicts never ma-
terialize. Since pessimistic TM need not abort, the problem of irrevocable operations
is solved. However, in existing research pessimistic TM was shown to be less efficient
than its optimistic counterpart. In this dissertation we aim to show that pessimistic TM
can be equally as performant as optimistic TM while solving optimistic TM’s problems
with irrevocable operations. We do this by employing the early release mechanism, which
allows conflicting transactions to nevertheless commit correctly.

If a TM transaction reads a stale value it may and execute an unanticipated danger-
ous operation, like dividing by zero, accessing an illegal memory address, or entering an
infinite loop. Thus, TM safety properties must restrict or eliminate the ability of trans-
actions to view inconsistent state. To that end, opacity, the TM property commonly used



for TM systems, includes the condition that transactions not read values written by other
live (not completed) transactions alongside serializability and real-time order conditions.
However, if reading from live transactions is not allowed, then opacity precludes early
release, regardless of whether dangerous effects actually occur. Thus, TM with early
release requires more nuanced safety properties, that limit inconsistent views but nev-
ertheless provide strong guarantees. Hence, we formally analyze the existing TM safety
poperties as well as database consistency conditions to determine whether they allow
early release and what other guarantees they provide. We also introduce last-use opac-
ity and strong last-use opacity, two strong TM safety properties that enforce practical
correctness guarantees and apply to TM with early release.

We also analyze existing pessimistic and distributed TM systems, and TM systems
that employ early release. The analysis allows us to select a DTM concurrency control
algorithm called SVA, which we extend to eliminate requirements for central coordination,
and to lift it to a more general system model, producing the SVA+R algorithm and
its variants. We then use these extended algorithms as a basis for new highly parallel
pessimistic DTM concurrency control algorithms: OptSVA+R and OptSVA-CF+R (and
their variants). We show through formal analysis that these algorithms allow more parallel
schedules than their predecessors. We also introduce new proof techniques that allow us
to demonstrate that SVA executes as if it were opaque, and that SVA+R, OptSVA+R,
and OptSVA-CF+R satisfy last-use opacity. Finally, we implement the new algorithms
and show experimentally that OptSVA-CF+R outperforms a state-of-the-art optimistic
DTM, but does so without aborting transactions.

We also introduce a precompiler that improves the practicality of the described imple-
mentations by deriving the information required a priori by some of the TM algorithms
from the source code of transactions, so that the information does not need to be provided
by the programmer.

In aggregate, the results presented in this dissertation show that it is possible to pro-
pose a pessimistic TM concurrency control algorithm for distributed transactional mem-
ory, whose implementation achieves high performance, applies practically within general
system models, provides strong liveness and progress guarantees, as well as strong cor-
rectness guarantees (encapsulated within new safety properties), and guarantees correct
execution for irrevocable operations.
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Introduction

Concurrent programming is well known to be difficult (see e.g., [21, 39, 40, 68]). The
source of its difficulty lays in the fact that concurrent execution can cause operations
on separate processors to interleave in ways that produce anomalous results, especially
when memory accesses are concerned. Thus, it becomes necessary for the programmer
to predict and eliminate such interleavings by synchronizing the execution of specific
operations. Yet implementing synchronization correctly is notoriously difficult too, since
the programmer must reason about interactions among seemingly unrelated parts of the
system code. Furthermore, low-level synchronization mechanisms like barriers, monitors,
semaphores, and locks are easily misused so that performance, consistency, and progress
fall prey to simple bugs and design flaws. Worse still, the misuse may result in deadlocks,
livelocks, races, priority inversion, or viewing an inconsistent state of the system. Errors
like these are difficult to catch, difficult to track down, non-deterministic, and often
catastrophic in their effects.

However, concurrent programming is inescapable. In a world dominated by multicore
processors even the rank-and-file programmer is increasingly likely to have to turn to it
to take full advantage of various multiprocessor architectures. Moreso, the advent and
continuous evolution of large scale (geo-)distributed applications over the past decade
caused service-oriented architecture and cloud computing to become ubiquitous, and
anything from text editing, through data storage, to big data processing is delegated to
remote services. Thus, since distributed computing is concurrent in nature, developing
most practical applications requires that the programmer be aware of problems that may
stem from concurrency.

Hence, it is necessary to aid programmers in writing concurrent applications and to
shield them from the perils of concurrency. In order to do this, concurrent programming
needs to follow other programming domains in introducing encapsulating abstractions.
For instance, since application programmers have enough to worry about without delv-
ing into the details of distributed computing and networking, these details are compre-
hensively abstracted away and hidden from them within opaque libraries (e.g., Netty,
JGroups, Java Message Service, or the Java Remote Method Invocation mechanism), to
the point where such programmers rarely resort to directly using low-level mechanisms
like sockets. Similarly, the problem of keeping concurrent execution correct should be so
hidden away under an abstraction, rather than expecting the programmer to implement
each manually using synchronization primitives and to repeatedly avoid their various
pitfalls.



1 Introduction

Transactional Memory

Transactional memory (TM) [44, T1] serves as such an abstraction. TM transplants
the idea of transactions from database systems which automate concurrent execution
and obscure the details of synchronization from the programmer (see e.g., [12, 16, 91]).
Specifically, the programmer annotates the fragments of the code where synchronization
should be applied as transactions, and the TM system executes them using some under-
lying concurrency control algorithm. The algorithm interleaves concurrent transactions
to improve performance, while simultaneously applying synchronization as needed to en-
sure that the execution provides an illusion of transaction atomicity and isolation. There
is no need, however, for the programmer to know the details of the employed algorithm,
only to be aware of the specific algorithm’s correctness guarantees expressed by its prop-
erties (e.g., serializability [60] or opacity [33]). Therefore, such an abstraction makes it
is easier for conventionally-trained programmers to reason about and implement correct
and efficient concurrent programs.

Distributed transactional memory (DTM) [14, 49, 18, 68, 86, 10] extends the idea
of TM into distributed systems. This introduces new problems to be addressed by the
DTM system, such as asynchrony and partial failures, but also opens up new possibilities.
The thing that most starkly differentiates TM from its database predecessors is that
apart from executing read and write operations on shared memory (shared variables or
shared objects), the TM system can provide interfaces for other or different operations.
Classically, this can be an operation like increment, or stack operations like push and
pop, all of which atomically read and write the state of a shared object. The operations
can also be more complex, computation-intensive, programmer-specified procedures that
execute just about any code, and can include code with side effects. In DTM this idea
can be taken further: a DTM system can execute the code of an operation on the same
network node as the transaction that executes the operation, or on the same node as the
object on which the operation is being executed. This choice gives rise to various DTM
system models. The data flow (DF) model entails shared objects being migrated to the
client that uses them (while maintaining only a single copy of the object in the system). In
such a case the computation and side effects will be performed on the host onto which the
object is migrated to execute an operation. In the control flow (CF') model, shared objects
are bound to individual hosts and do not migrate, so the execution of their operations
is performed always on the object’s “home” host. Both models have their advantages
and disadvantages, but a unique feature of CF is that it allows to delegate computation
to remote hosts. This allows client transactions to “borrow” computational power from
remote object servers. In effect shared resources can act as both shared memory and
web services. This provides greater flexibility in designing and implementing distributed
applications.

Both of those models assume a distributed system where each network node is distinct
and each is a host to a number of discrete shared objects. Yet another model is to use
replicated transactions, where each transaction executes all of its operations so that its
effects are applied to all of the network nodes, so that the nodes are effectively replicas of
one another. We concentrate on non-replicated DTM in the remainder of this dissertation.

Optimistic Concurrency Control

Typically, TM (and DTM) systems employ the optimistic approach to concurrency con-
trol. Generally speaking, a client transaction executes its code speculatively, regardless
of other transactions running in parallel. If the transaction manages to perform all of its
code without interference it finishes successfully—commits. However if two transactions
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try to access the same shared variable or object, and one of them writes to it, they con-
flict and the TM system forces at least one of the transactions to abort and subsequently
restart. There are various ways of doing this, but, generally, optimistic TM systems at-
tempt to detect conflicts as soon as possible, to waste as little work as possible. They
also tend to buffer the values they write and update the original variable or object at
commit-time, rather than whenever each operations is executed, at encounter-time.

The optimistic approach is a fairly universal solution, however, it has two major draw-
backs. First, optimistic TM experiences problems stemming from speculative execution
in environments with high contention—i.e., where very many transactions attempt to
access the same shared variable or object simultaneously. Specifically, high contention
makes it more likely that most transactions will conflict and be forced to abort and re-
execute (at least partially). It also becomes more likely that each transaction will execute
several times before it eventually manages to commit. This causes a large portion of the
computational work done by the system as a whole to be wasted. In addition, it means
transactions that do manage to commit are effectively executed in sequence. Both of these
issues can have a significant impact on the performance of the system. A number of mech-
anisms were proposed to mitigate this problem by managing conflicting transactions, so
that they are prevented from conflicting again. These range from simple mechanisms like
exponential back-off [43], through serialization of execution of conflicting transactions,
to a dispatcher avoiding collisions based on a probability of conflict [24, 105] and other
advanced contention management techniques [25, 70]. These solutions defer the point at
which specific transactions start (or re-start after a conflict occurs) which reduces the
number of transactions executing at the same time. However, such solutions typically
operate based on various threshold parameters, which means they must either be tuned
manually or the system must derive such parameters during execution. It also means the
system needs to re-tune in reaction to changing workloads. In addition, these solutions
tend to use central coordination, which prevents them from being used in distributed
systems.

The second issue with optimistic TM is the problem of irrevocable operations. These
are operations that cannot be aborted and should not be repeated, such as I/O opera-
tions, network communication, or acquiring locks. These are typically part of any complex
code and are often difficult to locate when the application uses libraries, or when it com-
poses calls to remote services (in DTM). However, if these operations appear inside a
transaction and the transaction is forced to re-execute, they will cause side effects to
be visible (e.g., there may be stray network messages or a non—re-entrant lock may be
re-acquired and cause a deadlock). However, the modus operandi of optimistic transac-
tions depends on aborted transactions cleaning up after themselves. Fixing the problem
in the optimistic approach leads to complicated or cumbersome solutions that prevent
speculative execution in certain transactions. For instance, irrevocable transactions are
introduced in [92]. Such transactions always win conflicts with other transaction, so they
are never forced to abort. However, in order to prevent the paradoxical situations of
two conflicting irrevocable transactions, only one such transaction can execute at a time,
which causes this solution to limit parallelism. A different solution is proposed in [9, 62],
where the TM maintains multiple versions of each variable or object, so that a transac-
tion can read an older version of a variable instead of aborting. However, this solution
introduces complexity and overhead to the concurrency control algorithms. Another so-
lution, proposed in [38], is to move the irrevocable operations to commit, however this
requires instrumentation and cannot be applied to all types of irrevocable operations (e.g.
locking). Hence, the problem of irrevocable operations is often ignored or they are simply
forbidden in transactions (e.g., in Haskell [41]). Other research suggests that a form of
compensation can be used to fix the computations, so that conflicting transactions do not
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abort [13]. However, solutions like these limit the practicality of TM, especially in com-
plex service-oriented DTM systems, where irrevocable operations are often unavoidable,
and compensation may be impossible. For instance, if the the execution of an operation
on a shared object representing a service causes a material effect (e.g. printing a book),
then the irrevocable operation is a part of the semantics of the operation, and cannot be
compensated for at all (without cost).

Pessimistic Concurrency Control

A simpler method of dealing with both the problems described above is using a pessimistic
concurrency control algorithm. The pessimistic approach originates from database trans-
actions (e.g., two-phase locking [12, 91]) and was brought to TM in [56, 1, 10] as well as
the work in [96, 97]. The general idea behind pessimistic TM is that it does not execute
transactional operations speculatively, but delays them until they no longer conflict. This
means, that forced aborts do not occur on conflict, so they are much less common or even
impossible, and, therefore, high contention or irrevocability do not cause abort-related
problems.

However, the authors of [56] show that the pessimistic approach can have negative
impact on performance in high contention, since it depends on serializing transactions
that perform write operations to prevent aborts, which inherently limits parallelism. The
goal of this dissertation is to show that this penalty on parallelism is not inherent in the
pessimistic approach and can be overcome with the application of specific optimization
techniques.

To that end, we consider the technique of early release. Early release is an opti-
mization technique for TM, where certain pairs of transactions technically conflict but
nevertheless both are allowed to commit correctly [65], if they nevertheless produce a
history that is correct. This is particularly useful with pessimistic concurrency control,
where transactions, as a rule, do not abort. If they do not abort, then viewing the final
state of a variable does not have to lead to inconsistencies, even if the value is read
from a live transaction. On the other hand, TM systems employing early release (e.g.,
[43, 65, 28, 13, 75]) show that this yields a significant and worthwhile performance bene-
fit. For this reason we intend to use it as the core of our optimizations aiming to present
a practical, safe, and well-performing pessimistic TM.

Safety

Since TM allows transactional code to be mixed with non-transactional code and to
contain virtually any operation, rather than just reads and writes like in its database
counterparts, greater attention must be paid to the state of shared variables at any given
time. For instance, serializability [60] dictates that as long as the execution of committed
transactions reflects some sequential execution, then the entire concurrent execution is
correct. Hence, if a database transaction reads a stale value, it must simply abort and
retry, and no harm is done. However, if a TM transaction reads a stale value it may
break some presupposed invariant and execute an unanticipated dangerous operation,
like dividing by zero, accessing an illegal memory address, or entering an infinite loop.
Thus, it is insufficient for TM systems to use traditional database consistency conditions
like serializability to describe the guarantees they ensure. Instead, TMs must restrict or
eliminate the ability of transactions to view inconsistent state. To that end, the safety
property called opacity [33] was introduced, which includes the condition that transac-
tions do not read values written by other live (not completed) transactions alongside
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serializability and real-time order conditions. Opacity became the gold standard of TM
safety properties, and most TM systems found in the literature are, in fact, opaque.

However, if reading from live transactions is not allowed, then opacity precludes early
release, regardless of whether dangerous effects actually occur. Thus, before presenting a
practical and efficient pessimistic TM, we must first determine what correctness guaran-
tees should be provided by such a system and find or devise TM safety properties that
are comparably strong to opacity, but allow the application of early release. Since opacity
is a very restrictive property, a number of more relaxed properties were introduced that
tweaked opacity’s various aspects to achieve a more practical property. These properties
include virtual world consistency (VWC') [48], transactional memory specification (TMS1
and TMS2) [22], elastic opacity [28], live opacity [26], and others. A significant part of
this dissertation is dedicated to examining these properties in order to determine whether
or not they allow the use of early release in TM, and, if so, what compromises they make
with respect to consistency, and what additional assumptions they require. On the basis
of that analysis, we also introduce new properties to enforce specific practical correctness
guarantees that apply to TM with early release in general if they are not given by existing
properties.

System Model

TM can be applied to various system models that dictate for which assumptions particular
concurrency control algorithms must account. Depending on which model a given TM
(or DTM) operates on, it is more or less suitable for specific applications.

For instance, TMs can be designed specifically to operate on shared variables, which
are defined by a single value that can be either read or overwritten by operations executed
by the transaction. Such a model is typical for non-distributed TM (e.g. [21, 39, 65]),
but in DTM it is more typical to see a model where shared objects are used instead
of variables (e.g. [68, 86]). Shared objects can have complex state consisting of several
variables, and can specify arbitrary interfaces. Among these models we differentiate be-
tween a homogeneous and heterogeneous object model. In the former model all objects
are the same and relatively simple: they represent structures such as counters or stacks.
These objects have a single read and write operation in their interface, whose semantics
are known. In the heterogeneous model objects are assumed to each have their own in-
terface defining arbitrary methods with arbitrary, possibly hidden semantics operating
on hermetic, complex state. Different models have different applications, with variables
finding uses in high performance local and parallel systems as well as data stores, while
the object models find uses in complex cloud-computing applications and service-oriented
architectures, where objects can represent entire services.

In addition, TM systems can vary in the interface that each transaction provides to
the programmer. Many pessimistic as well as optimistic TM systems are commit-only,
meaning that each running transaction strives to execute all of its code and eventually
commit (e.g. [96, 6, 56]). On the other hand, arbitrary abort TMs allow transactions to
execute a programmatic abort operation from within the transactional code, that will
withdraw the transaction’s effects. The addition of an abort operation to the transactional
interface makes the TM more expressive and provides a vital feature for an efficient
implementation of partial-failure resistant distributed systems.

Note that a TM system operating in the variable model can make many more safe
assumptions about the state of the system than a TM system operating in either object
model, so if we compare their performance in the variable model the former TM is
likely to be more efficient, whereas if we compare their performance in the object model,
the latter will execute correctly, while the former might not. Similarly, a TM operating
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in the arbitrary abort model can be used as a commit-only TM, although likely less
efficient one, while a commit-only TM cannot operate correctly or as efficiently wherever
manually-issued aborts are required. We stipulate that in order for a pessimistic DTM
to be practical, it must be able to span a range of these system models, being able to
both perform correctly in the more general model, but also provide variants that operate
more efficiently in the more specialized models. Hence, we consider the implication of
applying the algorithms presented in this dissertation in various system models, striving
for generality.

We also add that in order for a distributed TM to be practically applicable, it must
not depend on centralized data structures and introduce a single point of failure to
a distributed system, since that compromises its scalability and its ability to function
despite partial failures.

Liveness and Progress

Apart from correctness, we note that TM should also ensure that transactions make
progress with their assigned computations by allowing individual operations to execute
(guaranteed by liveness properties), and by making sure transactions are eventually given
the chance to commit (described by progress properties). Deadlock-freedom is a rudimen-
tary TM liveness property which requires that the transactions in a TM system never
enter a wait-cycle from which they never leave. Strong progressiveness [33] is a common
progress property which stipulates that a conflict should never lead all of the conflicting
transactions to be forced to abort. A practical TM algorithm that does not meet these
conditions is useless in practice, since it can lead the concurrent application to “get stuck”
or to transactions treading water while infinitely restarting.

Thesis
Given our goals and stipulations presented above, we formulate our main thesis as follows:

It is possible to propose a pessimistic TM concurrency control algorithm for distributed
transactional memory that simultaneously:

a) achieves high performance,
b) satisfies strong safety, liveness, and progress properties,
¢) guarantees correct execution for irrevocable operations, and

d) applies practically within general system models.

Contributions

We demonstrate the veracity of this thesis through the aggregate of the contributions
that we state briefly below, and that we describe in detail in the following chapters of
this dissertation.

I An analysis of existing properties and TM and DTM algorithms.
We formally examine the existing TM safety properties and database consistency
conditions and determine whether or not they can be applied to TM systems that
employ early release. Specifically, we resolve whether or not they allow early release
at all, what classes of inconsistent views they admit, and what restrictions they put
on transactions. We then survey selected existing pessimistic and distributed TM
systems, and TM systems that employ early release and determine their parameters,
as well as their safety guarantees. This allows us to draw further conclusions about
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the applicability of existing TM safety properties to systems with early release. We
also use the analysis to determine which algorithms and techniques can be used for
implementing a pessimistic DTM. The analyses are presented in Chapters 3 and 4,
and extend the research presented in [77] and [79].

Novel strong safety properties for TM and DTM with early release.

We introduce two new TM safety properties called last-use opacity and strong last-
use opacity which give strong consistency guarantees and preclude most classes of
inconsistent views, while allowing early release. We demonstrate them and discuss
their characteristics in Chapter 5. They were first presented in [76, 79].

Novel pessimistic TM and DTM concurrency control algorithms.

We introduce novel pessimistic TM concurrency control algorithms designed for
distributed systems. We start by extending existing versioning algorithms [96, 97]
to relieve them of a single point of failure and lift them into the arbitrary abort
model, producing BVA+R, SVA+R, and RSVA+R. We then employ a number of
far reaching modifications with respect to operation types to produce new highly
parallel concurrency control algorithms: OptSVA+R and OptSVA-CF+R (and their
variants). We show that these algorithms allow more parallel schedules than their
predecessors and demonstrate their properties. The algorithms are presented in
Chapter 6 and the correctness proofs for a selection of them are given in Chapter 7.
This is an extension of our research in [74, 75, 78, 82].

Safety proofs and proof techniques.

We introduce proof techniques that allow to demonstrate the safety properties
(opacity and last-use opacity) of algorithms with early release. We then use the
proof techniques to prove the properties of selected algorithms. This is presented
in Chapter 7 and extends the work presented in [79, 80, 102].

Implementations of the new algorithms.

We provide CF DTM system implementations for two of the presented concurrency
control algorithms and show that OptSVA-CF+R outperforms a state-of-the-art
optimistic distributed TM. We show this in Chapter 8 and it follows the research
in [75, 78, 82].

Static analysis and precompiler.

We introduce a precompiler for the Java language that can derive the information
required a priori by some of the TM algorithms from the source code of transac-
tions. This is shown in Chapter 9 and represents the research published in [72, 73].






Preliminaries

This chapter introduces the basic concepts pertaining to further discussion, including
basic definitions describing transactional memory and execution of programs within it,
as well as various system models, and properties. We also explain the convention we use
for diagrams showing transactional executions.

2.1 Basic Definitions

In this section we introduce basic definitions relevant to further discussion and the no-
tation used throughout the dissertation.

2.1.1 Processes

The system is composed of processes II = {p1, pa2, ..., b} concurrently executing program
P which constitutes a set of sequential programs P = {Py,Po, ..., P, }, where process p; ex-
ecutes P;. Fach subprogram Pj € PP is a finite sequence of statements Py, = s1, So, ..., Sy, in
some language L. The definition of I can be whatsoever, as long as it provides constructs
to execute transactional operations in accordance with the interface and assumptions de-
scribed further in Section 2.1.2.

Given program P and a set of processes II, we denote an execution of P by II as
E(P,II). An execution entails each process py € II evaluating some prefix of subprogram
P; € P. The evaluation of each statement by a process is deterministic and follows the
semantics of L. This evaluation produces a (possibly empty) sequence of events (steps)
which we denote L(s).

Furthermore by LL(Px) we denote a sequence s.t. given Py = s1, Sa, ..., $m, L(Px) =
L(s1) -L(s2) - ... - L(sm). By extension, £(P,II) produces a sequence of events, which we
call a trace .7. 7 + E(P, Q) iff Vpy, € II,P, € P,L(P;) C 7. E(P,II) is concurrent, i.e.
while the statements in subprogram Pj, are evaluated sequentially by a single process, the
evaluation of statements by different processes can be arbitrarily interleaved. Hence, given
T+ EMP,I) and I’ + E(P,II), it is possible that 7 # Z'. We call E(P,II) a complete
execution if each process p in II evaluates all of the statements in Pg. Otherwise, we
call £(P,II) a partial execution. By extension, if £(P,II) is a complete execution, then
T+ EP,II) is a complete trace, and otherwise .7 is a partial trace.
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2.1.2 Objects and Variables

The system contains a set of shared objects (or just objects) Obj = {[z],[y],[z],...}.
An object [z] is an entity that has state Sr,| and a specified interface Mp,). The state
Srz) can be defined however. Interface M,| constitutes a set of operations (also called
methods) M, = {m([x])1,m([x])2,...,m([2]),} that can be executed on [z] to modify or
read elements of the state of [2]. The interfaces of objects can be heterogeneous, so given
any two objects [x], [y] it is possible that Mp,| # Mp,|.

Any process pp € II can execute any operation m([z]) € Mp,) on [z]| as part of
subprogram Pj. This results in the evaluation of some arbitrary sequence of statements
(as part of P) in language I which have the ability to return and modify Sp,). Objects
are hermetic, meaning that the state Sy, of [] can only be modified or read by executing
some operation m([xz]) € Mr,) on [z].

Among the set of all Obj we distinguish a subset we call shared variables (or just
variables). Variables z,y,z € Var are such objects that Var C Obj, whose state is
defined as a single value and whose interface consist of the following two operations:

a) write operation w(x)v that sets Sr,| to value v; the operation’s return value is the
constant ok (indicating correct execution),

b) read operation r(z) whose return value is the current value of Sp,|.

Language L provides statements that allow operations to be executed within the code
of the program. Whenever process py € II executes some operation m([z]) on variable
z (for any m(€)Mp,|) as part of Py, this causes an invocation event inv* [m([z])] and a
subsequent response event res® [v} to be issued, where v is the return value of m([x]). The
pair of these events (inv* [m([z])], res*[v]) is called a complete operation ezecution and
it is denoted m*([x|) — v in shorthand. For the sake of analogy we refer to an invocation
event inv® [o] without the corresponding response event as a pending operation execution.

We distinguish three system models with respect to how shared objects are defined:
The variable object model (or just variable model) describes TMs that only use variables.
The homogeneous object model describes TMs that operate on simple objects like counters
or stacks. These object that share a common interface containing a single read operation
and a write operation. The semantics of those operations are known. The read operation
may view but not modify the state of the object, while the write operation may both
view and modify the state of the object. The heterogeneous object model describes TMs
that operate on arbitrary or complex objects. In the heterogeneous model each object
may define a different interface containing arbitrary operations with arbitrary semantics.
The semantics operations may not be known a priori. Note that the variable model is
a special case of the homogeneous object mode, and the homogeneous object model is a
special case of the heterogeneous object model.

2.1.3 Transactions

Transactional memory (TM) is a programming paradigm that uses transactions to con-
trol concurrent execution of operations on shared variables by parallel processes.

A transaction T; € T is some piece of code executed by process pg, as part of subpro-
gram Py. Hence, we say that py executes T;. Any transaction T; is executed by exactly one
process pr and that each process executes transactions sequentially. Process py can exe-
cute local computations as well as operations on shared objects as part of the transaction.
That is, given [x] € Obj, the process can execute:

a) operation m([xz]) € Mf,| as part of some transaction Tj, which causes m([xz]) to be
executed under concurrency control and return either the operation’s return value
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or the constant A;; the latter signifies an unsuccessful execution resulting in the
transaction aborting.

In the specific case of a variable z € Var, the process can execute the following two
operations on z:

a’) write (denoted w;(z)v, where 4 indicates transaction 7;) which sets Sr,| to v and
returns ok; if the operation is successful, and A; otherwise,

a") read (denoted r;(x)) which returns the value of Sr,; if the execution is successful,
or A; otherwise.

In addition, the processes can execute the following transactional operations:

b) start (denoted start;) which initializes transaction 7T;, and whose return value is
the constant ok;,

c¢) commit (denoted tryC;) which attempts to commit 7; and returns either the con-
stant C;, which signifies a successful commitment of the transaction or the constant
A; in case of a forced abort,

Finally, there is also another operation allowed in some TM system models and not
in others, and we wish to discuss it separately. Namely, some TMs allow for a transaction
to programmatically roll back by executing the operation:

d) abort (denoted tryA;) which aborts T; and returns A;.

We call a TM system model where the abort operation is allowed (in addition to other
operations) the arbitrary abort system model, as opposed to the commit-only model.

The operations a—d defined above are part of the so-called transactional interface (or
transactional API). They can only be invoked within a transaction. Specifically, processes
execute operations on shared objects only as part of a transaction.

Even though transactions are subprograms evaluated by processes, it is convenient
to talk about them as separate and independent entities. Thus, rather than saying psx
executes some operation as part of transaction T;, we will simply say that T; executes
(or performs) some operation. Hence we will also forgo the distinction of processes in
transactional operation executions, and write simply: start; — ok;, r;(x) — v, w;(z)v—
ok;, tryC, — C;, etc. By analogy, we also drop the superscript indicating processes in
the notation of invocation and response events, unless the distinction is needed.

2.1.4 Sequential Specification

Given object [z], let sequential specification of [x], denoted Seq([z]), be a prefix-closed
set of sequences containing invocation events and response events which specify the se-
mantics of shared variables. (A set @ of sequences is prefiz-closed if, whenever a sequence
S is in Q, every prefix of S is also in @.) Intuitively, a sequential specification enumer-
ates all possible correct sequences of operations that can be performed on a variable in
a sequential execution.

Specifically, in the case of any variable z € Var, given that D is the domain of S, |,
and assuming initially Sp,| = vo for some vy € D, the sequential specification of z s.t.,
Seq(z) is a set of sequences of the form [ay — v, 0 — vo,...,q — U], where each
a; = v; (j=1,2,...,m) is either:

a) w;(z)v; — ok;, where v; € D,
b) r;(z)— vy and there are no preceding writes, or
c )

) 1i(z)—v; and the most recent preceding write operation is w;(z)v; — ok; (I < 1).
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From this point on, unless stated otherwise, we assume that the domain D of all
transactional variables is the set of natural numbers Ny and that the initial value vy of
each variable is 0.

2.1.5 Histories

Given a trace 7 F E(P,II), a TM history H is a subsequence of trace 7 consisting only
of executions of transactional operations s.t. for every event e, e € H iff e € .7 and e is
either an invocation or a response event specified by the transactional interface (given in
Section 2.1.3). We denote this transformation from a trace 7 to a history as Hist(7).
If HC 7 we say 7 produces H. Some subhistory H' of a history H is a subsequence of
H which we denote H' C H.

The sequence of events in a history H; can be denoted as H; = [e1, eq, ..., €,]. For
instance, some history H; below is a history of a run of some program that executes
transactions T; and Tj:

H; = | inv, [starti] , res; [oki] , NV [startj} , Tes; [okj],

inv; [wl(:c) v] , n; [’l‘j (:17)] , Tes; [oki] , Tes; [v] ,

nu; [tryCl-] , Tes; [CJ , inv; [trij} s res; [Cj] ] .
Given any history H, let H|T; be the longest subhistory of H consisting only of
invocations and responses executed by transaction T;. For example, H;|Tj is defined as:

H\|Tj = | inv, [startj] , TES; [okj] Ny [T](I)} , TES; [v] Ny [trij] Ny [Cj} } .

We say transaction T; 4s in H, which we denote T; € H, iff H|T; # &.

Let H|[z| be the longest subhistory of H consisting only of invocations and responses
executed on object [z], but only those that form complete operation executions. Let H|z
be defined by analogy.

Given a complete operation execution op that consists of an invocation event e’ and
a response event e”, we say op is in H (op € H) iff e € H and " € H. Given a pending
operation execution op consisting of an invocation ¢!, we say op is in H (op € H) iff
e’ € H and there is no other operation execution op’ consisting of an invocation event e’
and a response event e” s.t. op’ € H.

Given two complete operation executions op’ and op” in some history H, where op’
contains the response event res’ and op” contains the invocation event inv”, we say op’
precedes op” in H if res’ precedes inv” in H. We denote this op’ <y op”. For operations
op’, op” € H, we say op’ directly precedes op”, denoted op’ <y op” iff op’ <y op” and
Fop™ € H st. op’ <p op’ <p op”.

A history whose all operation executions are complete is a complete history.

Most of the time it will be convenient to denote any two adjoining events in a history
that represent the invocation and response of a complete execution of an operation as
that operation execution, using the syntax e — ¢’. Then, an alternative representation
of H,|T; is denoted as follows:

H,\|T; = | start; — okj, rj(z)—wv, tryC; — Cj |.

In addition, sometimes the values written by particular operations, or returned by
them will not be relevant to the discussion at hand. In those situations use the placeholder
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value [ to indicate that whatever value was passed or returned. For instance, when the
value returned by the read operation is irrelevant in H;|T};, we denote it as follows:

H,y|T; = | start; — okj, rj(z)—0, tryC; — Cj |.

Well-formedness

History H is well-formed if, for every transaction T; in H, H|T; is an alternating sequence
of invocations and responses s.t.,

a) H|T; starts with an invocation inv, [start;],

b) no events in H|T; follow res; [C’Z] or res; [Ai],

¢) no invocation event in H|T; follows inv; [tryC;] or inv, [tryA,],
)

d) for any two transactions 7; and 7} s.t., T; and T are executed by the same process
Dk, the last event of H|T; precedes the first event of H|T}; in H or vice versa.

In the remainder of the dissertation we assume that all histories are well-formed.

Unique Writes

History H has unique writes if, given transactions T; and T; (where i # j or i = j),
for any two write operation executions w;(z)v’ — ok; and w;(z)v” — ok; it is true that
v" # v" and neither v = vy nor v/ = .

Completion

Given history H and transaction Ty, T; is committed if H|T; contains operation execution
tryC; — C;. Transaction T; is aborted if H|T; contains response res;[A;] to any invoca-
tion. Transaction T; is commit-pending if H|T; contains invocation tryC,; but it does not
contain res; [AZ] nor res; [Cl] Finally, T; is live if it is neither committed, aborted, nor
commit-pending. We say a transaction is forcibly aborted if T; is aborted and H|T; does
not contain an invocation inv, [tryAi].

Given two histories H' = [6’1,6/27...76;”] and H" = [ef,ef,...,el], we define their
concatenation as H' - H" = [e], b, ...,el,, el el ...,er]. We say P is a prefix of H if

H = P-H'. Then, let a completion Compl(H) of history H be any complete history s.t.,
H is a prefix of Compl(H) and for every transaction 7; € H subhistory Compl(H)|T;
equals one of the following:

a) H|T;, if T; finished committing or aborting,

b) H|T; - |res; [Czﬂ , it T} is live and contains a pending tryC,,

c) H|T; - |res; [Alﬂ , if T} is live and contains some pending operation,

d) H|T; - |tryC,; — Ai] , if T} is live and contains no pending operations.

Note that, if all transactions in H are committed or aborted then Compl(H) and H are
identical.

Equivalency

Two histories H' and H" are equivalent (denoted H' = H") if for every T; € T it is true
that H'|T; = H”|T;. When we say H' is equivalent to H” we mean that H' and H" are
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equivalent.

Real-time Order

A real-time order <y is an order over history H s.t., given two transactions 13,7 € H,
if the last event in H|T; precedes in H the first event of H|T}, then T; precedes T; in
H, denoted T; <y T;. We then say that two transactions 7;,7T; € H are concurrent if
neither T; <y T nor T; <g T;. We say that history H' preserves the real-time order of
Hif <gC=<p.

Sequential Histories

A sequential history S is a history, s.t. no two transactions in S are concurrent in S.
Some sequential history S is a sequential witness history of H if S is equivalent to H and
S preserves the real time order of H. We usually denote such a history Sg.

Accesses

Given a history H and a transaction T; in H, we say that T; accesses some object [z ]
in H iff there exists some invocation by T; on any [z] of any operation m([x]) € Mp, in
H|T;. In addition, let T;’s access set, denoted ASet;, in H be a set that contains every
object [x| such that T; accesses [z] in H.

With respect to variables specifically, T; reads variable z in H if there exists an
invocation inv;[r;(z)] in H|T;. By analogy, we say that T; writes to = in H if there
exists an invocation inv; [wl(x)v] in H|T;. If T; reads z or writes to z in H, we say T;
accesses ¥ in H. In addition, let T;’s read set be a set that contains every variable z such
that T; reads z. By analogy, T;’s write set contains every z such that T; writes to z. A
transaction’s access set, denoted ASet;, is the union of its read set and its write set.

Given a history H and a pair of transactions 13,1 € H, we say T; reads from T} if
there is some variable z, for which there is a complete operation execution w;(z)v— ok;
in H|T; and another complete operation execution r;(z) — v in H|T}, s.t. v = .

Locality

Given any transaction T; in some history H, any operation execution on a variable z
within H|T; is either local or non-local. Read operation execution r;(z) — v in H|T; is
local if it is preceded in H|T; by a write operation execution on z, and it is non-local
otherwise. Write operation execution w;(z)v— ok; in H|T; is local if it is followed in H|T;
by a write operation execution on z, and non-local otherwise.

Conflicts

Following [33], transaction conflicts are defined for variables as follows. Given a history
H and a pair of transactions T;,T; € H, we say T; and T} conflict on variable z in H if
T; and T} are concurrent, both 7T; and 7T} access z, and one or both of T; and T} write to
z. We call any two operation executions on z that cause two transactions Tj, Tj (i # j)
to conflict on some x conflicting operation executions.

We lift the definition of conflict to any shared object as follows. Given a shared
object [x], any two operations m'([z]),m"([z]) € M), m”([z]) depends on w'(x) iff
m'([x]) modifies Sp,| in a way that can impact the execution of m”([z]). The impact
can, for instance, amount to any modification of Sp, | in m”([x]), change the return value
of m”([z]) or impact the execution of side-effects in m”([x]). Then, given a history H and
a pair of transactions T;,T; € H, we say T; and T} conflict on object [z]| in H if T; and



2.1 Basic Definitions 21

T; are concurrent, both T; and T} access [z |, and any operation in H|T;|[z] depends on
some operation in H|Tj|[z| or vice versa (or both). If the precise semantics of operations
of [x] are not know, we must conservatively assume that the dependency relation exists
between any two operations in Mr.). Hence, any two concurrent transactions conflict if
they access such [z].

2.1.6 Transaction Legality

The definitions given above allow us to formulate the central concept that defines con-
sistency of transactional execution: transaction legality. Intuitively, using variables as an
example, we can say a transaction is legal in a sequential history if it only reads values
of variables that were written by committed transactions or by itself.

More formally, let S be a sequential history that only contains committed transac-
tions, with the possible exception of the last transaction, which can be aborted. We say
that sequential history S is legal if for every [z] € Obj, S|[x] € Seq([z]).

In addition, given any sequential history S and transaction T; € S, let visible history
Vis(S, T;) be the longest subhistory of S s.t., for every transaction T; € Vis(S,T;), either
i = j or T} is committed in S and T; <g 7. Then, given a sequential history S and a
transaction T; € S, we say that T; is legal in S if Vis(S,T;) is legal.

2.1.7 Safety Properties

A property B is a condition that stipulates correct behavior. In relation to histories, a
given history satisfies B if the condition is met for that history. Given property 7, we
call Hiy the set of all P-histories, defined such that H € Hy if, and only if H satisfies 3.
In relation to programs, program P satisfies % if all histories produced by P satisfy 3.

Safety properties [50] are properties which guarantee that “something [bad] will not
happen.” In the case of TM this means that, transactions will not observe concurrency
of other transactions. Property 8 is a safety property if it meets the following definition
(adapted from [8]):

Definition 1. A property B is a safety property if, given the set Hy of all histories that
satisfy P:

a) Prefix-closure: every prefic H' of a history H € Hy is also in Hy,

b) Limit-closure: for any infinite sequence of finite histories Ho, Hy, ..., s.t. for every
h =0,1,..., H, € Hy and Hy is a prefix of Hp11, the infinite history that is the
limit of the sequence is also in Hy.

For distinction, we use the term consistency condition to refer to properties that are
not safety properties.

We compare properties with respect to their relative strength. Given two properties
P’ and P’ we say P’ is stronger than P” if Hy C Hypr (so P is weaker than P').
If neither Hgr C Hspr nor Hygp O Hipr, then the properties are incomparable, which we
denote Hip ||Hegpr.

2.1.8 Early Release

Early release pertains to a situation where conflicting transactions execute partially in
parallel while accessing the same variable. The implied intent is for all such transactions to
access these variables without losing consistency and thus for them all to finally commit.

Our definitions are based on the observed effects of the release without reference to the
actions of a concurrency control algorithm. That is a variable is considered to be released
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early by some transaction only when another transaction views the modifications applied
to the variable by the first transaction. We define the concept of early release as follows:

Definition 2 (Early Release). Given history H (with unique writes), transaction T; € H
releases variable x early in H iff there is some prefix P of H, such that T; is live in P
and there exists some transaction T; € P such that there is a complete non-local read
operation execution op; = rj(z) = v in P|T; and a complete write operation execution
op; = wi(z)v— ok; in P|T; such that op; <p op;.

For the most part, we are concerned with early release to the extent it is used with
variables, but the definition can nevertheless be extended to shared objects with unknown
semantics:

Definition 3 (Strong Early Release). Given history H (with unique writes), transaction
T; € H releases object [z] early in H iff there is some prefix P of H, such that T; is live
in P and there exists some transaction T; € P such that P|T; and P|Tj each contain a
complete operation execution on [z], op; and op; respectively, such that op; <p op;.

Since both concepts are analogous but pertain to different models, we will shorten
strong early release to early release without confusion.

2.1.9 Locks

Locks are used to block progress of a process as part of a TM algorithm. They are shared
objects but are not accessed transactionally. We denote locks as either global 1k9 or
associated with some variable 1k(z) or object 1k([z]). Here, we discuss locks associated
with variables as examples, but the behavior and notation are analogous for global locks
and locks associated with objects.

Each lock 1k(z) has read-write semantics. That is, each lock is initially unlocked and
it can be acquired in write mode (also called ezclusive mode) or in read mode (also called
shared mode). Only one process can acquire the lock in write mode at a time. If a lock
is already owned, then other processes trying to acquire it in write mode wait until it
is released. However, if the lock is acquired in read mode, then other processes can also
simultaneously successfully acquire it in read mode (although processes attempting to
acquire the lock in write mode at the same time, still wait until the lock is unlocked.)
Because several processes can acquire a lock in read mode simultaneously, but only one
process can acquire a lock in write mode, we say read and write modes are conflicting.
Given a lock 1k(z) we denote its state as mode(1k(x)), whose value can be either W to
indicate the lock is acquired in write mode, R for read mode, or L if the lock is unlocked.

Locks support the following operations:

a) acquire operation in write mode, lock 1k(z) — W,
b) acquire operation in read mode, lock 1k(z) — R,
¢) release operation, unlock 1k(z),

d)

convert operations, convert 1k(z) — W and convert 1k(z) — R.

Convert operations are used to change (escalate or de-escalate) the state of a lock that
is already owned by a given process. If other processes share the ownership of the lock
with the current process, a convert operation may block the invoking process. Locks can
also be used with try-lock semantics by using the following operations:

e) try-lock operation in write mode, try lock 1k(z) — W,

f) try-lock operation in read mode, try lock 1k(z) — R.
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If a process attempts to try-lock a lock, but the lock cannot be acquired instantly, then,
instead of waiting, a try-lock operation immediately returns the Boolean value of false.
If the lock is acquired successfully without waiting, the lock is acquired and the operation
returns the value of true.

The lock’s current owner is denoted owner(1k(z)). We will attribute lock ownership to
specific transactions (rather than processes that execute them) that successfully executed
the acquire operation. That is, if some transaction T; acquired lock 1k(z) (but not yet
released it), we write owner(1k(z)) = T;.

We say T; is waiting for T; to release 1k(z) if T; is in the process of executing
lock 1k(z) — W and the lock is owned by T or if T; is in the process of executing
lock 1k(z) — R and the lock is owned by 7} in a conflicting mode. Given a set of
transactions Ty we say a deadlock occurs for Tq if for some set of transactions T/, C Tq4
defined as T/, = {T1,T5, T3, ..., T, }, T1 is waiting for T, to release some lock 1k(z), tro
is waiting for T3 to release some lock 1k(y), ..., and T,, is waiting for T} to release some
lock 1k(z). We say that some history H contains a deadlock if, given the set Ty of all
transactions in H, a deadlock occurs for Ty. We say that a TM system is deadlock-free
if there does not exist any history H produced by the TM, s.t. H contains a deadlock.

2.1.10 Buffers

Buffers are transaction-local structures used to commute the effects of operation execu-
tion on shared objects. We use two types of buffers: copy buffers and log buffers (also
known as redo log buffers). We give examples using buffers for objects; buffers for variables
are defined analogously.

For some transaction T; a copy buffer for object [z] is a transaction-local object
denoted buf;([x]) or st;([x]) that has the interface M,|, and whose state is defined by
analogy to state Sp,|. We discuss the buffer denoted buf;([z]) below, but st;([x]) and
buf;([z]) are analogous. Initially buf;([z|) = L. Object [z| can be copied to buf;([x]),
which means that the state of buf;([z]) becomes equal to Sr, . Similarly, buf;([z]) can
be copied from [z] (we also say [x] is restored from buf;([x])) which means that S,
becomes equal to the state of buf;([z]). Once [z] is copied to buf;([x]), transaction
T; can execute operations from Mp,| on buf;([x]), which causes the operations’ code to
execute and view and modify the state of buf;([z]) in accordance to the semantics of
the executed operations.

A log buffer for object [z] is a transaction-local object denoted log,([z|) for some
transaction T; that has the same interface as [z]. The state of 1og,([x]) is a sequence of
operations. At any time transaction 7; can execute operations from Mp,| on log;([z]),
which causes the operation to be appended to the sequence of operations log,([x]). Log
buffer log,([x]) can be applied to [x], which means each operation in the sequence of
log,([z]) is executed on [x]. This is done sequentially and preserving the order in which
the operations were executed on log,([x]).

We distinguish two approaches to the use of buffers by TM. Encounter-time TM
algorithms apply the effects of operation executions on shared objects immediately at
the point where the operation is executed. That is, when a transaction finishes executing
some operation m on some object, any side effects resulting from the execution of m
already manifested, and all modifications to the object resulting from the execution are
already reflected in the state of the variable. In commit-time TM algorithms transactions
generally perform operation executions using local buffers, so that the effects of the
execution may be deferred to some later point during the transaction execution (typically
to transaction commit).
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Figure 2.1: Transaction diagram for Ho.
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Figure 2.2: Transaction diagram for Hs with implementation notes.

2.1.11 Approach to Concurrency Control

TM algorithms can either employ pessimistic or optimistic concurrency control (some-
times referred to as aggressive and conservative [12, 91]). In pessimistic TM operations on
shared variables tend to be delayed in order to prevent situations where their executions
can cause inconsistencies within the system state. In optimistic TM operations on shared
variables or objects tend to be executed speculatively: optimistic TM systems generally
avoid delaying operations, but instead they execute operations as soon as they are in-
voked. Since this can cause inconsistencies in the system, optimistic transactions perform
validation (at some point) before committing. If the validation fails, the transaction is
aborted and retried.

2.1.12 Strong Progressiveness

Let T¢; is be the set of all subsets @ of all transactions in a history H, such that @) is not
empty and no transaction in @) conflicts with any transaction not in ). Given transaction
T;, let Obj%(T;) be a set of shared objects, such that object [z| € Objy(T;) iff there
exists a transaction T (¢ # j) in history H that (strongly) conflicts with transaction T;
on shared object [z]. Given a set of transactions @, Obj3 (Q) is a union Uy, .o Objy (Tk).

Given these sets, history H is strongly progressive iff, for every set @ € T¢; such that
|Obj% (Q)| < 1, at least one transaction in Q is not forcibly aborted in H.

2.2 Transaction Diagrams

When talking about examples of histories, it is easier to understand the relationships be-
tween various events if the history is depicted using diagrams. For example, the following
history is represented in the diagram in Fig. 2.1:
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Hy = | start; — ok;, start; — okj, inv; [rj(x)],

wi(x)1— ok;, res; [v], tryA; — Ai, wj(z)2— Aj,

starty, — ok, re(z) =0, wg(z)1 = oky, tryCy, — Ck |.

This and other diagrams each depict a history consisting of operations executed by
transactions on a time axis. Every line depicts the operations executed by a particular
transaction. The symbol —— denotes a complete operation execution. The inscriptions
above operation executions denote operations executed by the transactions, e.g. r;(z) —0
denotes that a read operation on variable x is executed by transaction T; and returns
0, and w;(z)1 — ok; denotes that a write operation writing 1 to z is executed by T;,
and tryC; — C; indicates that T; attempts to commit and succeeds because it returns
C;, whereas tryA, — A; indicates that the transaction attempts to abort and succeeds,
etc. On the other hand, the symbol <+ -» denotes an operation execution split into the
invocation and the response event to indicate waiting, or that the execution takes a long
time. In that case the inscription above is split between the events, e.g. a read operation
execution would show r;(x) above the invocation, and — 1 over the response.

The diagram also adds additional information to the history to emphasize relation-
ships between events. If waiting is involved, the arrow — 7is used to emphasize a happens
before relation between two events. The same is used to indicate causality, e.g. whenever
an abort event forces another operation to abort. Furthermore, -~ denotes that the
preceding transaction aborts (here, T;) and a new transaction (T%) is spawned. These
elements are used as necessary to indicate particular scenarios and may be omitted.

In addition, annotations below events may be used to indicate computations per-
formed within a given TM implementation as part of the concurrency control algorithm.
We show an example in Fig. 2.2. The notation within these comments follows from the
convention used for pseudocode, with the exception that conditions will be marked by a
preceding ? mark (to save space).






Existing Properties

In this chapter we discuss a number of prominent TM safety properties, as well as some
applicable database consistency conditions, that can be used to determine the correctness
of the algorithms’ behavior, with a strong focus on how the properties in question regulate
behavior of TM algorithms that use the early release technique. Specifically, we examine
the properties to find out whether or not they allow transactions to use the early release
technique, and, if so, to what extent. For this purpose, we first define a set of tools which
we use for the examination, and then proceed to employ them on each property. We
summarize our findings at the end of the chapter. This chapter extends our previous
analysis in [77] and [79].

3.1 Analysis Parameters

The aim of the analysis is to find properties that describe the guarantees of TM systems
with early release that can be applied in practice. We seek a safety property that allows
early release, but, nevertheless, reduces or eliminates undesired behaviors.

Early Release Support

We begin our analysis by defining its key questions. The first and the most obvious is
whether a particular property supports early release at all. Early release pertains to a
situation where conflicting transactions execute partially in parallel while accessing the
same variable. The implied intent is for all such transactions to access these variables
without losing consistency and thus for them all to finally commit. We define early release
formally in Def. 2. Then, the ability for a property to support early release is defined as
follows:

Definition 4 (Early Release Support). Property B supports early release iff given some
history H that satisfies B there exists some transaction T; € H, s.t. T; releases some
variable © early in H.

If a property allows early release, it allows a significant performance boost (see e.g.
[65, 75]) as transactions are executed with a higher degree of parallelism.
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start; w;(z)1— ok; w;(x)2 — ok; tryC; — C;
i © o °
start; rj(z) =1 Lwi(7)3— Aj starty, re(z) =2 wg(z)d— ok, tryC— Cy
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Figure 3.1: A history with early release and overwriting.

Overwriting Support

Early release can give rise to some unwanted or unintuitive scenarios with respect to
consistency. The most egregious of these is overwriting, where one transaction releases
some variable early, but proceeds to modify it afterward. In that case, any transaction
that started executing operations on the released variable will observe an intermediate
value with respect to the execution of the other transaction, ie., view inconsistent state.

An example of overwriting is shown in Fig. 3.1, where transaction T; releases variable
z early but continues to write to z afterward. As a consequence, Tj first reads the value of
x that is later modified. When T; detects it is in conflict while executing a write operation
it is aborted. This is a way for the TM to attempt to mitigate the consequences of viewing
inconsistent state. The transaction is then restarted as a new transaction Tj.

However, as argued in [33], simply aborting a transaction that views inconsistent
state is not enough, since the transaction can potentially act in an unpredictable way
on the basis of using an inconsistent value to perform local operations. For instance,
if the value is used in pointer arithmetic it is possible for the transaction to access an
unexpected memory location and crash the process. Alternatively, if the transaction uses
the value within a loop condition, it can enter an infinite loop and become parasitic. Other
dangerous behaviors are possible, including division by zero precluded by invariants that
assume atomicity of transactions.

Thus, in our analysis of existing properties we ask the question whether, apart from
allowing early release, the properties also forbid overwriting. In the light of the poten-
tial dangerous behaviors that can be caused by it, we consider properties that allow
overwriting to be too weak to be practical.

Definition 5 (Overwriting Support). Property B supports overwriting iff B supports
early release, and given some history H (with unique writes) that satisfies P, for some
pasr of transactions T;,T; € H s.t.,

a) T; releases some variable © early,

b) H|T; contains two write operation executions: w;(z)v— ok; and w;(z)v' — ok;, s.t.
the former precedes the latter in H|T;,

c) H|T; contains a read operation execution r;(xz)— v that precedes w;(z)v' — ok; in

H.

Aborting Early Release Support

In addition, we look at whether or not a particular property forbids a transaction that
releases some variable early to abort. This is a precaution taken by many properties
to prevent cascading aborts, another type of scenario leading to inconsistent views. An
example of this is shown in Fig. 3.2. In such a case a transaction, here T;, releases
a variable early and subsequently aborts. This can cause another transaction 7} that
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Figure 3.2: A history with early release and cascading abort.

executed operations on that variable in the meantime to observe inconsistent state. In
order to maintain consistency, a TM will then typically force T; to abort and restart as
a result.

However, while the condition that no transaction that releases early can abort, solves
the problem of cascading aborts, it significantly limits the usefulness of any TM that sat-
isfies it, since TM systems typically cannot predict whether any particular transaction
eventually commits or aborts. In particular, there are important applications for TM,
where a transaction can arbitrarily and uncontrollably abort at any time. Such applica-
tions include distributed TM and hardware TM, where aborts can be caused by outside
stimuli, such as machine crashes.

An exception to this may be found in systems making special provisions to ensure
that irrevocable transactions eventually commit (see e.g., [92]). In such systems, early
release transactions could be ensured never to abort. However, case in point, these take
drastic measures to ensure that, e.g., at most a single irrevocable transaction is present
in the system at one time. Therefore, the requirement is too strict in the general case.

Definition 6 (Aborting Early Release Support). Property B supports aborting early
release iff P supports early release, and given some history H that satisfies P, for some
transaction T; € H that releases some variable x early, H|T; contains A;.

3.2 Properties

In this section we analyze the extent to which various properties support early release,
and what restrictions they apply to transactions that release variables early. The prop-
erties under consideration are the typical TM safety properties: serializability, opacity,
markability, virtual world consistency, transactional memory specification, live opacity,
and elastic opacity. We also consider some strong database consistency conditions that
pertain to transactional processing: recoverability, commitment order preservation, cas-
cadelessness, strictness, and rigorousness.

3.2.1 Serializability

The first property we discuss is serializability, a database property which can be regarded
as a baseline TM safety property. It can be considered the minimal strong property
acceptable in TM. It is also a property that can be grasped intuitively: a history is
serializable if there is some sequential execution that would reflect the same behavior as
shown in that history.

Serializability is defined formally in [60] in three variants: conflict serializability, view
serializability, and final-state serializability. We follow a more general version of serializ-
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ability defined in [90] (as global atomicity), which we adjust to account for non-atomicity
of commits in our model.

Definition 7 (Serializability). History H is serializable iff there exists some sequential
history S equivalent to a completion Compl(H) such that any committed transaction in
S is legal in S.

Intuitively, the definition does not preclude early release, as long as illegal transactions
are aborted. Serializability also makes no further stipulations on aborting transactions,
so it permits both overwriting and cascading aborts.

Lemma 1. Serializability supports early release.

Proof. Let H be a transactional history as shown in Fig. 3.1. Note that since all transac-
tions in H are committed or aborted then H = Compl(H). Then, let there be a sequential
history Sy=H |T;-H|T; - H|T},. Note that Sy = H. Trivially, all the committed transac-
tions, T; and T}, in Sy are legal in Sy, so H is serializable. Since, by Def. 2, T; releases
early in H, then, by Def. 4, serializability supports early release. O

Lemma 2. Serializability supports overwriting.

Proof. Let H be a serializable history as in the proof of Lemma 1 above. Transaction T;
writes 1 to x in H prior to Tj reading 1 from z, and subsequently T; writes 2 to z. Thus,
according to Def. 5, serializability supports overwriting. O

Lemma 3. Serializability supports aborting early release.

Proof. Let H be a history such as the one in Fig. 3.2. Since all transactions in H are com-
mitted or aborted then H = Compl(H). Then, let Sy be a sequential history equivalent
to H such that Sy = H|T; - H|T; - H|Ty. S contains only one committed transaction
T}, which is trivially legal in Syr. Thus H is serializable. In addition, transaction 7; in
Sy both releases = early (Def. 2) and contains an abort (4; € H|T;). Thus, by Def. 6,
serializability supports aborting early release. O

There is also a variant of serializability called strict serializability that adds the con-
dition that the witness history S which justifies the serializability of history H must also
preserve the real-time order of H. The results above trivially extend to this variant.

3.2.2 Commitment Order Preservation

Commitment order preservation (CO) is a database consistency condition, which requires
that transactions commit in the same order as the order in which the transactions ac-
cessed variables. It is often used as an additional condition to serializability. Formally,
CO is defined as follows (adapted from [91]):

Definition 8 (Commitment Order Preservation). History H preserves commitment or-
der iff for any two committed conflicting transactions T3, T; € H s.t. i # j given any pair
of conflicting operation executions op; € H|T; and op; € H|Tj, either op; <u op; and
resi[C,-] <H resj[C'j], or op; <m op; and resj[Cj} <H resi[Ci].

CO maintains the order of their commits with respect to the order in which they
access operations, but it makes no stipulations regarding aborted transactions, which
allows them to read from live transactions. Thus, early release is generally allowed under
commit ordering.

Lemma 4. Commitment order supports early release.



3.2 Properties

31

Proof. Let H be a transactional history as shown in Fig. 3.1. Here, all operations in T;
conflict with all operations in T}, and all operations in 7; conflict with all operations in
T). In addition, transactions T; and T} commit. Since T} performs its operations on the
shared variable after T;, then T}, must commit after T;. Since this is the case, H preserve
commitment order (Def. 8). Since, by Def. 2, T; releases early in H, then, by Def. 4,
commit ordering supports early release. O

Lemma 5. Commitment order supports overwriting.
Proof. By analogy to Lemma 4. O
Lemma 6. Commitment order supports aborting early release.

Proof. Let H be a history such as the one in Fig. 3.2. Here, only transaction T} commits,
so trivially, the history preserver commitment order by Def. 8. Transaction T; in H
releases z early (Def. 2) and contains an abort (A4; € H|T;). Thus, by Def. 6, CO supports
aborting early release. O

Note that, a composition of CO with either serializability or recoverability (see below)
trivially also allows early release, overwriting, and aborting early release.

3.2.3 Recoverability

Recoverability is another database consistency condition used in conjunction with serial-
izability. Recoverability requires that transactions only commit after other transactions
whose changes they read commit. It is defined as below (following [36]):

Definition 9 (Recoverability). History H is recoverable iff for any T;,T; € H, s.t. i # j
and T} reads from T;, T; commits in H before T; commits.

Recoverability requires that transactions only commit after other transactions whose
changes they read commit, which does not impinge on the ability to release early.

Lemma 7. Recoverability supports early release.

Proof. Let H be a transactional history as shown in Fig. 3.1. Here, transaction 7; reads
from T; and T} reads from T;, and no other transactions are in the reads-from relation.
If H is recoverable, then, by Def. 9, T; must commit before 7; commits and before T},
commits. This condition is true for T; and T, since 7} never commits. The condition is
trivially true for T; and Tj. Hence, H is recoverable. Since, by Def. 2, T; releases early
in H, then, by Def. 4, recoverability supports early release. O

Lemma 8. Recoverability supports overwriting.
Proof. By analogy to Lemma 7. O
Lemma 9. Recoverability supports aborting early release.

Proof. Let H be a history such as the one in Fig. 3.2. Here, transaction 7} reads from
T; and no other transactions are in the reads-from relation. Since T; and T} both abort,
then, the condition in Def. 9, is trivially true for H. Hence, H is recoverable. Transaction
T; in H releases z early (Def. 2) and contains an abort (4; € H|T;). Thus, by Def. 6,
recoverability supports aborting early release. O

Note that, a composition of recoverability and serializability or commitment order
preservation trivially also allows early release, overwriting, and aborting early release.
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3.2.4 Cascadelessness

Cascadelessness (also known as avoiding cascading aborts or rollbacks—ACA, ACR) is
a database consistency condition that is used to exclude scenarios where one aborting
transaction T; forces another transaction 7; to abort, because T; read from T; before
T; aborted. It is used to impose additional requirements on serializable executions. It is
defined as follows (after [12]):

Definition 10 (Cascadelessness). History H is cascadeless iff for any T;,T; € H s.t.
i # j and T} reads from T;, T; commits before the read.

Cascadelessness restricts reading from live transactions. Therefore, cascadelessness
clearly removes all the scenarios encompassed by Def. 2. Since this is the only provi-
sion of cascadelessness, the property forbids early release without giving any additional
guarantees. Hence, it also does not support overwriting nor aborting early release.

Lemma 10. Cascadelessness does not support early release.

Proof. By contradiction let us assume that cascadelessness supports early release. Then,
from Def. 4, there exists some history H, s.t. H is cascadeless and there exists some
transaction T; € H that releases some variable z early in H. From Def. 2, this implies
that there exists some prefix P of H s.t.

a) there is an operation execution op, = w;(z)v— ok; and op, € P|T;,

b) there exists a transaction T € P (i # j) and an operation execution op; = r;(z) —
v, s.t. op; € P|T; and op; precedes op; in P,
¢) T; is live in P.
These imply that op; follows op; in P in such a way that there does not exist in P an
operation op. = tryC; — C; in P s.t. op, <p op;. Therefore, such op. does not exist in

H either. This contradicts Def. 10, which dictates that 7; must commit before T} reads
from T;, so H is not cascadeless, which is a contradiction. O]

Since both Def. 5 and Def. 6 require early release support, then:
Corollary 1. Cascadelessness does not support overwriting.

Corollary 2. Cascadelessness does not support aborting early release.

3.2.5 Strictness

Strictness [12] is a strong database property that, given a write in one transaction, and
some other following operation in another transaction, that second operation can only be
executed if the transaction executing the write already committed or aborted. Formally:

Definition 11 (Strictness). History H is strict iff for any T;,T; € H (i # j) and
given any operation execution op;, = 1;(x) —v or op; = w,;(x)v" — ok; in H|T;, and any
operation execution op; = wj(x)v—> okj in H|Tj;, if op; follows op;, then T; commits or
aborts before op,.

The definition unequivocally states that a transaction cannot read from another trans-
action, until the latter is committed or aborted. Thus, strictness precludes early release
altogether.

Lemma 11. Strictness does not support early release.
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Proof. By contradiction let us assume that strictness supports early release. Then, from
Def. 4, there exists some history H, s.t. H is strict and there exists some transaction
T; € H that releases some variable x early in H. From Def. 2, this implies that there
exists some prefix P of H s.t.

a) there is an operation execution op; = w;(z)v— ok; and op; € P|T;,

b) there exists a transaction T € P (i # j) and an operation execution op; = r;(z) —
v, s.t. op; € P|T; and op; precedes op; in P,
¢) T; is live in P.
These imply that op; follows op; in P in such a way that there does not exist in P an
operation op, that returns either 4; or C; and op;, <p op, <p op;. Therefore, there does

not exist an operation op, in H that returns either 4; or C; and op, <g op. <u op;.
This contradicts Def. 11, so H is not strict, which is a contradiction. O

Since both Def. 5 and Def. 6 require early release support, then:
Corollary 3. Strictness does not support overwriting.
Corollary 4. Strictness does not support aborting early release.

Note, that while strictness does not allow early release as defined by Def. 2, it allows
for parallel execution of reads by live transactions which can be considered a limited form
of early release (e.g. [43]).

3.2.6 Opacity

Opacity [32, 33] can be considered the standard TM safety property that guarantees
serializability and preservation of real-time order, and prevents reading from live trans-
actions. It is defined by the following two definitions. The first definition specifies final
state opacity that ensures the appropriate guarantees for a complete transactional his-
tory. The second definition uses final state opacity to define a safety property that is
prefix-closed. Both definitions follow those in [33].

Definition 12 (Final state opacity). A finite TM history H is final-state opaque if, and

only if, there exists a sequential history S equivalent to any completion of H s.t.,
a) S preserves the real-time order of H,
b) every transaction T; in S is legal in S.

Definition 13 (Opacity). A TM history H is opaque if, and only if, every finite prefix
of H 1is final-state opaque.

This definition of opacity forbids reading from live transactions, so it precludes any
use of early release whatsoever.

Lemma 12. Opacity does not support early release.

Proof. By contradiction let us assume that opacity supports early release. Then, from
Def. 4, there exists some history H (with unique writes), s.t. H is opaque and there exists
some transaction T; € H that releases some variable x early in H.

From Def. 2, this implies that there exists some prefix P of H s.t.

a) there is an operation execution op, = w;(x)v— ok; and op, € P|T;,

b) there exists a transaction T € P (i # j) and an operation execution op; = r;(z) —
v, s.t. op; € P|T; and op; precedes op; in P,
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¢) T; is live in P.

Let P. be any completion of P. Since T; is live in P, by definition of completion, it is
necessarily aborted in P, (ie. A; € P.|T;). Given any sequential history Sy equivalent
to P,, since T; is aborted in P, and Vis(g o, Tj) only contains operations of committed
transactions, then P.|T; ¢ Vis(S’H,Tj). This means that op; € Vz's(gH,Tj) but op; &
Vis(S,Tj), so Vis(S,Tj) € Seq(x) and therefore Vis(Sgr, Tj) is not legal.

On the other hand, Def. 13 implies that any prefix P of H is final state opaque, which,
by Def. 12, implies that there exists some completion P. of P for which there exists an
equivalent sequential history Sy s.t., any T} in Sy is legal in Sy. Since any T} is legal
then for any 7, Vis(ﬁ w,T;) is also legal. But this is a contradiction with the paragraph
above. Thus, there cannot exist a history like H that is both opaque and contains a
transaction that releases some variable early. O

Since both Def. 5 and Def. 6 require early release support, then:
Corollary 5. Opacity does not support overwriting.
Corollary 6. Opacity does not support aborting early release.

It is worth noting that opacity precludes reading from live transactions regardless of
whether the transactions in question ever abort, even given a transactional model where
transaction aborts are outright impossible.

3.2.7 Markability

Markability [52] is a TM safety property equivalent to opacity (i.e. every opaque history
is markable, and every markable history is opaque) introduced as a simpler way to prove
opacity. Since every markable history is opaque, then it follows from Lemma 12, and
Corollaries 5 and 6, that:

Corollary 7. Markability does not support early release.
Corollary 8. Markability does not support overwriting.

Corollary 9. Markability does not support aborting early release.

3.2.8 Rigorousness

Rigorousness is a strong database property which requires that given any two transac-
tion executing operations on the same variable, the latter of them cannot execute any
operations until the former commits or aborts. It is defined as a condition added onto
strictness, as follows (following [15]):

Definition 14 (Rigorousness). History H is rigorous iff it is strict and for any T;,T; €
H (i # j) such that T; writes to variable z, i.e., op; = w;(z)v — ok; € H|T; after T;
reads x, then T; commits or aborts before op,.

%

Since in [7] the authors demonstrate that rigorous histories are opaque, and since we
show in Lemma 12 and Corollaries 5 and 6 that opaque histories do not support early
release, then neither does rigorousness.

Corollary 10. Rigorousness does not support overwriting.
Corollary 11. Rigorousness does not support overwriting.

Corollary 12. Rigorousness does not support aborting early release.
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3.2.9 Transactional Memory Specification

In [22] the authors argue that some scenarios, such as sharing variables between trans-
actional and non-transactional code, require additional safety properties. Thus, they
propose and rigorously define two consistency conditions for TM: transactional memory
specification 1 (TMS1) and transactional memory specification 2 (TMS2).

TMS1 follows a set of design principles including a requirement for observing con-
sistent behavior that can be justified by some serialization. Among others, TMS1 also
requires that partial effects of transactions are hidden from other transactions. These
principles are reflected in the definition of the TMS1 automaton, and we paraphrase
only parts relevant to our further discussion, i.e. the condition for the correctness of an
operation’s response in the following definitions (see the definitions of extConsPrefiz and
validResp for TMSI in [22]).

Given history H and some response event r in H, let H7r denote a subhistory of H,
s.t. for every operation execution op € H, op € H?r iff op <y r and op is complete. This
represents all operations executed “thus far,” when considering the legality of r.

Let T¢; be the set of all such transactions that T, € TS, iff T, € H and inv, [tryC,] €
H|Tj,. Given response event r, let T%1r be the set of all transactions in H s.t. T}, € T¢1r
if T, € TY; and inv, [tryC k} < g r. These sets represent transactions which committed or
aborted (but are not live) and the set of all such transactions that did so before response
event r.

Given some history H, let T% by any subset of transactions in H. Let o be a se-
quence of transactions. Let ser(T/;, <g) be a set of all sequences of transactions s.t.
o € ser(T’y, <p) if o contains every element of T/; exactly once, and, for any T;,T; € T,
if T; <p T then T; precedes 1} in o.

Given a history H and some response event r in H, let ops(o,r) be a sequence of
operations s.t. if o = [T}, T3, ..., T,] then ops(o,r) = H{r|T) - Hir|T - ... - Hr|T,. This
represents the sequential history prior to response event r that respects a specific order
of transactions defined by o.

The most relevant condition in TMS1 with respect to our further discussion is the
validity condition of individual response operations. A prerequisite for checking validity
is to check whether a response event can be justified by some externally consistent prefiz.
This prefix consists of operations from all transactions that precede the response event
and whose effects are visible to other transactions. Specifically, if a transaction precedes
another transaction in the real time order, then it must be both committed and included
in the prefix, or both not committed and excluded from the prefix. However, if a trans-
action does not precede another transaction, it can be in the prefix regardless of whether
it committed or aborted.

Definition 15 (Externally Counsistent Prefix). Given a history H and a response event
r, let the externally consistent prefix T’y be any subset of all transactions in H s.t. for
any T3, T; € T, if Ty <g Tj then Tj is in Ty iff resi[Ci] € H1r|T;.

TMS1 specifies that each response to an operation invocation in a safe history must
be wvalid. Intuitively, a valid response event is one for which there exists a sequential
prefix that is both legal and meets the conditions of an externally consistent prefix. More
precisely, the following condition must be met:

Definition 16 (Valid Response). Given a transaction T; in H, we say the response r to
some operation invocation e in H|T; is valid if there exists set Th C TS 1r and sequence
o € ser(Ty, <m) s.t. T% satisfies Def. 15 and ops(o - T, 1) - [e — 7] is legal.

Intuitively, TMS1 specifies that each response to an operation in a safe history must
be walid (Def. 16), which means it is explained by a sequential prefix that is both legal
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and meets the conditions of an externally consistent prefix (Def. 15). Since the externally
consistent prefix excludes live transactions, then TMS1 does not allow early release in
general. More formally:

Lemma 13. TMS1 does not support early release.

Proof. Assume by contradiction that TMS1 supports early release. Then by Def. 4, there
exists some TMS1 history H s.t. T;,7; € H and there is a prefix P of H s.t. op; =
w;(r)v — ok; € P|T;, op; = rj(z) = v € P|Tj, and T; is live in H. This implies that
inv; [tryC;] ¢ Ptres; [v]|T;. This means that T; ¢ T$, and therefore not in any T4, C T
or, by extension, not in any o € ser(T%, <g). Therefore, there is no op; in ops(o, Tes; [v] ),
so, assuming unique writes, op; is not preceded by a write of v to z in ops(o-Tj, res; [v] )

[rj(x) — v]. Therefore, ops(o - Ty, res;[v]) - [rj(z) — v] is not legal, which contradicts

Def. 16. O
Since both Def. 5 and Def. 6 require early release support, then:

Corollary 13. TMS1 does not support overwriting.

Corollary 14. TMS1 does not support aborting early release.

TMS2 is a stricter, but more intuitive version of TMS1. Since the authors show in [22]
that TMS2 is strictly stronger than TMS1 (TMS2 implements TMS1), the conclusions
above equally apply to TMS2. Hence, from Lemma 13:

Corollary 15. TMS2 does not support early release.
Corollary 16. TMS2 does not support overwriting.

Corollary 17. TMS2 does not support aborting early release.

3.2.10 Virtual World Consistency

The requirements of opacity, while very important in the context of TM’s ability to
execute any operation transactionally, can often be excessively stringent. On the other
hand serializability is considered too weak for many TM applications. Thus, a weaker TM
consistency condition called virtual world consistency (VWC) was introduced in [48].

Let us first define a partial order <5 on the set of all transactions in H. Given two
transactions 13,1 € H, T; <Fo T; if:

a) T; and T} are executed by the same process pj, and res,]f [CZ] <H im);? [startj], or
b) T} reads from T;, or

¢) there exists some T; € H such that T; %ZO Ty and T; <ZO T;.

The authors of [48] remark further that there is no <£© relation between T; and Ty if T;
is aborted. We say sequential history S is a linear extension of H if S = H and the order
of transactions in S preserves the partial order <§O, ie., <§O§<S. Then, the causal
past C(H,T;) of some transaction T; in some history H is such a history that includes

T; (i.e. H|T; C C(H,T;) and includes every T; (i.e. H|T; C C(H,T;) s.t. T; <EC Ti.

Definition 17 (Virtual World Consistency). History H is virtual world consistent iff its
subhistory containing all committed transactions is serializable and preserves real-time
order, and for each aborted transaction T; there exists a linear extension S of its causal
past C(H,T;) that is legal.

VWC allows limited support for early release as follows.
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start; ri(z)—0 w;(x)1— ok; ri(y)—0 tryC; — Cj
O O

ri(z)—1 tryC; — C;
O

Figure 3.3: VWC history with early release.

Lemma 14. VWC supports early release.

Proof. Let H be a transactional history as shown in Fig. 3.3. Here, T; performs two
operations on = and one on y, while 7} reads z. The sequential witness history of H is
S = H|T; - H|T,; wherein both transactions are committed and trivially legal. Thus H
is VWC. Since, by Def. 2, T; releases early in H, then, by Def. 4, VWC supports early
release. O

Lemma 15. VWC does not support overwriting.

Proof. Since VWC requires that aborting transactions view a legal causal past, then, if
a transaction reading z is aborted, it must read a legal (i.e. “final”) value of z. Thus, let
us consider some history H (with unique writes) where some T; writes value v to z and
releases z early, and some T} reads v from z (so T; reads from T;).

a) If T; writes some value v to z after releasing it, and T; commits, then T} is not
legal in any sequential witness history of H because there is another write operation
execution writing v’ to z between a write writing v to z and a read on x returning
v, and therefore H does not satisfy VWC.

b) If T; writes some value v’ to z after releasing it, and T aborts, then the causal past
C(H,Tj) contains T;, and Tj is illegal in C(H,T}), because there is another write
operation execution writing v’ to z between a write writing v to z and a read on z
returning v, so C(H,T}) is not legal. Thus, H does not satisfy VWC.

Therefore, any history H containing T}, such that T; releases z early and modifies it after
release does not satisfy VWC. Hence, by Def. 5, VWC does not support overwriting. [J

Lemma 16. VIWC does not support aborting early release

Proof. Given a history H that satisfies VWC and a transaction T; € H that releases
variable z in H, let us assume for the sake of contradiction that T; eventually aborts. By
Def. 2, there is some T; in H that reads from 7;. If T; eventually aborts, then T} reads
from an aborted transaction.

a) If T; eventually aborts, then its causal past C(H,T;) does not contain aborted
transaction T; and is, therefore, trivially illegal. Hence H does not satisfy VWC,
which is a contradiction.

b) If T} eventually commits, then the sequential witness history is also illegal. Hence
H does not satisfy VWC, which is a contradiction.

Therefore, if T; eventually aborts, H does not satisfy VWC, which is a contradiction.
Thus, since a VWC history cannot contain an abortable transaction that releases a
variable early. Hence, by Def. 6, VWC does not support aborting early release. O]

While VWC supports early release, there are severe limitations to this capability.
That is, VWC does not allow a transaction that released early to subsequently abort for
any reason.
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start; w; ()1 — ok; tryC; — C;
i© ? °

start; Jri(z)—1 tryC; — C;
O

Tj o

Figure 3.4: A live opaque history with early release.

3.2.11 Live Opacity

Live opacity was introduced in [26] as part of a set of consistency conditions and safety
properties that were meant to regulate the ability of transactions to read from live trans-
actions. The work analyzes a number of properties and for each one presents a commit
oriented variant that forbids early release and a live variant that allows it. Here, we con-
centrate on live opacity, since it best fits alongside the other properties presented here,
however our conclusions will apply to the remainder of live properties.

Let H|(T;,r) be the longest subsequence of H|T; containing only read operation ex-
ecutions (possibly pending), with the exclusion of the last read operation if its response
event is A;. Let H|(T;,gr) be a subsequence of H|(T;,r) that contains only non-local
operation executions. Let 7] be a transaction that invokes the same transactional op-
erations as those invoked in [start; — ok;] - H|(T;,r) - [inv; [tryC;]] if H|(T;,7) # @, or
@ otherwise. Let T/" be a transaction that invokes the same transactional operations as
those invoked in [start; — ok;]-H|(T;, gr)-[tryC; — C;i] if H|(T;, gr) # &, or & otherwise.

Given a history H, a transaction T; € H, and a complete local operation execution
op = ri(z) — v, we say the latter’s response event res; [v] is legal if the last preceding write
operation in H|T; writes v to z. We say sequential history S justifies the serializability
of history H when there exists a history H’ that is a subsequence of H s.t. H' contains
invocation and response events issued and received by transactions committed in H, and
S is a legal history equivalent to H'.

Definition 18 (Live Opacity). A history H is live opaque iff, there exists a sequential
history S that preserves the real time order of H and justifies that H is serializable and
all of the following hold:

a) We can extend history S to get a sequential history S’ such that:
~ for each transaction T; € H s.t. T; ¢ S, TY" € S,

- if < is a partial order induced by the real time order of S in such a way that
for each transaction T; € H s.t. T; & S we replace each instance of T; in the
set of pairs of the real time order of H with transaction T}, then S’ respects
<

- S’ is legal.

b) For each transaction T; € H s.t. T; ¢ S and for each operation op in T} that is not
in T?", the response for op is legal.

Live opacity is a variant of opacity specifically introduced to allow early release, but
only for non-aborting transactions. We show this below.

Lemma 17. Live opacity supports early release.

Proof. Let history H be that represented in Fig. 3.4. Since there is a transaction T; € H
that writes 1 to z and a transaction T} that reads 1 from z before T; commits, then there
is a prefix P of H that meets Def. 2. Therefore T; releases = early in H.
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Let S be a sequential history s.t. S = H|T;- H|T}. Since the real-time order of H is &,
then, trivially, S preserves the real-time order of H. Since Vis(S,T;) contains only H|T;
and therefore only a single write operation execution and no reads, then it is legal and
T; in S is legal in S. Furthermore, Vis(S,T}) is such that Vis(S,T;) = H|T; - H|T; and
contains a read operation r;(z) — 1 preceded by the only write operation w;(z)1 — ok,
so Vis(S,Tj) is legal, and, consequently, T} in S is legal in .S. Thus, all transactions in S
are legal in S, so H is serializable.

Let S’ be a sequential history that extends S in accordance to Def. 18. Since there
are no transactions in S’ that are not in .S, then S’ = S. Thus, since every transaction in
S is legal in S, then every transaction in S’ is legal in S’. Trivially, S’ also preserves the
real time order of S. Therefore, the condition Def. 18a is met. Since there are no local
read operations in S, then condition Def. 18b is trivially met as well. Therefore, H is live
opaque.

Since H is both live opaque and contains a transaction that releases early, then the
lemma holds. O

Lemma 18. Live opacity does not support overwriting.

Proof. For the sake of contradiction, let us assume that there is a history (with unique
writes) H that is live opaque and, from Def. 5, contains some transaction T; that writes
value v to some variable z and releases = early and subsequently executes another write
operation writing v’ to z where the second write follows a read operation executed by
transaction 7} reading v from z.

Since H is live opaque there exists a sequential history S that justifies the serializ-
ability of H. There cannot exist a sequential history S where T} reads from = between
two writes to 2 executed by T;, because there cannot exist a legal Vis(S,T}), so T; would
not be legal in S. Therefore, T; must be aborted in H and therefore T} is not in any
sequential history S that justifies the serializability of H.

Since T} is in H but not in .S, then given any sequential extension S’ of S in accordance
to Def. 18, T} is replaced in S” by Tjg " which reads v from z and finally commits. However,
since the write operation execution writing v to z in 7T; is followed in S’|T; by another
write operation execution that writes v’ to z, then there cannot exist a Vis(S’, Tjgr) that
is legal. Thus 77" in S cannot be legal in S”, which contradicts Def. 18a. Thus, H is not
live opaque, which is a contradiction.

Therefore H cannot simultaneously be live opaque and contain a transaction with
early release and overwriting. O

Lemma 19. Live opacity does not support aborting early release.

Proof. For the sake of contradiction, let us assume that there is a history (with unique
writes) H that is live opaque and, from Def. 6, contains some transaction T; that writes
value v to some variable z and releases = and subsequently aborts in H.

Let S be any sequential history that justifies the serializability of H, and let S’ be
any sequential extension S’ of S in accordance to Def. 18. Since T; aborts in H, then
it is not in S, and therefore it is replaced in S’ by T7". Since 77" does not contain
any write operation executions, there is no write operation execution writing v to z in
S’. Since T; released z early in H there is a transaction 7; in H that executes a read
operation reading v from z and the same read operation is in S’. But since there is no
write operation execution writing v to z in S/, no transaction containing a read operation
execution reading v from z can be legal in S’. Thus, H is not live opaque, which is a
contradiction.

Therefore H cannot be simultaneously live opaque and contain a transaction with
early release that aborts. O
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In addition, note that, if some transaction 7T; in some history H reads from a live
transaction and is itself live, then there cannot be any transaction 7 that reads from T;
according to live opacity. This is because if T; is replaced in S" with 77", then whatever
value T reads from T; will not be written by 7", so the read in Tj (or 77") may not be
legal. We consider this to be overstrict, because the requirement that transactions which
release early already are not allowed to abort. This means that transactions that read
from live transactions will not experience inconsistent views regardless of whether that
live transaction reads only from committed transactions or whether it reads from some
yet another live transaction—all such live transactions must eventually commit. But if
the live transaction reads from yet another live transaction, the history is unnecessarily
precluded by live opacity, despite no inconsistent views being introduced by it.

3.2.12 Elastic Opacity

Elastic opacity is a safety property based on opacity, that was introduced to describe the
safety guarantees of elastic transactions [28]. The property allows to relax the atomic-
ity requirement of transactions to allow each of them to execute as a series of smaller
transactions.

An elastic transaction T; is split into a sequence of subhistories called a cut denoted
Ci(H), where each subhistory represents a “subtransaction.” In brief, a cut that contains
more than one operation execution is well-formed if all subhistories are longer than one
operation execution, all the write operations are in the same subhistory, and the first
operation execution on any variable in every subhistory is not a write operation, except
possibly in the first subhistory. A well-formed cut of some transaction T; is consistent
in some history H, if given any two operation executions op; and op} on z in any sub-
histories of the cut, no transaction T; (i # j) executes a write operation op; on z s.t.
op; <u op; < opj. In addition, given any two operation executions op; and op} on z,y
respectively, no two transactions Ty, T; (I # i, k # 1) execute writes op, on z and op;
on y, s.t. op; <m op, <mg op, and op; <y op; <m opi. A culting function fc takes a
history H as an argument and produces a new history H; where for each transaction
T; € H declared as elastic, T; is replaced in Hy with the transactions resulting from the
cut C;(H) of T;. If some transaction is committed (aborted) in H, then all transactions
resulting from its cut are committed (aborted) in fe(H). Then, elastic opacity is defined
as follows:

Definition 19 (Elastic Opacity). History H is elastic opaque iff there exists a cutting
function fe that replaces each elastic transaction T; in H with its consistent cut C;(H),
such that history fc(H) is opaque.

Note that the authors demonstrate in [28] that elastic opacity is not strictly stronger
than serializability.

Elastic opacity (Def. 19) checks the validity of a history, not by validating the consis-
tency of transactions, but of fragments of transactions. Hence, elastic opacity supports
early release. A formal demonstration follows.

Lemma 20. FElastic opacity supports early release.

Proof. Let H be a transactional history with unique writes as shown in Fig. 3.5a. Let T;
be an elastic transaction. Let C;(H) be a cut of subhistory H|T;, such that:

Ci(H) = {[startif — 0k, 1y (y) = 0, wyr ()1 — okyr, tryC — Cif},

[starty — ok, vy (z) =1, 1 (y) =0, tryCi — Cyr] }



7

;1

tryC; — C;
o

tryC;n — Cin
O

start; ri(y)—0 w;(z)1— ok; ri(z)—1 r(y)—=0
o 0
tart; r, 1 tryC,— C;
Tj Os art; XT](I)_) . ryC,; — Cj
(a) History.
start;: Ty (y) —0 Wy (‘[)] — ok tryC,; — Cyr start; T (I) —1 T (y) —0
O O g O g
start, V(@) =1 tryC, — C;
rfj Os’ art; 1r]('r)% . ryC; — C;

(b) History after applying a cutting function.

Figure 3.5: An elastic opaque history with early release.
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All subhistories of C;(H) are longer than one operation, all the writes are in the first
subhistory, and no subhistory starts with a write, so C;(H) is well-formed. Since there
are no write operations outside of T;, then it follows that C;(H) is a consistent cut in
H. Let fe be any cutting function such that it cuts T; according to C;(H), in which case
fc(H) is defined as in Fig. 3.5b. Let S be a sequential history s.t. S = fc(H)|Ty - fe(H)|T;-
fe(H)|T;». Since Ty precedes T in S as well as in fe(H), and all other transactions are
not real time ordered, S preserves the real time order of f¢(H). Trivially, each transaction
in S is legal in S. Thus, fc(H) is opaque by Def. 13, and in effect H is elastic opaque
by Def. 19. Since in H transaction T} reads z from T; while T; is live, then, by Def. 2,
T; releases z early in z. Hence, since H is elastic opaque, elastic opacity supports early
release, by Def. 4. O

Lemma 21. FElastic opacity does not support overwriting.

Proof. For the sake of contradiction, let us assume that there is an elastic opaque history
H, s.t. transaction T; writes value v to some variable x and releases it early in H.
Furthermore, let us assume that there is overwriting, so after some transaction 7 reads
v from z, T; writes u to z. Since only elastic transactions can release early in elastic
opaque histories, and T; releases early, T; is necessarily elastic. Thus, in any fe(H) T; is
replaced by a cut C;(H).

The two writes on z in T; are either a) in two different subhistories in C;(H), or b) in
the same subhistory in C;(H). Since the definition of a consistent cut requires all writes
on a single variable to be within one subhistory of the cut, then in case (a), C;(H) is
inconsistent. Since by Def. 19 elastic opaque histories are created using consistent cuts,
then H is not elastic opaque, which is a contradiction.

In the case of (b), let us say that both writes are in a subhistory that is converted into
transaction T in fe(H). Since T; releases z early, then by Def. 2, there is a transaction
T in fe(H) which executes a read on z reading the value written by T;s in fe¢(H). Since
we assume overwriting, the read operation on z in T} reads the value written by the first
of the two writes in T;» and does so before the other write on z is performed within C (7).
Then, in any sequential history S equivalent to fc(H) either Tj <g Ty or Ty <g Tjr.
In the former case T}/ in S is not legal in S, since the read on z that yields value v will
not be preceded by any operation that writes v to z in any possible Vis(S,T}/). In the
latter case T}/ in S is also not legal in .S, since there will be a write operation writing
u to z between the read on z that yields value v and any operation that writes v to x
in Vis(S,Tj). Since T in S is not legal in any S equivalent to f¢(H), then, by Def. 12,
fe(H) is not final-state opaque, and hence, by Def. 13, not opaque. In effect, by Def. 19,
H is not opaque, which is a contradiction.

Thus, there cannot be an elastic opaque history H with overwriting. O

Lemma 22. Flastic opacity does not support aborting early release.

Proof. For the sake of contradiction, let us assume that there is an elastic opaque history
H s.t. transaction T; releases some variable z early in H and aborts. Since T; releases
early then it writes v to z, and there is another T that executes a read on z that
returns v before T; aborts. Since only elastic transactions can release early in elastic
opaque histories, and T; releases early, T; is necessarily elastic. If T; aborts in H, then all
of the transactions resulting from its cut C;(H) in fe(H) also abort (by construction of
fe(H)). Therefore, for any sequential history .S equivalent to fe(H), there is no subhistory
H' €C;(H) st. H C Vis(S,T}), and in effect the read operation in T on z reading v is
not preceded by a write operation writing v to z. Therefore, Vis(S,T}) is illegal, so T; in
S is not legal in S, and thus, by Def. 13 f¢(H) is not opaque. Since fe(H) is not opaque,
then by Def. 19, H is not elastic opaque, which is a contradiction. O
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Property Application Def. 4 Def. 5 Def. 6 CSerializable
Serializability database, TM v v v Ve
CO database v v Ve X
Recoverability =~ database v v v X
Cascadelessness database X X X X
Strictness database X X X v
Rigorousness database X X X v
Opacity ™ X X X v
Markability T™ X X X v
TMS1 ™ X X X v
TMS2 ™ X X X v
VWC ™ v X X v
Live opacity ™ v X X v
Elastic opacity TM v X X X

Table 3.1: Summary of property early release support: Def. 4 is early release support, Def. 5
is overwriting support, and Def. 6 is aborting early release support.

Elastic opacity supports early release, but, since it does not guarantee serializability
(as shown in [28]), we consider it to be a relatively weak property. This is contrary
to our premise of finding a property that allows early release and provides stronger
guarantees than serializability. It also makes elastic opacity unintuitive to programmers,
and therefore less than practical.

In addition, elastic transactions, i.e. transactions described by elastic opacity, were
proposed as an alternative to traditional transactions for implementing search structures.
However, we submit that the restrictions placed on the composition of elastic transactions
and the need for transactions with early release to be non-aborting put an unnecessary
burden on general-purpose TM. In particular, for a cut to be well-formed, it is necessary
that all writes are executed in the same subtransaction, and that no subtransaction starts
with a write, which severely limits how early release can be used and precludes scenarios
that are nevertheless intuitively correct.

3.3 Summary

In Table 3.1 we present a summary of the properties discussed in this chapter. The
table informs whether a particular property is a database property or a TM property,
and whether each of the properties satisfies the definitions for early release support,
overwriting support, and aborting early release support. Finally, the last column informs
whether each property is at least as strong as serializability.

It is worth noting, that only a small fraction of TM safety properties allow early
release at all. Those that do allow early release fall into two groups. The first group are
weak properties, which allow aborted transactions to view whatever inconsistent state—
they do not provide sufficient consistency guarantees and may lead to the dangerous
errors stemming from inconsistent views described in [33]. The second group are prop-
erties that include the requirement that transactions which release early not abort. This
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requirement is too restrictive and excludes many practical (D)TM applications. In ad-
dition, particular properties within that group are also not suitable for TM with early
release for other reasons. For instance, elastic opacity cannot be employed as a general
purpose safety property, since it allows non-serializable histories, which amounts to ac-
cepting histories that are not intuitively correct, while putting constraints on TMs that
exclude some histories that are intuitively correct. Another example is live opacity, which
arbitrarily forbids transactions that read from live transactions to be read from by other
transactions, even though such executions do not inherently cause inconsistent views.



Existing Algorithms

The purpose of this chapter is to present and examine existing TM concurrency control al-
gorithms with a focus on systems employing pessimistic concurrency control, distributed
TM, and systems using the technique of early release. Specifically, in the following consec-
utive sections we examine examples of distributed pessimistic TM algorithms, distributed
optimistic TM algorithms, non-distributed pessimistic TM algorithms, and optimistic
TM algorithms with early release. In each group we present a broad overview of the
class and proceed to introduce specific representative examples in depth. For each exam-
ple we attempt to determine the safety properties of each algorithm (indicating sources
or uncertainty as applicable), as well as placing them within system models defined in
Chapter 2. In addition, in the final section we provide a comparative summary of the
characteristics of algorithms which we examined and a brief discussion.

4.1 Distributed Pessimistic TM

Pessimistic distributed TM systems are a fairly unexplored part of the TM system spec-
trum. Nevertheless, two-phase locking algorithms have successfully been used in dis-
tributed database systems, and port well into the TM model. In addition, a family of
versioning algorithms designed for use in protocol stacks for communicating services (or
processes) is similarly well suited for use within the TM model. We present the details
of the former in Section 4.1.1, and of the later in Section 4.1.2.

4.1.1 Two-Phase Locking Algorithms

Two-phase locking (2PL) [12, 91] is a lock-based concurrency control algorithm whose
variants are used for database transactions in local as well as distributed databases. The
algorithms translate to variable-based transactional memory and distributed transac-
tional memory. Given the large number of applicable 2PL variants, we will refer to the
entire family of algorithms as the 2PL family. In order to avoid ambiguity, we will refer
to the original 2PL algorithm as Basic 2PL (B2PL).
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1 proc start(Transaction T;) {

2

ASet; < I

3}

aproc read(Transaction 7T;, Var z) {

5

6
7
8
9
10
11
12

if owner(1k(z)) # T;
lock lk(z) — R
ASet; <+ ASet; U {z}
vV T
if shrinking
for y € ASet;: finished(y)
unlock 1k(y)
return v

13 }

14 proc write(Transaction T;, Var z, Value v) {

15

16

26

28
29

if owner(1k(z)) # T;
lock lk(z) - W
if owner(lk(z)) = T; and mode(lk(z)) # W
convert lk(z) — W
if sti(z) = L
z <+ sti(x)
ASet; < ASet; U {z}
T4 v
if shrinking {
for y € ASet;: finished(y)
unlock 1k(y)
for y € ASet;: finished_writing(y)
convert 1lk(z) - R
}

return ok;

30}

31 proc commit(Transaction T3) {

32
33
34
35

for x € ASet;
if owner(1lk(z)) = T}
unlock 1k(z)
return C;

36}

37 proc abort(Transaction T3) {

38
40

44
45

for x € ASet;
if owner(1k(z)) = T; {
if sti(z) # L
T+ st;(z)
unlock 1k(z)
¥
return A,

}

Figure 4.1: B2PL.

Basic 2PL

4 Ezisting Algorithms

proc start(Transaction T3) {}

2 proc read(Transaction T;, Var z) {
3 if first operation on x

4 acquire_all(T3;)

5 V4T

6 if shrinking {

7 for y € ASet;: finished(y)

8 unlock 1k(y)

9 if unlocked something
10 notify all

1o}

12 return v

13 }

14 proc write(Transaction T;, Var z, Value v) {
15 if first operation on =z

16 acquire_all(T;)

17 T4 v

18 if shrinking {

19 for y € ASet;: finished(y)

20 unlock 1k(y)

21 for y € ASet;: finished_writing(y)
22 convert lk(z) — R

23 if unlocked something

24 notify all

25}

26 return ok;

27 }

28 proc commit(Transaction 73) {

29 for x € ASet;

30 if owner(lk(z)) = T;

31 unlock 1k(z)

32 if unlocked something

33 notify all

34  return Cj

35 F

36 proc acquire_all(Transaction T3) {
37 atomic {

38 while Jz € RSet;: mode(lk(z)) = R or

39 Jz € WSet;: mode(lk(z)) = W
40 wait

41 for =z € RSet;

42 lock lk(z) - R

43 for z € WSet;:

44 lock lk(z) — W

s}

46

Figure 4.2: C2PL.

The general idea of B2PL is that for every variable z € Var there is a read-write lock
1k(z). The algorithm uses these locks to prevent two concurrent transactions from ac-
cessing a data item in conflicting modes. Fach transaction acquires locks in the growing
phase and releases them in the following shrinking phase. Once a transaction enters the
shrinking phase (i.e., releases a lock) it cannot acquire further locks.

Fundamentally, in the B2PL algorithm, when transaction T; invokes an operation on
some variable z it must have acquired 1k(z) in the appropriate mode before doing so.

Specifically:

a) before executing any read operation on z, T; must acquire 1k(z) in either read or
write mode (the former if there were no preceding writes), and

b) before executing any write operation on z, T; must acquire 1k(z) in write mode
(which means if it previously acquired 1k(z) in read mode, it must escalate it to

write mode).

We give the pseudocode of B2PL in Fig. 4.1 defined as a TM consistency control
algorithm that responds to the invocations of operations on shared variables and trans-
actional operations following the rules above. The way in which locks are acquired and
released by B2PL is not strictly specified, so we model the B2PL TM implementation
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start;  wi(x)1— ok; w;(y)1— ok; w;(2)1— ok; tryC, — C;
. o o o
g lock 1k(z) = W lock 1k(y) = W /| lock 1k(z) = W
[ unlock 1k(z)
| \ unlock 1k(y)
unlock 1k(z)
start; ri(z) 1 wi(y)2—= ok tryCi— G
io————¢ -~~~ b )
J lock 1k(z) = R \ lock 1k(y) — W | unlock 1lk(z)

unlock 1k(y)

starty,  r(z) =1 wi(y)3 ;% ok wi(z)1— ok tryC), — Cx
R ——G¢ - ------=-= D )
lock 1k(z) - R lock 1k(y) —» W convert 1k(z) — W unlock 1k(z)

convert 1k(z) — R unlock 1k(y)

Figure 4.3: An example B2PL history, adapted from [91].

under the assumption that locks should be acquired as late as possible and released as
soon as possible. Hence, locks are acquired in the appropriate mode during the first oper-
ation of a given type on a given variable. A lock on z can be released once a transaction
executed all of its operations on z (indicated finished(z)) and the transaction is in the
shrinking phase. In addition, a transaction can convert from a write lock to a read lock
if it will perform no writes on z in the future (indicated finished_writing(z)).

We show an example of a B2PL history in Fig. 4.3. Here, transaction 7; executes
three consecutive writes to variables z, y, and 2. It acquires new locks with each write,
and finally releases them at the end of the last write (having somehow discovered that
no new locks will be acquired and no further operations will be executed). Meanwhile,
transactions 7 and T}, start and attempt to read z, which causes both of them to wait
until T; releases 1k(z). T; and T}, are finally able to acquire 1k(z) after T; executes its last
write, and since both read from z, they can lock it simultaneously in read mode. Next,
both transactions attempt to write to y, but only one of them (7}) can simultaneously
lock 1k(y) in write mode. Hence T, must then wait until T} releases locks. For whatever
reason though, T} is not able to confirm that no further operations will be executed or
locks acquired in its lifetime, so it only releases its locks on commit. Hence T} may only
execute its write once T finishes committing. Finally, T}, executes one more write on z.
It must first convert the lock to write mode, because it only previously acquired 1k(z) in
read mode. At this point T} enters the shrinking phase and also recognizes that this was
the last write T}, will execute on z. However, (for some reason) it is not certain whether
Ty, will execute further read operations on z. Hence, T; only converts the lock back from
write mode to read mode after the write. Finally, T}, eventually commits, at which point
it releases all of the locks it retained until this point.

We intentionally leave vague the mechanism in which transactions obtain the knowl-
edge as to when no future operations will follow and when the transaction enters the
shrinking phase, since it is not given as part of the specification of B2PL. A simple ex-
ample mechanism would add operations to the transactional API that the programmer
could use to indicate that a given variable is no longer going to be used, or that no new
variables are going to be added to the access set. Note, though, that if no such mechanism
exists, simply releasing all locks on commit also fits the general specification of B2PL.

As demonstrated in [12], B2PL is (strict) serializable. However, since B2PL allows
committing out of order as well as reading from live transactions, it does not satisfy
stronger properties.

Correct B2PL executions may result in deadlocks. Take, for instance, the B2PL his-
tory in Fig. 4.4. Here transactions 7; and T} concurrently access variables z and y. T;
successfully acquires 1k(z) in read mode and proceeds to execute a read on z. Soon after,
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start; ri(z)—=0 w;(y)1
Vo e
lock 1k(z) = R lock 1k(y) — W
start; w;j(y)1— ok; wj(z)1
7 O t+---—"—-——-"—-"-"—-"-"-"—"—"—"—"—"—"—"—"—"—"———————— — — -
lock 1k(y) — W lock 1k(z) — W

Figure 4.4: An example B2PL history with a deadlock, adapted from [12].

start; w;(z)1— ok; w;(y)1— ok; tryC, — C;
e o
T
wset; = {z,y} ?3z € WSet;: mode(1k(z)) = W | unlock 1k(z)
lock 1k(z) = W unlock 1k(y)
lock 1k(y) = W notify T
T start; w;(z)2 | — ok wj(2)2—ok;  tryC; — C;
fio——mm ¢ - - - —— - —— - —— — — — — D 0 X
J WSet; = {z, 2} ?3z € WSet; : mode(1k(z)) = W ?3z € WSet; : mode(1k(z)) = W unlock 1k(z)
wait lock 1k(z) —» W unlock 1k(z)
lock 1k(z) = W

Figure 4.5: An example C2PL history.

T; acquires 1k(y) in write mode and writes to y. Then, as T; attempts to execute a write
operation on y it must acquire 1k(y), which means it must wait until T releases 1k(y).
Therefore T; waits at the invocation of the write on y. Finally, T; attempts to execute
a write on z, which requires it to acquire 1k(z), which causes T; to wait. Since T; is
currently the owner of 1k(z), T; must wait until T; releases 1k(z). In this way, T; and T
create a wait cycle and deadlock.

In order to resolve deadlocks, database systems using 2PL employ deadlock detectors
(independent of the transactions themselves), which track wait dependencies and detect
cycles in the wait dependency graph. Once detected, one of the transactions in the cycle—
the wvictim—is forcibly aborted, which causes it to abandon waiting, restore variables it
modified to their original values and retry later on. The choice of the victim is open
and may be modified according to goals (e.g. to eliminate cyclic restarts) as well as
circumstances (to redo the least computations). Other deadlock management techniques
exist as well, including executing lock acquisition conservatively, in a way as never to
cause a deadlock, and if a deadlock could happen in potentia, abort the transaction
before locking. Finally, the lock acquisition strategy can be modified to prevent wait
cycles in more conservative variants of 2PL.

Conservative 2PL

Conservative 2PL (C2PL) (also called Static 2PL) is a variant of 2PL that prevents
deadlocks and all transaction aborts by requiring locks to be preclaimed. C2PL assumes
the knowledge of the read set and write set a priori for each transaction. These sets are
then used to acquire all of the locks for all the variables each transaction might access
throughout its execution before the transaction invokes the first operation of any kind,
on any variable. If all the locks could be acquired, the transaction proceeds to execute its
operations. However, if any of the locks could not be acquired, the transaction acquires
none of the locks, but instead queues up to wait. Whenever a lock is released, waiting
transactions are notified, and they each re-try to acquire all of the locks, following the
same procedure and either proceed to execute their operations in case of success, or end
up waiting again. We give the pseudocode of an implementation of C2PL in Fig. 4.2.
We give an example of a C2PL history in Fig. 4.5. Here, T} executes two consecutive
writes on z and y. Before executing the first write, it acquires locks for both variables,
which is successful, since all locks are initially unlocked. Meanwhile T; attempts to execute
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1 proc start(Transaction T;) {
2 ASet; <+ O
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1 proc start(Transaction T;) {
2 ASet; <+ O

3} 3}

4 proc read(Transaction T;, Var z) { 4 proc read(Transaction T;, Var z) {
5 if owner(lk(z)) # T; 5 if owner(lk(z)) # T}

6 lock lk(z) — R 6 lock lk(z) — R

7 ASet; + ASet; U {z} 7 ASet; + ASet; U {z}

8 vV T 8 v T

9 if shrinking 9 return v

10 for y € ASet;: finished(y) 10}

11 if mode(lk(z)) = R 11 proc write(Transaction T;, Var z, Value v) {
12 unlock 1k(y) 12 if owner(1k(z)) # T;

13 return v 13 lock lk(z) - W

1} 14 if owner(lk(z)) = T; and mode(lk(z)) # W
15 proc write(Transaction T;, Var z, Value v) { 15 convert 1lk(z) - W

16 if owner(1k(z)) # Tj 16 if sti(z) = L

17 lock lk(z) —» W 17 z < sti(z)

18 if owner(lk(z)) = T; and mode(lk(z)) # W 18 ASet; < ASet; U {z}

19 convert 1lk(z) - W 19 T4 v

20 if sti(z) = L 20 return ok;

21 z < st;(z) 21}

22 ASet; < ASet; U {z} 22 proc commit(Transaction T3) {
23 T4 v 23 for x € ASet;

24 return ok; 24 unlock 1k(z)

25 25 return C;

26 proc commit (Transaction T3) { 26 }

o7 for x € ASet; o7 proc abort(Transaction T3) {
28 if owner(lk(z)) = T; 28 for z € ASet; {

29 unlock 1k(z) 29 if sti(z) # L

30 return C; 30 z + st;(z)

31} 31 unlock 1k(z)

32 proc abort(Transaction T;) { 2 )

33 for z € ASet; 33 return A;

34 if owner(1k(z)) = T; { 34}

35 if sti(z) # L

36 z <+ st;(z)

37 unlock 1k(z)

38 ¥

39 return A;

20}

Figure 4.6: S2PL. Figure 4.7: R2PL.

a write on x. Hence, it also attempts to acquire locks for all the variables in its write set.
This fails, since T; holds the lock for z, so T} begins waiting. Then, T; executes its last
write, releases its locks on = and y, and notifies all waiting transactions, i.e. 7}. Then, T}
can attempt to acquire all its locks again. Since this is successful, T} proceeds to execute
its operations.

Since waiting transaction never holds any locks, they do not participate in a wait
dependency cycle, which means C2PL transactions never deadlock (see [12]). Since dead-
locks are the only cause of aborts in B2PL, C2PL also completely eliminates aborts.

Since C2PL admits a subset of histories admitted by B2PL, C2PL is also (strict)
serializable. However, C2PL does not satisfy any stronger properties, since it is possible
for transactions to read from live transactions and commit out of order.

Even though C2PL does not involve forced aborts, it can easily be extended to the
arbitrary abort model, by providing an abort operation and keeping “clean” backup
copies of variables just like in B2PL.

Strict 2PL

Strict 2PL (S2PL) is a variant of 2PL that abandons early release in favor of stronger
properties. Specifically, S2PL behaves like B2PL, but write locks are never released until
the transaction commits or aborts. We give the pseudocode in Fig. 4.6 (compare with
Fig. 4.1). As a result no transaction ever reads from another live transaction. Hence, as
demonstrated in [91], S2PL satisfies strictness.

We show an example of an S2PL history in Fig. 4.8. Here, transaction 7; executes
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start; ri(z) =0 w; (y)1— ok; tryC; — C;
i © ¢ ?
¢ lock 1k(z) = R | lock 1k(y) — W | unlock 1k(y)
unlock 1k(z)
T start; w;(z)1 ,— ok; w;(y)2 + — ok; tryC; — Cj
o———— ¢ - - - - - - - — - - - - - — o
J lock 1k(z) = W lock 1k(y) = W

Figure 4.8: An example S2PL history.

start; ri(z)—0 w;(y)1— ok; tryC; — C;
;O
¢ lock 1k(z) = R lock 1k(y) = W ? unlock 1k(z)
unlock 1k(y)
T start; w;(z)1 g% ok; w;j(y)2— ok; . tryC; — C;
PN o SN i
J lock lk(z) — W lock 1k(y) = W

Figure 4.9: An example R2PL history.

a read on z, followed by a write on y. The transaction acquires the appropriate locks
before each operation execution. After executing the write operation T; determines it
will not acquire further locks, so it can start releasing locks. The only lock T; can release
immediately is 1k(z) which it acquired in read mode. T; can only release the remaining
lock 1k(y) on commit, since it was acquired in write mode. In effect, transaction 7; must
wait until 7; commits before accessing y, although it may access  much sooner.

It is possible for S2PL transactions to deadlock. In order to prevent deadlocks in strict
executions, the S2PL can use the same approach to acquiring locks as C2PL, in effect
creating a variant of 2PL we will refer to as conservative strict 2PL (CS2PL). CS2PL is
strict like S2PL, does not deadlock, and, in effect, never aborts, like C2PL. By analogy
to CA2PL, we can create CAS2PL, a variant of CS2PL that allows arbitrary aborts.

Rigorous 2PL

Rigorous 2PL (R2PL, also known as strong strict 2PL) is another variant of 2PL which
releases all locks at commit time (or during abort) in order to satisfy the property
rigorousness. We give the pseudocode in Fig. 4.7 (compare with Fig. 4.6).

Since locks are released only at the end of a transaction, if some transaction 7; exe-
cutes any operation op; on z after some other transaction 7} executes its own operation
op; on z, then T; commits or aborts between op; and op,. Hence, trivially, R2PL satisfies
rigorousness. However, just as with S2PL, deadlocks are not prevented in R2PL.

We show an example of an R2PL history in Fig. 4.9. The history is analogous to
that in Fig. 4.8, with the exception that T; does not release any locks before it commits.
Hence T must delay all of its operations until after 7; is already finished.

As with S2PL, R2PL allows deadlocks, but can be extended to prevent them by
preclaiming locks. Hence, conservative rigorous 2PL (CR2PL) and conservative aborting

rigorous 2PL (CAR2PL) variants of R2PL can trivially be derived.

Object-based 2PL

Even though 2PL algorithms are designed specifically for variables, their pessimistic
approach and in-place modifications make them suitable for the homogeneous object
model as they are. In addition, if object interfaces are known, there is a proposition in
[12] of extending the lock system to a more complex one, where each operation in an
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object’s interface uses a different lock, and a table of lock compatibility is defined. This
would allow the TM to be applied in an extended homogeneous object model with more
operation types and more complex semantics.

Adapting the 2PL algorithms to the heterogeneous object model requires that all
operations are treated as writes and all locks are treated as exclusion locks.

Distributed 2PL

2PL algorithms can be easily used in distributed contexts using the control flow model of
transaction execution. No modifications to the algorithm are required for that, although
various auxiliary modules, like deadlock detection may require a comprehensive overhaul
with respect to their non-distributed counterparts (see e.g. [12]). In that case conservative
variants of 2PL are best suited for distributed environments.

4.1.2 Versioning Algorithms

Versioning algorithms [96, 97] are a family of pessimistic distributed transactional con-
currency control algorithms. The algorithms were initially designed with communicating
processes or network services in mind [100], but apply to transactional memory operating
in the heterogeneous object model.

In general, versioning uses two version counters to determine whether a given transac-
tion can be allowed to access a particular shared object, or whether the access should be
deferred to avoid conflicts. The intuition behind how these counters work is by analogy
to how the teller may manage a queue in a bank: customers who come into the bank
retrieve a ticket with a number from a dispenser and wait before approaching the teller
until their number is called. Meanwhile the teller increments the number as she finishes
serving each consecutive customer. In the analogy, each customer is a transaction, and
the teller is an object. The number in the customer’s hand is his version for that ob-
ject, and it is being compared against the number that is currently being served by the
teller—the object’s version.

Basic Versioning Algorithm

Basic Versioning Algorithm (BVA) [100, 96] is a straightforward implementation of ver-
sioning concurrency control. This mechanism is key in our further discussion, so we
explain it in detail below. We also provide the full pseudocode of BVA in Fig. 4.10.
Whenever a transaction T; starts, it retrieves a private version pv,([x]) for every
object [z] in its access set ASet;. The access set is assumed to be known a priori.
The values of private versions received by consecutive transactions are assigned from a
sequence of consecutive positive integers. The sequence is generated using a global version
counter gv([z]), which is initially 0 and is incremented with each starting transaction
that has [z] in its access set. The assignment is also guarded by a global lock so that it
is done atomically. In effect, transactions’ private versions have the following properties:

I no two transactions have the same private version for any shared object,
IT if transaction T; started before T; and they both access [z], then pv,([z]) <
pvj( [z]),

II given two transactions T; and T}, if pv,;([z]) < pv;([z]) then for any shared object
[y| that both transactions plan to access, pv,([y]) < pv,([y]), and
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1 proc start(Transaction Tj) { proc start(Transaction T3) {
2 lock 1k —» W 2 lock 1k —» W
3 for [x] € ASet; { 3 for [x] € ASet; {
o gi([z)) « gvl(fzl) + 1 o gi([z)) ¢ gel(fz)) + 1
pv;([z]) < gu([=z]) s pvi([z]) « gv([z])
6 6 )
7 unlock 1k‘ 7 unlock 1kY
8} 8}
9 proc access(Transaction T;, Object [z], Method m) { 9 proc access(Transaction T;, Object [z], Method m) {
0 wait until pv,([z]) - 1 = 1v([z]) 0 wait until pv,([z]) - 1 = 1v([z])
11 execute m on [x| returning v 11 execute m on [x| returning v
12 return v 12 aci([z]) + aci([z]) + 1
13} 13 if aci([z]) = supr;([z])
14 proc commit(Transaction Tj) { 14 :release (T, [ac )
15 for [xz] € ASet; { 15 return v
16 wait until pv,([z]) - 1 = 1v([z]) 16}
17 :dismiss(Ty, [z]) 17 proc commit(Transaction T;) {
8} 1 for [z] € ASet; {
19 return C; 19 wait until pv,([z]) - 1 = ltv([z])
20 } 20 :dismiss(T;, [z])
21 proc :dismiss(Transaction Tj;, Object [z]) { 21 1tv([z]) < pv;([z])
2 1v([z]) < pv,([z]) 2 }
23 } 23 return C;
24 }

25 proc :release(Transaction Tj, Object [z]) {
o 2w(lz)) = pridfe)

27

28 proc :dismiss(Transaction Tj, Object [z]) {
20 if pv,([z]) - 1 = v([z])

o (el = )

31

Figure 4.10: BVA. Figure 4.11: SVA.

IV if T; started before T; and no other transaction started in between the two, and
both plan to access [z], then they have consecutive private versions for [z], i.e.

pv;([z]) = pv;([z]) - 1.

BVA uses private versions to maintain order when accessing shared objects via objects’
local versions. That is, each shared object [z] has its own local version counter, denoted
lv([x]), which is always equal to the private version of such transaction 7; that most
recently finished using the object, i.e. out of all transactions that have [x] in their access
set, T} is the one that committed most recently. Specifically, when T; does commit, it
writes its own private version for [z to the local version counter of [z |. This is enclosed in
the dismiss procedure. In the context of versioning algorithms, whenever any transaction
writes its private version to a local version counter for some object, we say the transaction
released the object.

Once Tj releases [z], T; will execute no further operations on [z], so some other
transaction can safely start calling methods on the object. BVA determines which trans-
action gets to access the object next by simply selecting the transaction with the next
consecutive private version, i.e. such 7; whose pv,([z]) — 1 = pv,([«]). Thus, invari-
ably [z] can be accessed by such T; for which pv,([z]) — 1 = 1v([z]), and no other
transaction. Hence, if some transaction 7; wants to access [z, then it may do so if
pv;([z]) —1 = 1v([z]). We call this condition the access condition. On the other hand,
if T; wants to access [z] and the access condition is not satisfied, then it waits until it is
satisfied. In this way, only one transaction is able to access [z | at any one time. Initially,
all local version counters are set to 0, so a transaction with a private version of 1 can
access a given variable as the first.

An example of how this mechanism works is shown in Fig. 4.12. Here, T; and T}
attempt to access shared object [z] at the same time. Transaction T; starts first, so
pv;([z]) =1, and T} starts second, so pv;([z]) = 2. Since initially 1v([z]) = 0, T} is not
able to pass the access condition and execute an operation on [z] when it tries to, so it
waits. On the other hand, T; can pass the access condition pv,([z]) — 1 = 1v(Jz]) and
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start; m;([z])—0 tryC, — C;
i © ?
pv,([z]) 1 | 1v([2]) 1
T start; m;([z]) ,—0 tryC; — Cj
e S —o0
J pv;([z]) 2 ?1v([z])=1 1v([z])+2
starty, mi([y])—0 tryC, — Ck
Tk Se 0
pv(fy)) 1

Figure 4.12: An example BVA history.

it executes an operation on [x] without waiting. Once T; commits, it sets 1v([z]) to 1,
so T; then becomes capable of passing the access condition and finishing executing its
operation on [z]. In the mean time, transaction T} can proceed to access [y] completely
in parallel.

Given that transactions access objects in an order defined by private versions, and
since private versions are assigned to transactions both atomically and from a monotonic
sequence of integers, BVA avoids deadlocks. In addition, BVA trivially never aborts. In
[96, 97] the author shows that BVA is serializable (as isolation). In fact, BVA preserves
real-time order and executes all potentially conflicting transaction sequentially, so it is
straightforward to see that it is rigorous, as well as opaque.

While BVA is a strong algorithm, serializing conflicting transactions makes for a low
degree of parallelism in produced histories. Hence, the author of [96, 97] introduces two
variants of BVA that execute conflicting transactions partially in parallel: the Supremum
Versioning Algorithm (SVA) and the Routing Versioning Algorithm (RVA). Out of these,
RVA uses a different system model where operations on shared objects are executed com-
pletely asynchronously (without reading the result of the operation) and may complete
even after the transaction commits. These assumptions do not fit the TM system model,
so RVA is not directly applicable. On the other hand, eliminating asynchrony trivially
reduces RVA to BVA. Hence, in further discussion we concentrate on SVA alone.

Supremum Versioning Algorithm

Supremum Versioning Algorithm (SVA) [100, 97] is a variant of BVA that uses an early
release mechanism to execute concurrent conflicting transactions partially in parallel.
That is, SVA transactions use the versioning concurrency control mechanism from BVA,
but transactions sometimes are able to release shared objects before the transaction com-
mits. After executing an operation on some shared object, a transaction uses additional
a priori knowledge to decide whether it will perform any further actions on that object.
If it can be safely determined that no further operation will occur, the transaction re-
leases the object instantly. We explain the mechanism below and give the pseudocode in
Fig. 4.11.

Each SVA transaction has a priori knowledge of suprema: it knows at most how
many times it will attempt to access each object throughout its execution. We denote
transaction T;’s supremum for object [z] as supr,([z]) and it takes the value of either a
positive integer (if supremum were 0, the object would not be in the access set of T;), or
infinity w. If the supremum is unknown, setting it to w guarantees correct execution (since
only an upper bound is required). However, the supremum must never be lower than the
actual number of accesses. Suprema can be derived and specified for each transaction
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start; m;([z]) =0 tryC; — Cj
i (o} % O
pv;([z])+1 | ac;([z])+1
supr;([z])=1 ?aci([z]) =supr;([z])
1v(lzf) 1
T start; mzq@),,,,, ;—>D tryC; — Cj
J pv;([2]) 2 ?1v([z])=1

Figure 4.13: An example SVA history (early release).

manually by the programmer, but it can also be derived and automatically supplemented
by a type checker [96]. In addition, as part of our research we propose a static analyzer
and precompiler that can generate this information (see Chapter 9).

Given specified suprema, each SVA transaction T; counts operation executions on each
variable as they occur using an access counter ac;([x|). When the access counter reaches
the supremum for [z], ac;([z]) = supr,;([z]), the transaction knows that no further
accesses on [z| will occur afterward as part of T;. Therefore, the transaction releases the
object immediately (by writing its own private version for [z] to the local version counter
of [z]). This allows, another transaction T}, such that pv,([z]) —1 = 1v([z]) = pv,([z])
to execute operations on [z] right away, without waiting for T; to commit. On the other
hand, if a transaction does not reach the supremum for some object [x], the object will
be released during commit, as in BVA.

The early release mechanism is illustrated further in Fig. 4.13. Here, transactions T;
and T} both try to access [x]. Like in Fig. 4.12, since T}’s private version for [z is lower
than 7}’s, the former manages to access [z first, and T waits until [z] is released. T;
has upper bound information: it knows that it will execute at most one operation on [z |
(supr,([z]) = 1). The number of operations executed on [z] is tracked using counter
ac;([z]). After T; executes its operation on [z, it increments ac;([x]). Since this causes
ac;([z]) to reach the supremum supr,([z]), i.e. ac;([z]) = supr,;([z]) = 1, T; releases
[x] immediately after it accesses [z |, rather than waiting to do so until commit. In effect,
T can access [x] earlier. T} is even capable of committing before T;.

Given that SVA acquires versions during the start of the transaction, and since these
versions are used later on to defer operations, SVA is sometimes mistaken for an imple-
mentation of a 2PL algorithm with early release: B2PL and C2PL. We contrast the three
algorithms in Fig. 4.14. We use the variable model in this comparison for all algorithms
(although SVA is still agnostic with respect to operation semantics). The histories shown
there contain three transactions each (executing the same transactional code). Transac-
tion T; starts first and attempt to first read z and then write to z. Transaction T} starts
second and attempts to first update the value of y twice, and then read the value of z.
Finally, transaction 7} starts last and attempts to read the value of y. The history in
Fig. 4.14a is an SVA execution of those three transactions, the history in Fig. 4.14b is a
B2PL execution, and Fig. 4.14c represents a C2PL execution.

The SVA execution is the most parallel of the three, since each variable is “acquired”
and released individually, so Tj can first release y and still attempt to gain access to
z afterward. On the other hand, B2PL does not allow T} to release any locks until it
entered the shrinking phase. Hence in B2PL T} cannot release y until the transaction
acquires the lock for z. Thus, the time at which 7T releases y is delayed, which causes T},
to execute longer than it does under SVA.

Whereas, C2PL attempts to acquire all locks for its read and write set before the
first operation on any shared variable, which causes T} to wait until 7; releases = before
executing operations on y. This introduces additional delays in comparison to SVA. SVA
prevents those delays since the access condition to each variable is checked independently
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Figure 4.14: A comparison between SVA, B2PL, and C2PL histories.
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of other variables. The only point at which SVA causes transactions to wait is during the
start operation itself.

In contrast to BVA, since two transactions can commit in reverse order to the order
in which they accessed some shared object [x], and since SVA’s early release permits a
situation where a transaction will read from another live transaction, then SVA cannot
satisfy opacity, rigorousness, recoverability, or strictness. Since an SVA transaction can
read from a live transaction that reads from another live transaction, SVA is not live
opaque. Nevertheless, SVA guarantees strict serializability, as shown in [97]. It also never
deadlocks or aborts, just as BVA. We discuss the safety properties of SVA further in
Section 7.1.

4.2 Distributed Optimistic TM

Given that distributed systems often face similar concurrency control problems as (non-
distributed) multiprocessor, several distributed TM systems were proposed. Broadly, two
models of distributed TM are used. Transactional memory can be replicated on several
network nodes and locally-scoped transactions can be used by processes to consistently
and reliably propagate any changes of shared data to all the replicas (see e.g., [14, 18, 49,
99]). In the other model distributed transactions can be employed to atomically access a
subset selected from a larger set of objects. Each object is accessible from a single location
only (objects can be replicated, if necessary, but this is an orthogonal issue). This type
of TM includes HyFlow2 [86], a state-of-the-art distributed TM system implemented
in Scala on top of the Akka library. HyFlow2 implements the optimistic Transactional
Forwarding Algorithm (TFA) [67, 69] and operates in the data flow model. HyFlow [68]
is an earlier version of HyFlow2, implemented in Java on top of Aleph and DeuceSTM
and included control flow and data flow concurrency control algorithms, including TFA
[67] and DTL2 (a distributed version of TL2 [21]). HyFlow was compared with HyFlow?2
in [86] and was shown to perform worse then its successor. We examine DTL2 and TFA
more closely in Sections 4.2.1 and 4.2.2, respectively.

In addition to TM systems, it is worth mentioning distributed transactional database
and data store systems. Distributed transactions are successfully used where require-
ments for strong consistency meet wide-area distribution, e.g., in Google’s Percolator [61]
and Spanner [17]. Percolator supports multi-row, ACID-compliant, pessimistic database
transactions that guarantee snapshot isolation. This is a much weaker guarantee than ex-
pected from TM systems. Another drawback in comparison to DTM is that writes must
follow reads. Spanner provides semi-relational replicated tables with general purpose dis-
tributed transactions. It uses real-time clocks and Paxos to guarantee consistent reads.
Spanner requires some a priori information about access sets and defers commitment,
but aborts on conflict. Irrevocable operations are banned in Spanner. Spanner transac-
tions provide snapshot isolation and external consistency (akin to real-time order), much
weaker properties than considered sufficient in DTM.

4.2.1 Distributed Transactional Locking 11

Distributed Transactional Locking II (DTL2) is an optimistic TM concurrency control
algorithm implemented within HyFlow [68]. It is a distributed version of Transactional
Locking II (TL2) [21], a quintessential optimistic (non-distributed) TM concurrency
control algorithm that operates in the variable system model and uses locks for synchro-
nization and a global version clock to determine whether operations are valid.
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5} 57}

6 proc read(Transaction T;, Var z) { 58 proc read(Transaction T;, Var z) {
7 RSet; « RSet; U {z} 5o if mode(lk(z)) = W or wversion(z)) > rv;
g if mode(lk(z)) = W or wersion(z)) > rv; 60 return abort (T;)

9 return abort(T};) 61 return x

10 if z € WSet;: // bloom filter 62 }

11 return buf;(z) 63 proc commit (Transaction T3) {

12 else 64 return C;

13 return z 65

14} 66 proc abort(Transaction Tj) {

15 proc write(Transaction T;, Var z, Value v) { 67 return A;

16 WSet; +— WSet; U {z} 68 }

17 buf;(z) + v

18 return ok;

19}

20 proc commit(Transaction T3) {

21 // Lock the write set.

22 for x € WSet; in order

23 lock 1lk(z) = W

2« if 3z € WSet;: owner(lk(z)) # T;
25 return abort (T};)

26

21 // Increment and fetch global version clock.
28 lock 1k9 — W

29 gv<4— gv + 1

30 wu; — gv

31 unlock 1k7

32

3 // Validate the read set.

3 if rw + 1 # wo,

35 if 3z € RSet;:

36 mode (1k(z)) = W or wversion(z) > wv;
37 return abort(7;)

3 // Commit and release.
20 for x € WSet; in order {

41 z < buf;(z)

42 version(z) < wv;
43 unlock 1lk(z)
a4}

125 return C;

46 }

47 proc abort(Transaction Tj) {
28 for = € WSet;
49 if owner(lk(z)) = T;

50 unlock 1k(z)
51 return A;
52 }
(a) R/W Transactions. (b) R Transactions.

Figure 4.15: (Distributed) TL2.
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We show the full pseudocode of DTL2 in Fig. 4.15 and explain it in detail below.
DTL2 allows transactions to run in either a read/write (R/W) mode or a read-only (R)
mode. This can be determined a priori or all transactions can run as read-only and
switch to R/W mode if they attempt to execute a write. The pseudocode in Fig. 4.15a
defines the behavior of transactions in R/W mode, and Fig. 4.15b describes the behavior
of R transactions. Since the algorithm operates in the CF model, we feel that the details
where transactions and variables are located, and how data is moved between nodes can
be omitted in the description of the algorithm without confusion.

Each shared variable z in the system has an associated version counter version(x)
and an exclusive lock 1k(z). In addition, there is a single global version clock gv. The
global clock is accompanied by a global lock 1k9, that has to be acquired to modify gv.

In both R/W and R mode, as transaction 7; starts, it makes a transaction-local copy
of gv and stores it as its read version rv;. The read version is later compared against
variable versions in order to determine whether the transaction’s view is consistent. L.e.,
when a read-only transaction T; attempts to read z, it updates its read set and then
checks whether version(z) > rv;. If that is the case,  was modified since T; started, so
T; cannot continue without viewing an inconsistent state of the system. Hence T; aborts
in such a case. Similarly, T; aborts if some other transaction locked 1k(z), since that
means that some other transaction will commit changes to z and T; will eventually have
to abort anyway.

When a R/W transaction T; attempts to read z, the procedure is similar, but it may
be the case that T; already wrote to . DTL2 transactions writes update a transaction-
local buffer buf;(z) (for some T;, z) and only apply the changes to the actual variable
during commit. In the original TL2 specification this buffer is implemented as a redo
log instead. Hence, if T; reads z after previously writing to it, it is sufficient to simply
retrieve the value from a buffer. Hence, transactions read their own writes.

Once a read-only transaction reaches commit, it is already consistent, and it has no
buffered writes to transfer to variables, so it simply finishes execution. On the other hand,
any R/W transaction T; must apply the changes in its buffers to variables in a consistent
manner during commit. Thus, first T; locks its entire write sets. This is done using some
prescribed order to prevent deadlocks. If any lock cannot be instantly obtained, T; aborts.

Otherwise, the transaction increments the global version clock, to indicate that the
state of the system is changed. The incremented value is stored as the transaction’s
write version wv;. Next, T; validates its read set. l.e., if any other transaction modified
any of the variables in T;’s read set, then T; is inconsistent and must abort. Hence,
the transaction checks whether version(z) > rv; for each z in its read set and acts
accordingly. Similarly, it also checks whether such variable’s locks are locked, which would
indicate that some other transaction is in the process of committing, so T; also aborts.
If rv; + 1 = wv,, there are no concurrent transactions that could interfere with 7T;’s read
set, in which case read-set validation may be skipped. Once the read-set is deemed valid,
T; proceeds to apply changes from its buffers to the variables in its write set. Once the
changes were applied to some variable z, its version is updated to ww;, and its lock is
released. Once this is done for all variables in the write set, the transaction is complete.

We show an example of three concurrent transactions executing under DTL2 in
Fig. 4.16. All three transactions read 0 from the global clock as they start, so they
all have a read version of 0. Then, transaction T; executes a read operation on z, which
validates correctly and returns 0, the current value of z. Then, transaction T} executes
a write on z. It adds z to its write set and puts the written value 1 into the local buffer
buf;(z). Since this value is stored locally, the next read operation in T; simply retrieves
it from the buffer, without having to retrieve it from the original location. Meanwhile
T; performs its own write on z, writing 2 to its own local buffer—since this only has
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Figure 4.16: An example DTL2 history.

transaction-local effects, the operation does not interfere with concurrent transactions.

Eventually transaction T} attempts to commit. It locks its write set by locking 1k(z)
and increments the global clock to 1. This means that the transaction’s write version
equals 1. Since the read version and write version are consecutive values, ti means no
other transaction attempted to commit since T} started, so no validation is required.
Hence, T; updates z to 2, and increases its version to its write version: 1. Transaction T}
commit successfully. Meanwhile transaction T; also attempts to commit, but the commit
procedure must wait until the locks are released, so T; waits until 7} commits. Then, T;
checks the version of all the variables in its read set, i.e. for z. Since T} set the version
of £ to 1 during its own commit, and since that is larger than T;’s read version of 0,
T; is forced to abort at this point and restarts later on as T; (we only show T}’s start
operation).

Once T; finished committing, T} executes a write. Since that write is performed on
the buffer, the transaction continues execution despite T; committing and invalidating
T}, view of the system. However, once T} attempts to commit a similar situation occurs
as with T;—T}’s read version 0 is lower than the version of z, so T}, must also abort and
retry later on (not shown).

In [52] the authors demonstrate that TL2 is opaque, so, by extension, DTL2 is also
opaque. We conjecture that DTL2 is rigorous. DTL2 also never deadlocks, but it aborts
on conflict, which may cause issues with irrevocable operations.

In its basic form, DTL2 is designed for relatively low contention systems, where con-
flicts occur only sporadically. Otherwise, it is prone to suffer from high transaction abort
rates. Hence modules are typically added to DTL2 to control the execution of transac-
tions. Specifically, a contention manager can be employed that postpones re-execution of
transactions that aborted due to conflicts.

4.2.2 Transaction Forwarding Algorithm

Transaction Forwarding Algorithm (TFA) [67, 69] is an optimistic distributed TM con-
currency control algorithm. TFA was specifically designed for the data flow model, where
each shared object is migrated to immobile transactions in order for the transaction to
execute operations on the object. In addition, the model specifies that only one copy of
each object exists in the system, as opposed to objects being replicated (although caching
through buffers is used). TFA can be applied to homogeneous objects and variables—we
use the latter model in our discussion. The basic modus operandi of TFA resembles that
of DTL2, however TFA specifically defines how shared objects are migrated within the
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system and uses a mechanism akin to Lamport timestamps [55] in place of DTL2’s global
version clock. This change introduces a lot of additional complexity into the algorithm,
but in return TFA transactions have a lower chance of aborting during presumed con-
flicts that would not cause inconsistency. For the same reason, TFA also does not have a
single point of failure. We describe the algorithm in detail below and provide an adapted
pseudocode in Fig. 4.17.

When a TFA transaction starts, it copies the value of the local clock lc, for node L,
the node the transaction starts on, to a transaction-local variable wv;. This is the trans-
action’s write version used to determine whether there were modifications to variables
observed by the transactions since it started execution.

When transaction T; reads a variable z, it first checks whether that variable it wrote
to z already. If that is the case, then, just like in DTL2, the transaction uses the copy
of the variable made during the write to perform the read. Otherwise, the transaction
first loads the variable into the buffer using the procedure :open, and then uses that to
perform the read. The behavior is similar in the case of writes as well. In order to write
to a variable, the transaction first buffers the variable using :open, and then performs
the write on the buffer.

Apart from loading a variable to the buffer, the :open procedure performs all the
necessary early validation required to both read and write a variable. These are analogous
to DTL2, but use distributed clocks rather than a single global clock. Specifically, given
variable z located on node R, before z is buffered, the transaction moves its local clock
lce forward to match lcg. Then, after z is buffered, if z is a local variable, then the
transaction simply checks whether any other transaction updated the variable since the
transaction started. If such an interruption occurred, then z has a higher version then the
transaction’s write version. This forces T; to abort. Otherwise, the operation can proceed.
If the variable is not local to the transaction, then the transaction catches up its local
clock lc, with the variable’s lcr . Then, the transaction attempts to catch its write version
to match lcg, if necessary. However, before doing so, it checks if any of the variables in
its read set were invalidated, i.e. if any of their versions are ahead of their respective
local clocks. If this is true for any variable in the read set, then the transaction aborts.
If all the steps were successfully performed, the transaction can perform operations on
the buffered copy of .

The commit operation is analogous to DTL2. Initially, the objects in the write set are
locked according to some global order. The commit fails, if this cannot be done. When
all the locks are acquired, the read set is validated by checking each variable’s version
against the transaction’s write version and making sure that the locks are unlocked. If
validation succeeds, then no other transaction wrote to any of the variables in the read
set, or is currently committing on them. In the next step, the transaction’s local clock is
incremented. Then, all the variables in the write set are moved from their original location
onto the transaction’s node and updated using buffered values. In this way, the “master”
copy of each object is located wherever the most recent committed transaction that
updated it resides. Once the variable is updated, the transaction’s version is updated to
the transaction’s write version, to reflect that a new fresh value of the variable is present.
Finally, each variable’s lock is released and the commit is successfully completed.

We show an example execution of TFA in Fig. 4.18. This example is analogous to
the DTL2 execution in Fig. 4.16, with a few exceptions. TFA checks version consistency
before each write, irrespective of the fact that it is performed locally. This allows TFA to
find potential conflicts earlier, and abort a transaction sooner, which wastes less work.
More importantly, in the TFA execution T} is not forced to abort, as opposed to the
DTL2 example. That is because using the system of local clocks instead of a global
clock allows transactions to catch up to the existing state of the system. Thus, even if



1 proc start(Transaction T3) {

2 RSet; «— &

3 UWSet; «— @

4 L + location(T;)

5 wv; < lcg

6}

7 proc read(Transaction T;, Var z) {
& RSet; « RSet; U {z}

9 if z € WSet;

10 return buf;(z)

11 if :open(T;, z) = false
12 return abort(T;)

13 else

14 return buf;(z)

15}

16 proc write(Transaction T;, Var z, Value v) {
17 WSet; < WSet; U {z}
18 if :open(T;, z) = false

19 return abort(T})
20 else {

21 buf;(z) «+ v

22 return ok;

23}

24}

25 proc commit(Transaction T3) {

26 // Lock the write set.

27 for x € WSet; in order

28 lock lk(z) — W

29 if 3z € WSet;: owner(1k(z)) # T;
30 return abort(T})

31

2 // Validate the read set.

33 if Jxz € RSet;:

34 mode (1k(z)) = W or wversion(z) > rv;
35 return abort(T})
36

37 // Increment and fetch global version clock.

38 L < location(T})

39 lep < lep +1

40

4 // Commit and release.
22 for x € WSet; {

43 R + location(x)

44 if L# R

45 move z from R to L
46 z < buf;(z)

a7 version(z) < lcg

48 unlock 1k(z)

49}

50 return C;

51}

52 proc abort(Transaction Tj) {
53 for x € WSet;
54 if owner(lk(z)) = T;

55 unlock 1lk(z)
56 return A;
57}

58 proc :open(Transaction Tj, Var z) {
59 L < location(T};)

60 R < location(x)

61

62 // Retrieve object.

63 if ler < leg

64 ler + leg

65 copy x from R to L as buf;(z)
66

7 if L =R {

68 // Open local object.

69 if version(z) > wv;

70 return false

71 else

72 return true

73} else {

74 // Open remote object.
75 if leg < ler

76 lep + ler

77 if wv; < ler {

78 if Jy € RSet; and Q = location(y):
79 version(y) > lco
80 return false

81 wv; — ler

82 ¥

83 return true

84}

85 }

Figure 4.17: TFA.
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start; ri(z) =0 w; ()2 ok; tryC, —A; start
o G —— - — -~ DA AAAAAAAAANAAST— — —
wv; <0 buf;(z) 0 buf;(z)+2 4 lock 1k(z) = W j_'l w1
?version(z) > wv; ?version(z) > wv; ?version(z) > location(T})
unlock 1k(z)
start; w;(z)1— ok; ri(z)—1 (PtryC]- [=Cj
P S N Ay, D A
wv; <0 WSet; < WSet; U {z} 71 € WSet; lock 1k(z) = W unlock 1k(z)
buf;(z) <0 buf;(z) <0 L1
?version(x) > wv; T2
version(z)+1
move z to location(7})
starty, wg(2)3— ok tryC, — Cy
k (e, O
wug <0 Yep < ler Plep 2
Plep,=1
bufy(z)<3
?woy < ler

?version(z) > leg
wvy, +—version(z)

Figure 4.18: An example TFA history.

transaction 7 updated the version of z to 1 during commit, it also adjusted its local
clock to 1. Then, when transaction T} writes to x it can adjust its own local clock to
T;’s local clock, since it did not actually view or modify any variable prior to this point.
Then, T}, uses T;’s local clock to validate z’s version, rather than a stale value read from
a global clock. Given these adjustments, T}, is able to validate correctly during commit.

The authors show in [69] that TFA is opaque. In addition, just like DTL2, TFA does
not deadlock. On the other hand it also aborts on conflict, which may cause issues with
irrevocable operations.

4.3 Non-distributed Pessimistic TM

A great majority of TM concurrency control algorithms are optimistic. Nevertheless, a
handful of partially or fully-pessimistic non-distributed TM algorithms were recently in-
troduced. In [92] the authors introduced the idea of irrevocable transactions. The system
can execute irrevocable transactions concurrently to ordinary transactions, but irrevoca-
ble transactions always execute one at a time and never abort. This makes the execution
safe for irrevocable operations within these transactions, and prevents wasted effort due
to aborting long-running transactions. However, such transactions severely limit the level
of parallelism of which the system is capable. In [62], the authors introduce a partially
pessimistic TM where read-only transactions use multiversioning to prevent aborts. How-
ever, the maintenance of multiple versions introduces a high overhead, and read/write
transactions aborted nevertheless. In [9], the authors propose a system with irrevocable
single-version read-only transactions that used locking for each read variable. However,
this introduces overhead that makes the system outperformed by optimistic TMs. While
not exactly a pessimistic system per se, Twilight STM [13] is an interesting system that
relaxes isolation to allow conflicting transactions to reconcile using so-called twilight code
at the end of the transaction and commit nevertheless. If a transaction reads a value that
was modified by another transaction since its start, twilight code can re-read the changed
variables and re-write the variables the transaction modified to reflect the new state, al-
lowing the transaction to commit anyway. Even though the operations are re-executed,
as per optimistic concurrency control, it means that transactions that execute twilight
never need to abort.

In [56] the authors propose pessimistic non-distributed TM that defers read/write
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transactions to execute sequentially (as in [92]) but allows parallel read-only transac-
tions. The read/write transactions maintain consistency by waiting for concurrent read-
only transactions to complete, before making any updates in memory. This idea was
improved upon in Pessimistic Lock Elision (PLE) [1], where a number of optimizations
were introduced, including encounter-time synchronization, rather than commit-time. We
examine these algorithms in Sections 4.3.1 and 4.3.2 respectively.

SemanticTM [10, 26] is another pessimistic non-distributed TM. Rather than using
versioning or blocking, transactions are scheduled and place their operations in bulk into
a producer-consumer queues attached to variables. The instructions are then executed
by a pool of non-blocking executor threads that use statically derived access sets and
dependencies between operations to ensure the right order of execution. The scheduler
ensures that all operations of one transaction are executed consistently and in the right
order. We examine the system further in Section 4.3.3.

4.3.1 Matveev and Shavit’s Pessimistic TM

In [56] the authors propose a fully-pessimistic TM algorithm for multicores operating
in the variable model. The algorithm is loosely based on TL2 [21] and the work on
irrevocable transactions in [92], and uses the quiescence mechanism from [20]. The result
is a TM algorithm that executes its RW transactions in series and prevents them from
writing to location that may be read by read-only transaction. In effect, the authors
introduce a fully-pessimistic non-aborting commit-time TM. As far as we can tell the
authors never named their algorithm: they refer to it in the original paper as well as
later work simply as pessimistic TM (PTM) and go out of their way to indicate this is
not its proper name. We will therefore refer to the algorithm as Matveev and Shavit’s
Pessimistic TM, which we abbreviate as MS-PTM. We describe the operation of the
MS-PTM algorithm in detail below and give the pseudocode in Fig. 4.19.

Note that the pseudocode indicates memory fences, processor instructions that ex-
plicitly order the execution of instructions in a block of code. These are necessary for the
original application of MS-PTM in local multi-core processors. We omit such low-level
details in the other descriptions of algorithms in this dissertation, but retain them here
for verisimilitude with the original proposition in [56].

The synchronization in MS-PTM is based on a global version counter gv, transaction-
local version counters rv;, and each variable’s z version version(z), much like TL2. Also
like TL2, MS-PTM specifies two types of transactions: RW and R. R and RW transac-
tions are synchronized by blocking reads and deferring writes to commit via buffering.
The mechanism is based on the global version counter. During start each transaction
reads the global version and stores it as its read version. Write operations do not block,
they simply store the written value in the buffer. A read operation in any transaction
will block until the transaction’s read version differs from the variables version. If the
read version is equals to the variable’s version, this means that some RW transaction is
committing. During the commit procedure RW transactions increment the global value
twice: once at the outset, and once at the finish. R transactions that started after a
RW transaction started committing will therefore be blocked until the RW transaction
finishes committing. R transactions that started before the RW transaction started com-
mitting will not be blocked by the RW transaction. Instead the RW transaction will not
start writing from buffers into memory until all such R transactions finish execution.
Specifically, RW transactions use the quiescence mechanism which makes them wait un-
til all other transactions whose read versions are lower than the current global version
update their read version to be equal or greater than the global version. R transactions
can meet this condition when they update their version to infinity during commit.



1 proc start(Transaction T;) {
2 waiting; < true

3 memory fence

4  while true {

5 if waiting; = false {

6 TV < gv

7 memory fence

8 return ok;

9 ¥

10 if mode(1k9) # W {
11 try lock 1k9 — W
12 if owner(1k9) = T; {
13 waiting; < false
14 TV < gv

15 memory fence

16 return ok;

17 ¥

18 ¥

19 F

20 }

21 proc read(Transaction T;, Var z) {
22 if x € WSet;:

23 return buf,(z)

24 if progress; = false

25 if version(z) = rv; {
26 wait until rv; # gv
27 progress; <— true

28

29 return x

30}

3t proc write(Transaction T;, Var z, Value v) {
32 WSet; < WSet; U {z}

33 bufy(z) < v

34 return ok;

35 F

36 proc commit(Transaction T3) {
37 // Synch and update versions.
38 if rv; is even

39 wait until rv, # gv

20 for T € WSet;

41 version(x) <— rv; + 1

43 // First global version increment.
4 gV gv + 1

45 TV 4 gv

46 memory fence

48 // Signal next writer.
a9 if 3T;: waiting; = true

50 waiting; < false

51 else

52 unlock 1k9

53

54 // Quiescence.

ss  for VTj: j # i

56 if rvy; < gv

57 wait until rv; > gv
58

59 // Write the write set.
60 for x € WSet;

61 z < buf;(z)
62 memory fence
63

62 // Second global version increment.
65 gV <4— gv + 1
66 return C;

67

(a) RW Transactions.

68 proc start(Transaction Tj) {

69 TV; < gV

70 memory fence

71}

72 proc read(Transaction T;, Var z) {
73 if progress; = false

74 if version(z) = rv; {
75 wait until rv; # gv
76 progress; < true

77 }

78 return x

79}

80 proc commit(Transaction T;) {
81 TYv; < o0
s2 return C;

83 }

(b) R Transactions.

Figure 4.19: MS-PTM.
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Figure 4.20: An example MS-PTM history.
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Figure 4.21: An example PLE history.



66

4 Ezisting Algorithms

In addition to this mechanism, once a transaction was blocked and managed to pro-
ceed, it cannot be blocked. This is because transactions are blocked during read only
if they start during an RW transaction’s commit. Thus, if a transaction was blocked
and released, the transaction that blocked it had already committed, and any future
RW transactions will wait until this transaction commits before modifying the variables.
There is no purpose to checking versions in such cases, so a transaction-local variable
progress; is used instead.

Only one RW transaction is allowed to execute operations at a time. Specifically,
during transaction start, the first RW transaction acquires a global lock, which causes
any other RW transactions to have to wait. However, instead of releasing the lock during
commit, the transaction “passes” the lock to the next waiting transaction by signaling
it using the transaction-local waiting; variable. The lock is released only if there are no
more waiting RW transactions.

We give an example execution under MS-PTM in Fig. 4.20. Here, two RW transactions
T3, T, and one R transaction T} execute concurrently. T} starts first, acquires the global
lock and receives the read version of 1. Hence, when T; attempts to start later on,
it cannot, since it cannot acquire the global lock, so it waits until one of two things
happen: either the lock is released, or the currently running RW transaction releases T;
by falsifying the waiting; variable. Meanwhile, T; executes writes on variables z and .
The values are not written to memory, but are stored in the buffer. This does not prevent
the R transaction T} from executing a read on x, which reads the value 0, without taking
the RW transaction’s operations into account. When T finishes executing operations it
proceeds to commit. It updates the versions of each variable in its write set and increments
the global version. Then it sets waiting; to false, which releases T; to act. This means,
that soon after Tj invokes tryC';, T; can execute its own write on z using the buffer. It
can also execute a local read on z, since it will simply read the value from said buffer.
However, when T; tries to perform a non-local read on y it encounters a situation where
the variables version is equal to its read version, meaning that another RW transaction is
in progress, and it must wait until that transaction finishes committing and increments
the global version further. However T; cannot commit yet either. It must first perform
quiescence and wait for concurrent R transactions to finish. Thus it waits until T} sets
its read version to infinity. T} does so during commit. Then, 7} can finish its commit by
writing its write set to memory, and incrementing the global version. This, then allows T;
to finish its read and eventually commit. Since T; is the last RW transaction, it unlocks
the global lock.

The authors do not discuss the properties of MS-PTM in [56], but since RW transac-
tions wait for concurrent R transactions, no transactions ever abort, and the algorithm is
commit-time, then on intuition MS-PTM is opaque. MS-PTM is non-aborting and does
not deadlock.

Given the amount of communication among transactions that MS-PTM requires, the
algorithm is not trivial to implement in distributed environments. An implementation
would require either that a given client be able to poll other clients for the status of their
transactions, or a global structure to coordinate. In the first case, communication among
clients is likely to be costly (especially in geo-distributed systems) or even impossible
(e.g. due to firewalls). The second solution introduces a major bottleneck and a single
point of failure. Thus, a more comprehensive re-tooling is required.

4.3.2 Pessimistic Lock Elision

The Pessimistic Lock Elision (PLE) [1] is a non-distributed pessimistic TM algorithm.
It is an adaptation of MS-PTM to the encounter-time update approach, rather than
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1 proc start(Transaction T3) { 30 proc start(Transaction Tj) {
2 lock 1k¥ 31 rv; < update

3 writer < T; 32 memory fence

4 TV 4 gv 33 TV < gv

5 memory fence 34  memory fence

6 return ok; 35 return ok;

7} 36}

s proc read(Transaction T;, Var z) { 37 proc read(Transaction T;, Var z) {
9 return z 38 if version(z) < rv;

10} 39 return z

11 proc write(Transaction T;, Var z, Value v) { 20 T « writer

1 if st;(z) = L a1 if stj(z) # L

13 sti(z) <+ 42 return st;(z)

14 version(zx) < rv; + 1 23 else

15 T4 v 44 return x

16 return ok; 45

17 } 46 proc commit(Transaction T;) {
18 proc commit(Transaction T3) { 47 TV 4— 00

19 g4 gv + 1 48 return Cj

20 memory fence 49}

21

2 // Quiescence.

23 for VTj: i

24
25
26
27
28

wait until rv; # update
wait until rv; > gv

unlock 1k9Y
return Cj;

29 }

(a) RW Transactions. (b) R Transactions.

Figure 4.22: PLE.

commit-time. As such, PLE can be used interchangeably with locks in such contexts as
hardware lock elision and as a fallback for optimistic hardware transactional memory. It
also confers a performance advantage over MS-PTM. We describe the operation of the
algorithm below and give the pseudocode in Fig. 4.22.

When RW transactions execute, values are written directly to memory, however, prior
to executing the write transaction, 7T; will append the old value of the variable z in
buffer st;(z). This will allow concurrent R transactions to access either the current or
the old version of the variable. Basically, an R transaction chooses the current version
if it is consistent with its read version version(z) < rv;, or if the RW transaction did
not write anything yet. Otherwise, the buffered version is retrieved from the currently
running RW transaction. Reads in RW transactions execute unconditionally using the
current version, since no other transaction can interfere with the variable. When a RW
transaction commits, it increments gv, waits for executing R transactions via quiescence,
and releases the global lock. The extra wait step in quiescence is included to ensure the
order of operations on the global version and read version counters.

We give an example execution under PLE in Fig. 4.20. Here, two RW transactions
T;, T, and one R transaction T} execute concurrently. T} starts first, so it acquires the
global lock, receives the read version of 0, and names itself the active writer. Transaction
T; attempts to start a moment later, but cannot do so, since the global lock is taken, so
it waits. However transaction T} starts unimpeded and reads z. Since the version of z
is consistent, it reads the memory location directly. Then, T} executes two consecutive
writes, one on z and one on y. Both variables are therefore not in version 1, and Tj
maintains their old version in its buffer. When T}, executes a read on y next, the current
version of y is not consistent with the transaction’s read version, so it reads it from
T;’s buffer. Next, T; attempts to commit, so it increments the global version. However
it cannot proceed, since there is an extant R transaction, so it waits until T} commits,
which it detects by monitoring T}’s read version. Once T}, commits it sets its read version
to infinity, which allows T} to commit. Once T); commits it releases the global lock, which
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allows T; to begin execution.

The authors do not discuss the algorithm’s safety in [1], but since RW transactions
execute sequentially and wait for R transactions on commit, no transactions ever abort,
R transactions read a stale but consistent state of the system, then on intuition PLE is
opaque. PLE is non-aborting and does not deadlock.

4.3.3 SemanticTM

SemanticTM [10, 23] is a unique wait-free, fully pessimistic (abort-free) TM system with
instruction-level parallelism operating in the variable model.

SemanticTM maintains a list associated with each shared variable in the system,
which we will refer to as an ezxecution queue, where transactions place operations to be
executed along with the operation’s dependencies. Dependencies are relations between
operations in a single transaction that determine the order in which the operations must
be executed. For instance, given a write operation which writes value v to variable z,
the operation cannot proceed until v is computed: if v is computed by executing another
operation, let’s say a read on y, then the write depends on the read. The authors define a
number of dependency types, including ones for arithmetic, conditional expressions, and
loops, as well as ones for operations on shared variables.

Given such execution queues, SemanticTM employs a pool of independent worker
threads. Each worker thread randomly (but uniformly) selects a variable, and tries to
execute the first operation in the queue, provided its dependencies allow it. This process
is done without blocking, which means workers execute in a wait-free fashion. This may
cause several workers to execute the same instruction in parallel, but it does not violate
safety.

The consistency of operation executions is assured in SemanticTM due to the order in
which operations are placed onto execution queues. First, each operation m; on variable
z from transaction T; is placed onto the execution queue for z after all of the operations
on z in T; on which m; depends. Second, given any two transactions 7; and T, for each
variable z, if any of T;’s operations precede any of T}’s operations in the execution queue
for z, then all of T;’s operations precede all of T};’s operations in the execution queue for
any variable.

SemanticTM does not specify how these conditions are satisfied by the system, indi-
cating rather that the operations are to be loaded onto execution queues statically. This
would imply that either the entire code of all transactions in the system, as well as the
order in which they execute is known a priori. We consider this an impractical assump-
tion for general purpose TM, especially with an outlook towards distributed systems. To
our best knowledge, this is also a much stronger assumption than is made by any other
TM.

The alternative is to use a run-time scheduler that maintains a proper order among
operations from different transactions for each variable’s execution queue. In order to
do so, the scheduler itself requires some form of synchronization. In the simplest case,
a global lock can be used to prevent one transaction from enqueueing operations while
another is in progress. This, however, implies that (potentially) conflicting transactions
are serialized by the scheduler. A more subtle scheduler may be implemented, effectively
using some transactional “front end” to enqueue operations to be executed by the Se-
manticTM “back end.”

The authors of [23] propose that SemanticTM is opaque (although the proof is not
given) assuming an appropriate scheduler. Regardless, SemanticTM is trivially serializ-
able. Assuming a static or wait-free scheduler, SemanticTM is also wait-free. Finally, no
transaction ever aborts, but irrevocable operations can be executed multiple times if two
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or more processors simultaneously access the same execution queue.

4.4 Optimistic TM with Early Release

A number of TM systems employ early release to improve parallelism. One example is
Dynamic STM [43], the system that can be credited with introducing the concept of early
release in the TM context. Dynamic STM allows transactions that only perform read op-
erations on particular variables to (manually) release them for use by other transactions.
However, it left the assurance of safety to the programmer, and, as the authors state,
even linearizability cannot be guaranteed by the system. The authors of [83] expanded
on the work above and evaluated the concept of early release with respect to read-only
variables on several concurrent data structures. The results showed that this form of
early release does not provide a significant advantage in most cases, although there are
scenarios where it would be advantageous if it were automated.

Dependency Aware STM [65] (DATM) is another noteworthy system with an early
release mechanism. DATM is an optimistic multicore-oriented TM based on TL2 [21],
augmented with early-release support. It allows a transaction 7; to write to a variable
that was accessed by some uncommitted transaction 77}, as long as T; commits before
T;. DATM also allows transaction 7; to read a speculative value, one written by T); and
accessed by T; before T; commits. DATM detects if T; overwrites the data or aborts, in
which case T; is forced to restart. We examine DATM in detail in Section 4.4.1.

4.4.1 Dependence Aware TM

Dependency Aware TM (DATM) [65, 66] is a non-distributed commit-time optimistic
TM concurrency control algorithm based on TL2 but extended with an early release
mechanism. Specifically, DATM tracks dependencies between transactions and either
passes uncommitted data between them, or delays some of them to prevent their conflicts
from causing inconsistencies. In effect, conflicting transactions can be committed. We
explain the details of the dependency awareness mechanism below.

DATM specifies three kinds of dependences between transactions. If transaction T;
writes some variable z and then 7} reads z afterward, then they are in a write-read
dependence, denoted W; — R;. If transaction T; reads some variable = and then T} writes
to z afterward, then they are in a read-write dependence, denoted R; — Wj. If transaction
T; writes to some variable z and then T} writes to z afterward, then they are in a write-
write dependence, denoted W; — W;. If there is any dependece from T; to T; we say Tj
depends on T;.

DATM transactions respond to these dependences using either forwarding or ordering.
If two transactions 7; and T are in W; — R;, then the value written by 7; is forwarded
to T; when T} performs a read. This means that if T; previously wrote some new value to
z (and stored it in buffer buf;(z), since DATM is commit-time), then when T executes
a read operation on z it does not read the value of z directly from memory, but instead
reads the value of z from buf,(z). If two transactions 7; and T} are in any relation
W;— R;, W;—Wj or R; —Wj, then the transactions are ordered: T; cannot perform its
commit until 7; commits or aborts (in particular it cannot write its write set to memory).
In addition, if T; aborts and W; — R, then this forces T to also abort (thus, a cascading
abort occurs).

We show an example of overwriting and forwarding in Fig. 4.23. Here transaction T;
executes a read and a consecutive write on variable x. The write causes the value of z
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(d) Deadlock due to dependence cycle.

Figure 4.23: Examples of DATM histories.
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to be buffered in buf,(z). Then, transaction T; performs a read on z. The transactions
use a sequence associated with = to determine that a dependence W; — R; was created.
On the basis of this information, T; forwards x to T}, meaning 7} grabs the value of z
directly from buf;(z). Afterward, T; attempts to commit. However, since the dependence
W;— R; exists, DATM defers T}’s commit until T; commits. During commit 7; updates
the memory using the values it stored in the buffer. Finally, once T; finishes its commit
procedure, T} can finish to commit as well.

DATM buffers values read by each transaction T; from each variable z in a separate
buffer which we indicate st;(z), which means that repeated reads do not need to engage
in forwarding or re-reading the value from memory. Transactions also read its own written
value by moving it from buf;(z) to st;(z), making local reads always consistent. On the
other hand overwriting, repeated writes by T; to some variable x causes any transaction
for which there is a W; — R; dependece to be forced to abort. A doomed flag is set for
the dependent transaction in such cases, which every transaction checks during commit.
Since DATM does not have any mechanism to determine a priori whether forwarding a
variable will cause an abort or not, overwriting cannot be avoided. We show an example
of overwriting in Fig. 4.23b.

DATM is able to prevent deadlocks due to dependence cycles on the same variable.
If such a cycle appears, the transactions detect it by scanning the sequence of transac-
tions accessing the variable, and one of the transactions aborts. However, two DATM
transactions can deadlock during commit if they conflict on multiple variables (they can
enter a dependence cycle). We give examples of a prevented and undetected deadlock in
Fig. 4.23c and 4.23d, respectively.

The authors demonstrate in [65] that DATM is serializable (conflict serializable).
Since transactions can read from live transactions, it should be evident, that DATM
does not guarantee properties such as strictness, rigorousness, TMS1 and TMS2, and
opacity. Since commits of conflicting transactions are ordered in accordance to the order
of accesses of variables, and a W; — R; dependence induces a rollback in the transaction
that reads from an aborting transaction, then DATM guarantees recoverability. Since
aborting transactions can cause transactions that depend on them to also abort, DATM
is not cascadeless.

4.5 Summary

We present a summary of the characteristics of the examined algorithms in Table 4.1.
There, the approach column indicates whether a given TM uses the optimistic or pes-
simistic approach to concurrency control. The progress column indicates whether the
algorithm is blocking or wait-free. Here we describe SemanticTM as wait-free with an as-
terisk, to indicate the assumptions placed on the scheduler. The updates column specifies
whether the algorithm is encounter time or commit-time. The aborts column specifies
what scenarios can cause a transaction to abort, be it a deadlock, a conflict, a cascad-
ing abort, or an arbitrary abort (invoked manually by the programmer). The a priori
column indicates what information must be known to each transaction before it starts:
some TMs require that the read set and the write set be known, while others require
only a union of the two, while other still place additional constraints. The objects col-
umn indicates how the object model must be defined for the TM to operate. Note that
algorithms that operate in a heterogeneous model can be used with homogeneous and
variable models without modification, but they will not optimize with regards to read
operations. Similarly, TMs operating in the homogeneous model can be used in the vari-



Algorithm Approach Progress Updates Aborts A priori Objects Deadlock Safety Early release Irrevocable
B2PL pessimistic  blocking encounter-time on deadlock %] any yes strict serializable yes abortable
C2PL pessimistic  blocking encounter-time abort-free RSet, WSet any no strict serializable yes correct
S2PL pessimistic  blocking encounter-time on deadlock (%] any yes strict reads abortable
R2PL pessimistic  blocking encounter-time on deadlock %] any yes rigorous no abortable
CS2PL pessimistic  blocking encounter-time abort-free RSet, WSet any no opaque reads correct
CR2PL pessimistic  blocking encounter-time abort-free RSet, WSet any no opaque no correct
CAS2PL pessimistic  blocking encounter-time arbitrary abort RSet, WSet any no opaque reads user abortable
CAR2PL pessimistic  blocking encounter-time arbitrary abort RSet, WSet any no opaque no user abortable
BVA pessimistic  blocking encounter-time abort-free ASet heterogeneous no opaque no correct
SVA pessimistic  blocking encounter-time abort-free ASet, suprema heterogeneous no strict serializable yes correct
TL2/DTL2  optimistic blocking commit-time on conflict %] variable no opaque no abortable
TFA optimistic blocking commit-time on conflict %] homogeneous  no opaque no abortable
MS-PTM pessimistic  blocking commit-time abort-free %] variable no opaque no correct
PLE pessimistic  blocking encounter-time abort-free %] variable no opaque no correct
SemanticTM pessimistic ~ wait-free* encounter-time abort-free ASet, dependencies variable no opaque no repeatable
DATM optimistic blocking commit-time on overwriting, @ variable yes conflict yes abortable
deadlock, and serializable

cascade

Table 4.1: Summary comparison of discussed TM algorithms.
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able model. On the other hand, algorithms marked as any operate in the variable model,
but can be trivially lifted to any of the other models. The deadlock column indicates
whether a deadlock can occur (at all) in this algorithm. The safety column indicates
the strongest safety property or consistency condition satisfied by the transaction. The
early release column indicates whether the algorithm allows conflicting transactions to
simultaneously use the same shared object, e.g. by releasing a lock before committing.
Some algorithms allow this only with respect to objects that they only read. Finally, the
irrevocable column indicates how the algorithm handles the execution of irrevocable oper-
ations. Such an operation may be subject to aborts or repeated execution without aborts,
which is incorrect behavior. We differentiate between aborts caused by the concurrency
control algorithm and those caused by the transaction’s programmer—if the transaction
elects to abort arbitrarily, aborting irrevocable operations is the programmer’s wish, and,
therefore, correct behavior.

Properties for TM with Early Release

Note that despite there being some strong safety properties that allow early release like
VWC, live opacity, and elastic opacity, the TM algorithms that use the early release
technique do not satisfy them, but instead satisfy only variants of serializability, which
are relatively weak. The stronger properties cannot be satisfied by these TM algorithms
because of the stringent and, we submit, impractical requirements they make with respect
to abortability of transactions that employ early release. On the other hand, the behavior
of these algorithms differs greatly. For instance, 2PL and SVA do not allow overwriting to
occur in aborted transactions, while DATM does. Since these differences are not expressed
by safety properties the algorithms satisfy, we conclude that there is a lack of adequate
TM safety properties that can regulate and describe the behavior of transactions with
early release.

Applicability to Distributed TM

Among the algorithms presented, a number can be used in distributed systems. These
include two-phase locking algorithms, versioning algorithms, DTL2 and TFA. These al-
gorithms are either designed specifically for the distributed context, or were successfully
implemented in such systems. Out of these, versioning algorithms use a global locking
structure, which is problematic for scalability in distributed systems, since all clients will
have to contact a single network node. Nevertheless, the global lock can be replaced by
a more comprehensive locking scheme using the knowledge of a priori access sets (we
propose one in Chapter 6). Out of these systems TFA is specifically designed to operate
in the DF model, while DTL2, versioning algorithms, and two-phase locking algorithms
fit the CF model.

MS-PTM, PLE, and DATM are less well-suited for distributed systems, since they
use global locking structures, which are a scalability stumbling block in such systems (all
clients communicating with a single lock), and a potential single point of failure. Secondly,
MS-PTM, PLE, and DATM require extensive communication between transactions (e.g.
quiescence). However, communication between clients is impractical in many architec-
tures, since it requires client applications to serve other client applications. Clients may
be geo-distributed, which introduces additional delays, placed behind firewalls, which pre-
vents them from communicating, or have limited processing capability, as in the case of
mobile devices. Hence, in order to apply these algorithms in distributed systems, methods
must be devised for transactions to push the required information to other transactions.
Note that a global structure collecting the required information is not acceptable for the
same reasons as a global lock. Hence, more comprehensive solutions are required.
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An application of SemanticTM in distributed systems is difficult to envision, due to
its requirement for transactional operations to be placed onto executor queues in order.
Assuming that requirement is met, Semantic TM can be used to execute transactional
operations in a distributed system, although its model does not necessarily fit CF nor
DF. On the other hand, meeting the requirement for operation order in executor queues
is unlikely to be met statically, and so, will require a distributed on-line scheduler to be
employed during execution. Such a scheduler is a system whose complexity will match
those of a TM, so we consider SemanticTM not to be applicable to distributed systems
directly.

Note that out of the systems applicable to distributed systems only 2PL (specifically
C2PL) and versioning algorithms provide support for irrevocable operations.



New Properties

In this chapter we introduce last-use opacity, a strong TM safety property that allows
early release, but makes provisions for transaction safety. First we motivate the need
for the property based on our analysis of the existing properties and how they apply
to existing algorithms (Chapter 3). Then we provide an intuition, as well as the formal
definition of the property, which we further explain using numerous examples. Finally, we
provide an in-depth discussion of the scenarios allowed by the property, the implications
for TM consistency in practice, and the relationship between last-use opacity and other
TM safety properties and consistency conditions.

The introduced property allows a small class of inconsistent views to occur, which,
we argue, are relatively harmless in practice, and only occur in a specific system model.
Nevertheless, we follow by introducing a strong version of the last-use opacity property,
which eliminates the inconsistent views altogether at the cost of parallelism. As such, this
property is more generally applicable, but more difficult to enforce. The results presented
in this chapter extend our work in [76, 77, 79].

5.1 Last-use Opacity

The survey of properties shows that, while there are many safety properties for TM with
a wide range of guarantees they provide, with respect to early release they fall into three
basic groups.

The first group consists of properties that allow early release but do not prevent
overwriting: serializability and recoverability. These properties do not regulate what can
be seen by aborting transactions. In effect, they allow any dangerous scenario to occur
with respect to early release, as long as the situation is resolved by aborting offending
transactions. As argued in [33], this is insufficient for TM in general, because operating
on inconsistent state may lead to uncontrollable errors, including crashing the process.

The second group consists of properties that preclude the dangerous situations al-
lowed by the first group. This group includes cascadelessness, strictness, rigorousness,
opacity, markability TMS1, and TMS2. The properties in this group forbid early release
altogether, thus solving all related consistency problems, but making them unusable in
conjunction with the early release technique.
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The third group allows early release but precludes overwriting and reading from
aborting transactions. It includes live opacity, elastic opacity, and VWC. These prop-
erties seem to provide a reasonable middle ground between allowing early release and
eliminating inconsistent views. However, these properties forbid transactions to release
early and abort. As such they can be useful only for TM operating in the commit-only
model, or in TM systems where transactions that release early become irrevocable.

On the other hand the commit-only model limits the applicability of such TMs in
certain contexts, since arbitrary aborts can be a necessary prerequisite for some appli-
cations. For instance, aborts are a necessary part of recovery mechanisms that bring the
TM system to a consistent state as a result of a partial failure. Another example is a
deadlock recovery system, which aborts transactions to eliminate wait dependency cy-
cles. Furthermore, TM systems that provide the programmer access to arbitrary aborts
are more expressive. That is, there are situations where the programmer may want to
withdraw any changes made by a transaction mid-execution. Reverting changes ad hoc
detracts from the readability of the code, and it is usually less efficient. The problem
becomes magnified in distributed TM, where performing an ad hoc abort and compensa-
tion remotely usually comes at a price of extra network communication overhead. Thus,
for DTM and TM systems in the arbitrary abort model, live opacity and VWC are not
useful.

On the other hand, if transactions are allowed to abort in general, but not in the case
of ones with early release, then this results in additional complexity to a TM (see e.g.,
[92]). Moreover, in applications like distributed computing, transaction aborts may be
induced by external stimuli, so it can be completely impossible to prevent transactions
from aborting [74]. In addition, some of those properties also have specific problems that
make them difficult to apply widely in practice. For instance, elastic opacity introduces
unnecessary restrictions on the order of operations within a transaction, while simultane-
ously diverging from the minimal standard set by serializability. Meanwhile, live opacity
arbitrarily precludes transactions that read variables released early from releasing early
themselves.

In summary, properties from the first group are not adequate for any TM and those
from the second group do not allow any form of early release. The third group imposes
an overstrict requirement that transactions which release early be irrevocable. None of
the properties provide a satisfactory, strong safety property that could be used for a TM
with early release in general. Thus, guarantees given by a TM where early release is a
necessary component, but where transactions cannot be prevented from aborting, cannot
be adequately expressed with the existing properties.

5.1.1 Intuition

We present last-use opacity, a new TM safety property that provides strong consistency
guarantees and allows early release without compromising on the ability of transactions
to abort. The property is based on the preliminary work in [76, 77].

The idea of last-use opacity hinges on identifying the closing write operation execu-
tion on a given variable in individual transactions. Informally, a closing write on some
variable is such, that the transaction which executed it will not subsequently execute an-
other write operation on the same variable in any possible extension of the history. What
is possible is determined by the program that is being evaluated to create that history.
Knowing the program, it is possible to infer (to an extent) what operations a particu-
lar transaction will execute. Hence, knowing the program, we can determine whether a
particular operation on some variable is the last possible such operation on that variable
within a given transaction. Thus, we can determine whether a given operation is the
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Figure 5.1: Transactional program with closing write.

closing write operation in a transaction.

Take, for instance, the program in Fig. 5.1, where subprogram P; spawns transaction
T1, and P spawns T5. Let us assume that initially z and y are set to 0. Depending on the
semantics of the TM, as these subprograms interweave during the execution, a number
of histories can be produced. We can divide all of among them into two cases. In the first
case Ty writes 1 to y in line 11 (in P3) and this value is then read by T} in line 4 (in Py).
As a consequence, T7 will execute the write operation in line 5. The second case assumes
that T} reads 0 in line 4 (e.g., because T5 executed line 11 much later). In this case, T}
will not execute the write operation in line 5. We can see, however, that in either of the
above cases, once T executes the write to  on line 3, then no further writes to z will
follow in 77 in any conceivable history. Thus, the write operation execution generated by
line 5 is the closing write on z in 77. On the other hand, the write operation execution
generated by line 3 of P; is never the closing write on z in 73, because there exists a
conceivable history where another write operation execution will appear (i.e., once line 5
is evaluated). This is true even in the second of the cases, because line 5 can be executed
in potentia, even if it is not executed de facto.

Note that once any transaction 7; completes executing its closing write on some
variable z, it is certain that no further modifications to that variable are intended by
the programmer as part of T;. This means, from the perspective of T; (and assuming no
other transaction modifies z) the state of z would be the same at the time of the closing
write as if the transaction attempted to commit. Hence, with respect to x, we can treat
T; as if it had attempted to commit.

Last use opacity uses the concept of a closing write to dictate one transaction can read
from another transaction. We give a formal definition in Section 5.1.2, but, in short, given
any two transactions, T; and Tj, last-use opacity allows T; to read variable z from T} if
the latter is either committed or commit-pending, or, if T} is live and it already executed
its closing write on z. This has the benefit of allowing early release while excluding
overwriting completely. However, last-use opacity does allow cascading aborts to occur.
We discuss the guarantees given by the property in Section 5.1.4 and the implications of
inconsistent views in Section 5.1.5, as well as ways of mitigating them. We compare the
strength of last-use opacity with other properties in Section 5.1.6.

5.1.2 Definition

First, we define the concept of a closing write to some variable by a particular transaction.
We do this by first defining a closing write operation invocation, and then extend the
definition to complete operation executions.

Given program P and a set of processes II executing P, since different interleavings
of II cause an execution &(P,II) to produce different histories, then let HP™ be the set
of all possible histories that can be produced by &(P,II), i.e., H"'I is the largest possible
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set s.t. HEY = {H | H = £(P,11)}.

Definition 20 (Closing Write Invocation). Given a program P, a set of processes I1
ezecuting P and a history H s.t. H |= E(P,11), i.e. H € H, an invocation inv, [w(z)v]
1s the closing write invocation on some variable x by transaction T; in H, if for any
history H' € HE for which H is a prefiv (i.e., H = H - R) there is no operation
invocation inv; [w(z)u| s.t. inv; [w(z)v] precedes inv;[w(z)u] in H'|T;.

Definition 21 (Closing Write). Given a program P, a set of processes 11 executing P
and a history H s.t. H = E(P,II), an operation execution is the closing write on some
variable x by transaction T; in H if it comprises of an invocation and a response other
than A;, and the invocation is the closing write invocation on z by T; in H.

The closing read invocation and the closing read operation are defined analogously.
We call a write invocation or operation that is not closing, a non-closing write invocation
or operation, and so on for read invocations and operations. In transaction diagrams we
mark a closing write operation execution in some history as -©-. Note that an operation
can be the ultimate operation execution in some transaction, but still not fit the definition
of a closing operation execution.

If a transaction executes its closing write on some variable, we say that the transaction
decided on x.

Definition 22 (Transaction Decided on x). Given a program P, a set of processes I1 and
a history H s.t. H = E(P,II), we say transaction T; € H decided on variable x in H iff
H|T; contains a complete write operation execution w;(xz)v— ok; that is the closing write
on .

Given some history H, let TH be a set of transactions s.t. T; € TH iff there is some
variable x s.t. T; decided on x in H. Given any T; € H, a decided transaction subhistory,
denoted H|T;, is the longest subsequence of H|T; s.t.:

a) HTTz contains start; — ok;, and

b) for any variable z, if T, decided on z in H, then H|T; contains (H|T})|z.

In addition, a decided transaction subhistory completion, denoted HTTi, is a sequence S.t.
H|T; = H|T; - [tryC; — C;].
Given a sequential history S s.t. S = H, LVis(S,T;) is the longest subhistory of S,
s.t. for each T € S:
a) if i = j or T} is committed in S and T} <g Tj, then S|T; C LVis(S,T;),
b) if T; is not committed in S but 7} € TH and T; <s T, and it is not true that
T; <u T;, then either S|T; C LVis(S,T;) or not.

Given a sequential history S and a transaction T; € S, we then say that transaction
T; is last-use legal in S if LVis(S,T;) is legal. Note that if S is legal, then it is also last-use
legal (see appendix for proof).

Definition 23 (Final-state Last-use Opacity). A finite history H is final-state last-use

opaque if, and only if, there exists a sequential history S equivalent to any completion of
H s.t.,

a) S preserves the real-time order of H,
b) every transaction in S that is committed in S is legal in S,
¢) every transaction in S that is not committed in S is last-use legal in S.

Definition 24 (Last-use Opacity). A history H is last-use opaque if, and only if, every
finite prefiz of H is final-state last-use opaque.
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Figure 5.2: Early release—last-use opaque history.
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Figure 5.3: Early release to an aborting transaction—last-use opaque history.
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Figure 5.4: Early release with two aborting transactions—Ilast-use opaque history.

Theorem 1. Last-use opacity is a safety property.

Proof. By Def. 24, last-use opacity is trivially prefix-closed.

Given Hp, that is an infinite limit of any sequence of finite histories Hy, Hy, ..., s.t
every Hj in the sequence is last-use opaque and every Hy, is a prefix of Hp41, since each
prefix H; of Hj, is last-use opaque, then, by extension, every prefix Hy of Hy, is also
final-state last-use opaque, so, by Def. 24, H; is last-use opaque. Hence, last-use opacity
is limit-closed.

Since last-use opacity is both prefix-closed and limit-closed, then, by Def. 1, it is a
safety property. O

5.1.3 Examples

In order to aid understanding of the property we present examples of last-use opaque
histories. These are contrasted by examples of histories that are not last-use opaque. We
discuss the examples below.

Early Release on Closing Write

The example in Fig. 5.2 shows T; executing a write on z once and releasing z early to
T;. We assume that the program generating the history is such, that the write operation
executed by T; is the closing write operation execution on z. The history is intuitively
correct, since both transactions commit, and 7} reads a value written by 7;. On the formal
side, since both transactions are committed in this history, the equivalent sequential
history would consist of all the events in 7; followed by the events in 7; and both
transactions would be legal, since T; writes a legal value to  and Tj reads the last value
written by 7; to z. Thus, the history is final-state last-use opaque.
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start; w;(z)1 — ok; tryC; — C;
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Figure 5.5: Early release before closing write—not last-use opaque.
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Figure 5.6: Early release with two aborting transactions before closing write—not last-use
opaque.

Since last-use opacity requires prefix closeness, then all prefixes of the history in
Fig. 5.2 also need to be final-state last-use opaque. We present only two of the interesting
prefixes, since the remainder are either similar or trivial. The first interesting prefix is
created by removing the commit operation execution from 77}, which means Tj is aborted
in any completion of the history. We show such a completion in Fig. 5.3. Still, T; writes
a legal value to z and T; reads the last value written by T; to z, so that prefix is also
final-state last-use opaque. Another interesting prefix is created by removing the commit
operation executions from both transactions. Then, in the completion of the history
both transactions are aborted, as in Fig. 5.4. Then, in an equivalent sequential history
T; would read a value written by an aborted transaction. In order to show legality of a
committed transaction, we use the subhistory denoted Vis, which does not contain any
transactions that were not committed in the history from which it was derived. Thus, if T}
were committed, it would not be legal, since its Vis would not contain a write operation
execution writing the value the transaction actually read. However, since T} is aborted,
the definition of final-state last-use opacity only requires that LVis rather than Vis be
legal, and LVis can contain operation executions on particular variables from an aborted
transaction under the condition that the transaction already executed its closing write
on the variables in question. Since, in the example T; executed its closing write on z,
then this write will be included in LVis for T}, so T; will be last-use legal. In consequence
the prefix is also final-state last-use opaque. Indeed, all prefixes of example Fig. 5.2 are
final-state last-use opaque, so the example is last-use opaque, and, by extension, so are
the examples in Fig. 5.3 and Fig. 5.4.

Early Release on Non-closing Write

Contrast the example in Fig. 5.2 with the one in Fig. 5.5. The histories presented in both
are identical, with the exception that the write operation in Fig. 5.2 is considered to
be the closing operation execution, while in Fig. 5.5 it is not. The difference would stem
from differences in the programs that produced these histories. For instance, the program
producing the history in Fig. 5.5 could conditionally execute another operation on z, so,
even though that condition was not met in this history, the potential of another write on
x means that the existing write cannot be considered a closing write operation execution.
The consequence of this is that while the example itself is final-state last-use opaque, one
of its prefixes is not, so the history is not last-use opaque. The offending prefix is created



5.1 Last-use Opacity 81

start; w; ()1 — ok; tryC, — C;
i © O e}

start; ‘ L ri(z) =1 tryd; — A;
O O

Figure 5.7: Early release to a prematurely aborting transaction—last-use opaque.
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Figure 5.8: Commit order not respected—not last-use opaque.
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Figure 5.9: Reverse commit order in writer transactions—last-use opaque.

by removing commit operations in both transactions, so both transactions would abort in
any completion, as in Fig. 5.6. Here, since T; does not execute the closing write operation
on z, then the write operation would not be included in LVis for T}, so the value read
by T; could not be justified. Thus, T} is not legal in that history, and, therefore, the
history in Fig. 5.6 is not final-state last-use opaque (so also not last-use opaque). Fig. 5.6
represents the completion of a prefix of the history in Fig. 5.5, so Fig. 5.6 not being
final-state last-use opaque, means that Fig. 5.5 is not last-use opaque.

Recoverability

The examples in Fig. 5.7 and Fig. 5.8, show that recoverability is required, i.e., trans-
actions must commit in order. Last-use opacity of the example in Fig. 5.7 is analogous
to the one in Fig. 5.3, since their equivalent sequential histories are identical, as are the
sequential histories equivalent to their prefixes. Furthermore, intuitively, if 7} reads a
value of a variable released early by T; and aborts before T; commits, this is correct
behavior. On the other hand, the history in Fig. 5.8 is not last-use opaque, even though
it is final-state last-use opaque (by analogy to Fig. 5.2). More specifically, a prefix of
the history where the commit operation execution is removed from 7; is not final-state
last-use opaque. This is because a completion will require that T; be aborted, the oper-
ations executed by T; are not going to be included in any Vis. Since T} is committed,
then its Vis must be legal, but it is not, because the read operation reading 1 will not be
preceded by any writes in Vis. Since the prefix contains an illegal transaction, then it is
not final-state last-use opaque, and thus, the history in Fig. 5.8 is not last-use opaque.
On the other hand, the example in Fig. 5.9 shows that the commitment order is not
required for all conflicting transactions, just those with a reads-from relation. Here, the
example is analogous to Fig. 5.8, but T does not read from 7;. This means that T}’s
LVis and Vis will be legal regardless of whether T;’s operations are included or excluded.



82

5 New Properties

start; w;(x)1— ok; tryd; — A;
i © & 0

start; ri(z)—1 w; ()2
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Figure 5.10: Freedom to read from or ignore an aborted transaction—Ilast-use opaque.

start; w;(z)1— ok; w;(2)2— ok; tryC; — C;
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Figure 5.11: Early release with overwriting—not last-use opaque.

Then, given a sequential history equivalent to the example, where T; precedes T}, both
T; and T} in such a history will be legal. Hence the history is final-state last-use opaque.
Then, in all prefixes of the history T; is aborted in the completion, whereas T; may be
either committed or aborted. If T} is committed, then 7; will not be included in Tj’s Vis,
but this does not make Vis illegal, as we pointed out earlier. Similarly, if T} is aborted,
then T; may or may not be included in 7;’s LVis, but this is immaterial with respect to
T;’s LVis being legal. Hence all the prefixes will be final-state last-use opaque as well,
and, in effect, the example is last-use opaque.

Consistent Values

The example in Fig. 5.10 shows that a transaction is allowed to read from a transaction
that eventually aborts, or ignore that transaction, because of the freedom left within the
definition of LVis. Le., transactions 7T} is concurrent to T3, but 7T}, follows 7} in real time.
T; executes a closing write on z, so T} is allowed to include the write operation on in its
LVis. Since T} sees the value written to by that write, T} includes the write in LVis.
On the other hand, T}, cannot include T;’s write in LVis, since T; aborted before T}, even
started, so the write should not be visible to Tj. On the other hand T} is allowed to
include 7Tj in its LVis. T} should not do so, however, since it ignores T} as well as T;
(which makes sense as T} is doomed to abort). Hence T}, reads the value of z to be 0. If
Tj is included in T}’s LVis, reading 0 would be incorrect. Hence, the definition of LVis
allows T to be arbitrarily excluded. In effect all three transactions are correct (so long
as T;j does not eventually commit).

Overwriting

Fig. 5.11 shows an example of overwriting, which is not last-use opaque, since there is no
equivalent sequential history where the write operation in T; writing 1 to « would precede
the read operation in Tj reading 1 from z without the other write operation writing 2
to z also preceding the read. Thus, in all cases T} is not legal, and the history is neither
final-state last-use opaque, nor last-use opaque.
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Figure 5.12: Dependency cycle—not last-use opaque.

Dependency Cycle

Finally, Fig. 5.12 shows an example of a cyclic dependency, where T} reads z from T3,
and subsequently T; reads y from 7). Both writes in the history are closing writes. This
example has unfinished transactions, which are thus aborted in any possible completion
of this history. There are two possible sequential histories equivalent to that completion:
one where T; precedes T; and one where T} precedes T;. In the former case, LVis of T;
does not contain any operations from 773, because T} follows T;. Thus, there is no write
operation on y preceding a read on y returning 1 in 7;’s LVis, which does not conform
to the sequential specification, so T;’s LVis is not legal. Hence, T; is not legal in that
scenario. The former case is analogous: 1};’s LVis will not contain a write operation from
T;, because T; follows T);. Therefore T);’s LVis contains a read on z that returns 1, which
is not preceded by any write on z, which causes the sequence not to conform to the
sequential specification and renders the transaction not legal. Since either case contains
a transaction that is not legal, then that history is not final-state last-use opaque, and
therefore not last-use opaque.

5.1.4 Guarantees

Last-use opacity gives the programmer the following guarantees.

Serializability

If a transaction commits, then the value it reads can be explained by operations executed
by preceding or concurrent transactions. This guarantees that a transaction that views
inconsistent state will not commit.

Lemma 23 (Serializability). Every last-use opaque history is serializable.

Proof. For the sake of contradiction let us assume that H is last-use opaque and not
serializable. Since H is last-use opaque, then from Def. 24 H is also final-state last-use
opaque. Then, from Def. 23 there exists a completion Ho = Compl(H) such that there
is a sequential history Sy st Sy = He, Su preserves the real-time order of H¢, and
any committed transaction in Sy is legal in Sy. However, since H is not serializable,
then from Def. 7 there does not exist a completion He = Compl(H) such that there is
a sequential history SH st. S g = He, and any committed transaction in §H is legal in
Syr. This contradicts the previous statement. O

Real-time Order

Successive transactions will not be rearranged to fit serializability, so a correct history
will agree with an external clock, or an external order of events.

Lemma 24 (Real-time Order). FEvery last-use opaque history preserves real-time order.

Proof. Trivially from Def. 24 and Def. 23a. O
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Recoverability

If one transaction reads from another transaction, the former will commit only after the
latter commits. This guarantees that transactions commit in order.

Lemma 25 (Recoverability). Every last-use opaque history is recoverable.

Proof. Let us assume that H is not recoverable. Then there must be some transactions
T; and T} s.t. T} reads from 7T; and then 7; commits before T;. Such a history will contain
a prefix P where any completion will contain an aborted 7; and a committed 7}, so for
any equivalent sequential history Sy Vis(S w1, ;) will not contain S w|T;. Since T reads
from T; then such Vis(S’ w,T;) will not be legal, so by Def. 23 P is not last-use opaque
and thus, by Def. 24, H is not last-use opaque, which is a contradiction. O

Last-use opacity does not preserve commitment order as defined in Def. 8, but we
consider recoverability sufficient for TM. Note that strong properties like opacity also
deal with commitment order only to the extent of recoverability.

Precluding Overwriting

If transaction 7T} reads the value of some variable written by transaction 7T}, then T} will
never subsequently modify that variable.

Lemma 26 (Precluding Overwriting). Last-use opacity does not support overwriting.

Proof. For the sake of contradiction let us assume that there exists H that is a last-use
opaque history with overwriting, i.e. (from Def. 5) there are transaction T; and T} s.t.:

a) T; releases some variable z early,

b) H|T; contains w;(z)v— ok; and w;(z)v" — ok;, s.t. the former precedes the latter
in H|Ti,
¢) H|T; contains r;(z) — v that precedes w;(z)v' — ok; in H.

Since H is opaque, then there is a completion C' = Compl(H) and a sequential history S
s.t. S = H, S preserves the real-time order of H, and both T; and 7} in .S are legal in S.
In S, either T; <g Tj or T; <g T;. In either case, any Vis(S,T;) or LVis(S,T;) by their
definitions will contain either the sequence of both w;(z)v — ok; and w;(z)v" — ok; or
neither of those write operation executions. In either case, r;(z) — v will not be directly
preceded by w;(z)v — ok; among operations on z in either Vis(S,Tj) or LVis(S,T}).
Therefore, T; in S cannot be legal in S, which is a contradiction. O

Aborting Early Release

A transaction can release some variable early and subsequently abort.
Lemma 27 (Aborting Early Release). Last-use opacity supports aborting early release.

Proof. Let H be the history depicted in Fig. 5.4. Here, T} releases z early to T; and
subsequently aborts, which satisfies Def. 6. Since T; and T} are both aborted in H, H
has a completion C' = Compl(H) = H. Let S be a sequential history s.t. S = H|T;- H|T}.
S vacuously preserves the real-time order of H and trivially S = H. Transaction T; in S
is last-use legal in S, because LVis(S,T;) = H TTi—Whose operations on z are limited to a
single write operation execution—is within the sequentoial spe(:}ciﬁcation of z. Transaction
T; in S is also last-use legal in S, since LVis(S,T;) = H|T;- H|T;—whose operations on z
consist of w;(z)v— ok; followed by r;(z) — v—is also within the sequential specification
of z. Since both T; and T} in S are last-use legal in S, H is final-state last-use opaque. All



5.1 Last-use Opacity 85

1 // invariant: © 2 0 v // invariant: x 2 0
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(a) Abort example. (b) Memory error example.

Figure 5.13: Inconsistent view examples.

prefixes of H are trivially also final-state last-use opaque (since either their completion
is the same as H’s, they contain only a single write operation execution on z, or contain
no operation executions on variables), so H is last-use opaque. O]

Exclusive Access

Any transaction has effectively exclusive access to any variable it accesses, at minimum,
from the first to the final modification it performs, regardless of whether it eventually
commits or aborts.

Lemma 28 (Exclusive Access). Any transaction in any last-use opaque history has ex-
clusive access to variable x between its first and last write to x.

Proof. From Lemmas 23 and 26. O

5.1.5 Inconsistent Views

Last-use opacity does not preclude transactions from aborting after releasing a variable
early. As a consequence there may be instances of cascading aborts, which have varying
implications on consistency depending on whether the TM model allows transactions to
abort programmatically. We distinguish three cases of models and discuss them below.

Commit-only Model

Let us assume that transactions cannot arbitrarily abort, but only do so as a result of
receiving an abort response to invoking a read or write operation, or while attempting
to commit. In other words, there is no tryA operation in the transactional API, as per
the commit-only transactional model. In that case, since overwriting is not allowed, the
transaction never reveals intermediate values of variables to other transactions. This
means, that if a transaction released a variable early, then the programmer did not
intend to change the value of that variable. So, if the transaction eventually committed,
the value of the variable would have been the same. So, if the transaction is eventually
forced to abort rather than committing, the value of any variable released early would
be the same regardless of whether the transaction committed or aborted. Therefore, we
can consider the inconsistent state to be safe. In other words, if the variable caused an
error to occur, the error would be caused regardless of whether the transaction finally
aborts or commits. Thus, we can say that with this set of assumptions, the programmer
is guaranteed that none of the inconsistent views will cause unexpected behavior, even if
cascading aborts are possible. Note that the use of this model is not uncommon (see eg.
[28, 5, 6]).
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start; ri(y)—0 w;(x) -1— ok; ri(z) — -1 tryA; — A;
i © O o)

start; \" rj(z)—-1

T o
Figure 5.14: Last-use opaque history with inconsistent view.

Arbitrary Abort Model

Alternatively, let us assume that transactions can arbitrarily abort (in addition to forced
aborts as described above) by executing the operation tryA as a result of some instruc-
tion in the program. In that case it is possible to imagine programs that use the abort
instruction to cancel transaction due to the “business logic” of the program. Therefore
a programmer explicitly specifies that the value of a variable is different depending on
whether the transaction finally commits or not. An example of such a program is given in
Fig. 5.13a. Here, the programmer enforced an invariant that the value of x should never
be less than zero. If the invariant is not fulfilled, the transaction aborts. However, writing
a value to = that breaks the invariant is the closing write operation execution for this
program, so it is possible that another transaction reads the value of x before the transac-
tion aborts. If the transaction that reads z is like the one in Fig. 5.13b, where z is used to
index an array via pointer arithmetic, a memory error is possible. Nevertheless, the his-
tory from Fig. 5.14 that corresponds to a problematic execution of these two transactions
is clearly allowed by last-use opacity (assuming that the domain of x is Z). Thus, if the
abort operation is available to the programmer the guarantee that inconsistent views will
not lead to unexpected effects is lost. Therefore it is up to the programmer to use aborts
wisely or to prevent inconsistent views from causing problems, by prechecking invariants
at the outset of a transaction, or maintaining invariants also within a transaction (in a
similar way as with monitor invariants). Alternatively, a mechanism can be built into the
TM that prevents specific transactions at risk from reading variables that were released
early, while other transactions are allowed to do so. However, if these workarounds are
not satisfactory, we present a stronger variant of last-use opacity in Section 5.2 that deals
specifically with this model and eliminates its inconsistent views.

Restricted Abort Model

We present a third alternative to aborts in transactions: a compromise between only
forced aborts and programmer-initiated aborts. This option assumes that the tryA op-
eration is not available to the programmer, so it cannot be used to implement business
logic. However, we allow the TM system to somehow inject ¢ryA operations in the code
in response to external stimuli, such as crashes or exceptions and use aborts as a fault
tolerance mechanism. However, since the programmer cannot use the operation, the pro-
grams must be coded as in the commit-only model, and therefore the same guarantees
are given as in the commit-only model.

5.1.6 Strength

We compare the relative strength of last-use opacity with other properties from Chapter 3
and present the result of the comparison in Fig. 5.15. We provide the proofs for each
comparison in Appendix A.
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Figure 5.15: Strength of last-use opacity.

5.2 Strong Last-use Opacity

Even though last-use opacity prevents inconsistent views in the commit-only and re-
stricted aborts models, it does not prevent inconsistent views in the arbitrary aborts
model. Hence, we present a variant of last-use opacity called strong last-use opacity that
extends the definition of a closing write operation to take tryA operations into account,
as if it was an operation that modifies a given variable.

5.2.1 Intuition

Strong last-use opacity behaves in the same way as last-use opacity: it prevents trans-
actions from reading from other live transactions, unless the transaction is guaranteed
not to further modify the variable in question. The difference between last-use opacity
and strong last-use opacity is that the latter considers aborts as operations that modify
the variable as well as write operations, whereas last-use opacity considers only writes.
Thus, strong last-use opacity defines its own variant of a closing write to be any write
operation execution that is not followed by another write on the variable, nor any (vol-
untary) abort. In this way, transactions that can start a cascading abort are prevented
from releasing early. This means that inconsistent views are excluded, while transactions
with early release are prevented from aborting.

5.2.2 Definition

Below we define the concept of a strongly closing write to some variable by a particular
transaction: we first define a strongly closing write operation invocation, and then extend
the definition to complete operation executions.

Definition 25 (Strongly Closing Write Invocation). Given a program P, a set of pro-
cesses 11 executing P and a history H s.t. H = E(P,II), i.e. H € H>Y an invocation
nv;, [w(x)v] is the closing write invocation on some variable x by transaction T; in H, if
for any history H' € HP for which H is a prefix (i.e., H' = H - R) there is no operation
invocation inv’ s.t. inv; [w(z)v] precedes inv' in H'|T; where (a) inv' = inv;[w(z)u] or
(b) inv' = inv; [tryA].

The remainder of the definitions of strong last-use opacity are formed by analogy to
their counterparts in last-use opacity. Note that these definitions do not preclude some
other operation than ¢ryA returning A; after a strongly closing write.

The definition of a strongly closing write operation execution is analogous to that
of closing write operation execution Def. 21. The strongly closing write is used instead
of the closing write to define a transaction stmngly deczded on z in analogy to Def. 22.
Then, that definition is used to define T#, H | ,and H |T by analogy to T, H \T and
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Fig. Description Last-use Strongly

opaque last-use

opaque
5.2 Early release v v
5.3 Early release to aborting transaction v v
5.4 Early release with two aborting transactions v X
5.5 Early release before closing write X X
5.6 Early release with two aborting transactions before closing X X

write

5.7 Early release to a prematurely aborting transaction v v
5.8 Commit order not respected X X
5.9  Reversed commit order in writer transactions v v
5.10 Freedom to read or ignore an aborted transaction v X
5.11 Early release with overwriting X X
5.12 Dependency cycle X X

Table 5.1: Histories satisfied by different variants of last-use opacity.

HTTj. Next, those definitions are used to define SLVis by analogy to LVis. Finally, we
say a transaction T; is strongly last-use legal in some sequential history S if SLVis(S,T;)
is legal. This allows us to define strong last-use opacity as follows.

Definition 26 (Final-state Strong Last-use Opacity). A finite history H is final-state
strongly last-use opaque if, and only if, there exists a sequential history S equivalent to
any completion of H s.t.,

a) S preserves the real-time order of H,
b) every transaction in S that is committed in S is legal in S,

c¢) every transaction in S that is not committed in S is strongly last-use legal in S.

Definition 27 (Strong Last-use Opacity). A history H is strongly last-use opaque if,
and only if, every finite prefiz of H is final-state strongly last-use opaque.

Theorem 2. Strong last-use opacity is a safety property.

Proof. By Def. 27, strong last-use opacity is trivially prefix-closed.

Given Hp, that is an infinite limit of any sequence of finite histories Hy, Hy, ..., s.t
every Hj, in the sequence is strongly last-use opaque and every Hy, is a prefix of Hp41,
since each prefix Hy, of Hy, is strongly last-use opaque, then, by extension, every prefix Hy,
of Hy, is also final-state strongly last-use opaque, so, by Def. 27, Hy, is strongly last-use
opaque. Hence, strong last-use opacity is limit-closed.

Since strong last-use opacity is both prefix-closed and limit-closed, then, by Def. 1, it
is a safety property. O

5.2.3 Examples

In Table 5.1 we show whether the examples in Fig. 5.2-5.12 satisfy strong last-use opacity
alongside last-use opacity. Note that the properties allow and exclude histories in the
same way except for two: Fig. 5.4 and 5.10. In those histories an aborting transaction
releases a variable early, which means that each such transaction’s last write was not, in
fact, strongly closing, even though it was closing. This means that the write cannot be
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Figure 5.16: Strength of strong last-use opacity.

included in SLVis of the other transaction that read from the aborting transaction. In
effect, the reading transactions are not strongly legal, which causes the histories to fail
to satisfy strong last-use opacity.

5.2.4 Guarantees

Strong last-use opacity gives most of the same guarantees as last-use opacity: serializ-
ability, real-time order, recoverability, precluding overwriting, aborting early release (in
the case of forced aborts) and exclusive access. We forgo formal definitions and proofs of
these, since they are analogous to those in Section 5.1.4.

5.2.5 Strength

We compare the relative strength of strong last-use opacity with last-use opacity and
other properties from Chapter 3 and present the result of the comparison in Fig. 5.16.
The proofs are analogous to those for last-use opacity. We also discuss how strong last-use
opacity compares with last-use opacity in various abort models below.

In the commit-only model, the strong last-use opacity property is equivalent to last-
use opacity. This is trivial, since if there there are no tryA operations in any history, then
the definition of a strong closing write invocation is identical to the definition of a closing
write invocation.

In the arbitrary abort model, strong last-use opacity property is strictly stronger than
last-use opacity, because the definition of strong closing writes excludes histories that
last-use opacity allows, including those with cascading aborts initiated by a voluntary
abort.

In the restricted abort model, strong last-use opacity property is also strictly stronger
than last-use opacity, but it is too strong to be applicable to systems with early release.
In the first place, even though the histories that are excluded by strong last-use opacity
contain inconsistent views, these are harmless, because as we argue in Section 5.1.5,
transactions always release variables with “final” values. Since the tryA operation is
not available to the programmer, these final values cannot be reverted by a programmer-
initiated abort, so if the programmer sets up a closing write to a variable in a transaction,
the value that was written was expected to both remain unchanged and be committed.
Hence, it is acceptable for these values to be read by other transactions, even before the
original transaction commits.

Finally, both in the restricted and the arbitrary abort models (but especially the
former), if we assume that a TM system can inject a tryA operation into the transactional
code to respond to some outside stimuli, such as crashes. Such events are unpredictable,
S0 it may be possible for any transaction to abort at any time. Hence, it is necessary to
assume that a tryA operation can be produced as the next operation invocation in any
transaction at any time. In effect, as the definition of strong last-use opacity does not
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Property Application Def. 4 Def. 5 Def. 6 CSerializable
Last-use opacity ™ v X v v
Strong last-use opacity TM v X v v

Table 5.2: Summary of early release support in new properties: Def. 4 is early release support,
Def. 5 is overwriting support, and Def. 6 is aborting early release support.

allow a transaction to release a variable early if a tryA is possible in the future, strong
last-use opacity may prevent early release altogether in the restricted abort model.

In summary, strong last-use opacity is a useful variant of last-use opacity to exclude
inconsistent views in the arbitrary abort model (if workarounds suggested in Section 5.1.5
are insufficient solutions). However strong last-use opacity may be too strict for TMs
operating in the restricted and arbitrary abort models, where it may prevents early release
altogether, depending on whether the injection of a tryA invocation into a transaction’s
code can be predicted or not. Certainly, in systems where aborts are used as a response to
partial failures, strong last-use opacity prevents early release altogether. For that reason,
we believe last-use opacity to be the more practical property.

5.3 Summary

In Table 5.2 we present a summary of the properties discussed in this chapter by analogy
to the summary in Table 3.1. The table informs that a particular property is a TM safety
property and whether it satisfies the definitions for early release support, overwriting
support, and aborting early release support. Finally, the last column informs whether
each property is at least as strong as serializability.

The table shows that both of the introduced properties allow early release without a
requirement for transactions that release early not to abort. Nevertheless the properties
are strong enough to prevent most inconsistent views and make others inconsequential.
Specifically, neither property admits inconsistent views in the commit-only model and
the compromise restricted abort model. Last-use opacity allow a relatively narrow class
of inconsistent views in the arbitrary abort model, which can be mitigated by the pro-
grammer. On the other hand, the strong last-use opacity variant eliminates inconsistent
views in all models, although does so for the price of preventing transactions that in-
voke the tryA operation to release any variable early. We consider strong last-use opacity
and last-use opacity to be practical safety properties for TM systems that employ early
release.



New Algorithms

In this chapter we present new pessimistic TM concurrency control algorithms designed
with distributed systems and irrevocable operations in mind. Pessimistic TM is desir-
able in distributed systems, since aborts cause wasted effort on remote network nodes,
introduce additional network traffic, and complicate the usage of non-transactional mech-
anisms within transactions, like network communication (outside the TM system). The
goal of the algorithms is to achieve a high level of parallelism among conflicting transac-
tions, as well as non-conflicting transactions, to match that of optimistic TM. The goal,
however, should be achieved while maintaining the ability to execute transactions with
irrevocable operations safely, i.e. without aborting or re-executing such operations.

We base the new algorithms on versioning algorithms presented in Section 4.1.2; with
particular emphasis on SVA. We select these, because they are pessimistic, and so do
not cause inconsistencies regarding irrevocable operations. In addition, SVA employs an
early release mechanism that can be used to execute conflicting transactions partially
in parallel, and potentially allow more concise histories than 2PL systems would for
the same programs. They can also be implemented in a fully distributed fashion, with
relatively minor adjustments.

Versioning algorithms have a specific set of limitations that we set out to overcome
in the new algorithms. One drawback of versioning algorithms is that they use a global
lock to acquire versions when transactions start. This introduces a single point of failure
into the system, and limits the potential scalability of the system. The first section of
the chapter introduces the problem in more detail and we provide variants of versioning
algorithms that employ distributed locking schemes in place of the global lock.

Another drawback is that the versioning algorithms do not support an abort operation
(in other words, they operate in the commit-only model). This limits their applicability in
general, and specifically, makes them impractical for some classes of distributed systems,
where faults need to be tolerated. We explain this problem in detail and provide versions
of both BVA and SVA, which we call BVA+R and SVA+R, that operate in the more
general arbitrary abort system model. The algorithms appeared in [74] and [75, 78], where
they were implemented.

Finally, we tackle the biggest disadvantages versioning algorithms have. Since they
were designed for web-service like architectures, where operations on remote objects have
complex, and often unknown semantics, BVA+R and SVA+R (and their predecessors)
operate under the assumption that the operations’ semantics are unknowable, and that
any operation may potentially conflict with any other operation on the same object.
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Hence, they do not allow parallel executions of any type of operation on any type of object.
However, this assumption is overstrict in certain classes of systems, like distributed data
stores, where shared objects act like variables, and have known (and simple) operation
semantics. In such a system model, SVA+R will perform relatively badly in comparison
to other algorithms like 2PL,, DTL2, or TFA, especially, if the ratio of read operations
to write operations in executed transactions is high (see Chapter 8).

Hence, we introduce OptSVA+R, a new algorithm that builds on the versioning and
early release mechanisms of SVA+R, but operates in the variable object model and
recognizes different types of operations, and employs a number of optimizations to execute
them in parallel to conflicting transactions. The approach taken, however, is different from
the one used in TM algorithms like DTL2, MS-PTM, etc., since the optimizations do
not require entire transactions to be read-only to trigger, but they can be employed on
a variable-by-variable basis. In addition, OptSVA+R transactions use additional parallel
threads to achieve local asynchrony, which means transactions effectively execute their
own operations in parallel. We extend this result further by introducing OptSVA-CF+R,
a variant of OptSVA+R that is intended for the homogeneous object system model, which
better fits the distributed environment and the CF model than the variable model. The
OptSVA+R and OptSVA-CF+R algorithms are novel and were introduced in [102, 82].

6.1 Distributed Version Acquisition

Before introducing new algorithms we present a modification we introduced to BVA and
SVA (see Section 4.1.2) that applies to all versioning algorithms.

In versioning algorithms, when each transaction T; starts, it is assigned a private
version pv,([x]) for each object [x] in its access set ASet;. A private version for [z] is
generated from its global version gv([z]), which is initially 0, and is incremented with
each starting transaction. In order to maintain the guarantees of private versions, this
assignment must be done consistently. That is, the transaction must view a consistent
snapshot of global versions for its entire access set, and must update global versions
for its entire snapshot without interference. Hence, versioning algorithms specify that
transactions use a global lock in order to generate and assign their private versions (see
Fig. 4.10-4.11). Each transaction acquires the global lock at the beginning of the start
procedure, and releases it at the end of the start procedure.

However, using a global lock to synchronize the start procedure is overstrict, since
two transactions with disjoint access sets block each other from initializing. This limits
parallelism, as the start procedure is executed in sequence for the entire TM system. If the
algorithm is implemented in a non-distributed TM, the problem may not be evident, since
computations performed within the start procedure are relatively lightweight. However,
the problem is more pronounced when the algorithm is implemented in a distributed
system. First, the assignment of a private version requires network communication, so
executing the procedure is more costly. Thus, if a transaction waits for another to finish
acquiring versions, the wait time is more likely to impact overall efficiency. Second, two
transactions with disjoint access sets are likely executing operations on objects hosted
on completely different network nodes. Making them block each other during the start
procedure limits the overall scalability of the system. Finally, a global lock constitutes a
possible bottleneck which will need to service all of the clients in the system. This has the
dual drawbacks of introducing a single point of failure to the architecture, and detracting
from the scalability of the distributed system.
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1 proc start(Transaction Tj) { i proc start(Transaction T3) {
2 for [x| € ASet; in order 2 for [x| € ASet; in order
3 lock 1k([z]) —» W 3 lock 1k([z]) —» W
4 for [x] € ASet; { 4 for [xz| € ASet; {
s ev([z]) « ev([z]) + 1 s ev([z]) « ev([z]) + 1
o pv,(le))  gv([z)) o v,(le)) « gv([z))
7 unlock 1k([z]) 7 unlock 1k([z])
s ¥ s )
9} 9}
10 proc access(Transaction T;, Object [x|, Method m) { 10 proc access(Transaction T;, Object [x], Method m) {
11 wait until pv,([z]) - 1 = 1v([z]) 11 wait until pv,([z]) - 1 = 1v([z])
12 execute m on [x| returning v 12 execute m on |[x| returning v
13 return v 13 aci([z]) + aci([z]) + 1
14} 1 if acy([z]) = supr;([z])
15 proc commit(Transaction 7T;) { 5 :release(T;, [z])
16 for [xz] € ASet; { 16 return v
17 wait until pv,([z]) - 1 = lv([z]) 17}
18 :dismiss(Ty, [z]) 18 proc commit(Transaction T;) {
19} 19 for [xz] € ASet; {
20 return C; 20 wait until pv,([z]) - 1 = 1tv([x])
21 } 21 :dismiss(Ty, [z])
22 proc :dismiss(Transaction T, Object [z]) { 22 1tv([z]) < pv;([z])
2 1w([z]) « puy([2))
24 } 24  return C;
25 }

26 proc :release(Transaction Tj, Object [z]) {
2 1u(fe)) « pvy([z))

28

29 proc :dismiss(Transaction T;, Object [z]) {
w1t puy([z]) - 1 = 1v([e))

o (fe)) e pry(z))

32}

(a) BVA. (b) SVA.

Figure 6.1: Versioning algorithms with FGL version acquisition.

Fine Grained Locking

Hence, we introduce a fine-grained locking (FGL) scheme for version acquisition. We
substitute the global lock in versioning algorithms with a set of locks such that each lock
1k([x]) is associated with an individual shared object [z ] (located so that location([z]) =
location(1k([z]))). Then, given that transactions in versioning algorithms know their
access sets a priori, during the start procedure each transaction only acquires locks for
the objects in its access set. This allows transactions with disjoint access sets to start
simultaneously. In order to prevent transactions from entering a deadlock, we eliminate
circular waiting by imposing a global order of acquiring locks. The order can be what-
ever, as long as it is uniformly applied among transactions. In the remainder of the
dissertation we assume one of the following locking orders apply: 1k([z]) < 1k([y]) <
1k([z]) or 1k(z) < 1k(y) < 1k(z). In contrast to the global lock solution where the lock
is released once all the private versions are acquired, transactions can release 1k([z])
as soon as they acquire the private version for [z]. In effect, the mechanism employs a
simplified version of C2PL to acquire locks during transaction start. We show the pseu-
docode of BVA and SVA extended with this mechanism in Fig. 6.1. The optimization
does not otherwise impact the execution of the algorithms.

In practice, the overhead of acquiring a lock for each object in the access set may be
nevertheless prohibitive, and must be traded for the advantages it provides. In particu-
lar, a transaction acquiring a private version for [z| must send and receive additional
messages to the remote host to acquire and release 1k([z|). For transactions with large
access sets, this cost may become more apparent. Further, systems with low contention
the cost may be greater than the cost of transactions competing for a global lock.
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1 transaction { transaction {

1

2 execute withdraw(v) on [z] 2 execute withdraw(v) on [z
3 execute get_balance on [z] returning u 3 execute get_balance on [z] returning u
4 if (u < 0) 4 if (u < 0)

abort 5 execute deposit(v) on [z]
6 else 6 else
7 execute deposit(v) on [y] 7 execute deposit(w) on [y]
8} s}

(a) Abort. (b) Compensation.

transaction { 1 transaction {
2 execute withdraw(v) on [z] 2 local_copy « [z]
3 execute get_balance on [z] returning u 3 execute withdraw(v) on [z
a4 if (uw < 0) { 4 execute get_balance on [z] returning u

execute deposit(v + u) on [z] s if (u < 0)
6 execute cancel_loan on [z| 6 [x] < local_copy
7} else 7 else
8 execute deposit(v) on [y] 8 execute deposit(v) on [y]
9} 9}

(c¢) Complex compensation. (d) Manual buffering.

Figure 6.2: Aborting transaction and manual counterparts.

Coarse Grained Locking

The number of messages sent during version acquisition may be reduced if the granularity
of the locks is coarsened. Assuming objects are located on network nodes in groups,
rather than locking individual objects, transactions can acquire a single lock for each
node hosting objects. This reduces the potential parallelism, but requires fewer locks to
be acquired on average. We refer to this variant as the coarse-grained locking (CGL)
scheme, and we show an implementation of BVA and SVA employing this technique in
Appendix B.

In the remainder of the dissertation we employ FGL version acquisition the presented
algorithms, but note that a global lock or CGL version acquisition may be used in its
place to tailor them to particular applications or workloads without impacting their
correctness.

6.2 Versioning Algorithms in the Arbitrary Abort Model

The versioning concurrency control algorithms are pessimistic in nature, and do not need
to abort any transaction to ensure correct execution.

Even so, a way to manually abort transactions is useful to the programmer, since this
makes it easier to cancel a transaction mid-execution without having to manually scrub
its effects. Consider the example transaction in Fig. 6.2a. The logic of the transaction
is that of a bank transfer. The transaction attempts withdrawing some sum from the
account represented by object [z] and deposit the same sum on the account represented
by [y]|. However, the operation cannot proceed, if the balance of account [x| does not
allow for it. Hence, after executing withdraw on [x], the transaction checks the balance
of the account, and aborts it if it fell below 0. The abort operation erases the effects of
the operation completely, and in this way it is very intuitive, as well as expressive.

If an abort operation were not available, the programmer would roll the transaction
back manually. For instance, in Fig. 6.2b we show an example of how this can be achieved
by compensation. If the balance of [z] falls below 0, the programmer simply puts the
amount back into [z] and the transaction finishes. However, if this approach is to work in
general, for every operation m in the the object’s interface M, there must be an operation
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1 proc start(Transaction Tj) { 24 proc abort(Transaction Tj) {

2 for [x| € ASet; in order 25 for [x] € ASet; {

3 lock 1k([z]) —» W 26 wait until pv,([z]) - 1 = 1v([z])

4 for [xz] € ASet; { 27 :dismiss(T;, [z])

5 gv([z]) + gv([z]) + 1 28 if st;([z]) # L

6 pv,; ([z]) « gv([z]) 29 :recover (T, [z])

7 unlock 1k([z]) 0}

8 31 return A;

9} 32 }

10 proc access(Transaction T;, Object [x|, Method m) { 33 proc :dismiss(Transaction T;, Object [z]) {
11 wait until pv,([z]) - 1 = 1v([z]) 3 ([z]) < pv,([z])

12 if sti([z]) = L 3}

13 :checkpoint (T, [z]) 36 proc :checkpoint (Transaction T;, Object [z]) {
14 execute m on [z] returning v v sti([z]) « [z

15 return v 38 t

16} 39 proc :recover(Transaction Tj;, Object [z]) {
17 proc commit (Transaction T3) { w0 [z] < sti([z])

18
19
20
21
22
23

for [z] € ASet; a1}

{
wait until pv,([z]) - 1 = 1v([z])
:dismiss(Ty, [x])
}
return C;

}

Figure 6.3: BVA+R.

or a sequence of operations that compensate for [z|. Furthermore, the programmer must
know the semantics of m sufficiently well to compensate for it. Such semantics may not be
obvious, for instance in Fig. 6.2c we show an example of a bank account object [x] that
sets up a debt if the withdraw operation exceeds the balance. In such a case compensation
might require more than simply depositing the amount back.

A more general solution shown in Fig. 6.2d would be to buffer the object before
executing any of the operations within the transaction and restore it from a copy if
the balance reaches 0. This is a manual implementation of the abort operation by the
transaction. However, note that in a distributed system this requires that the object be
copied across the network to a client. Assuming this is possible at all, the operation is
likely to be expensive. If the operation were to be implemented on the server-side, sending
the entire object via the network would not be necessary.

In addition to expressiveness, the implementation of such features as fault tolerance
with respect to partial failures requires that transactions withdraw their effects and force
the system into a consistent state. Since handling failures is, in practice, an unavoidable
element of distributed systems, then transaction aborts become a mainstay of distributed
TM, pessimistic or otherwise.

Hence, int this section we introduce variants of BVA and SVA that operate in the
arbitrary abort model.

6.2.1 Basic Versioning Algorithm with Rollback

The Basic Versioning Algorithm with Rollback (BVA+R) is an extension of the BVA
algorithm that allows it to operate in the arbitrary abort model. We give the complete
pseudocode of the algorithm in Fig. 6.3 (with new mechanisms highlighted) and discuss
it below.

The modification requires that transactions be provided an abort operation that im-
plements tryA. In BVA| this operation is analogous to the commit procedure: transactions
wait for each object in their access set to become available and release it, and finally the
procedure returns the value indicating abort. However, since BVA is an encounter-time
algorithm, the transaction might have modified each of the objects in its access set, so it
needs to revert the state of the objects to some consistent state from before the transac-
tion’s modifications. Thus, whenever some transaction T; executes an operation on object
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proc start(Transaction T;) { 33 proc abort(Transaction T;) {
for [x] € ASet; in order 4 for [z] € ASet; {
lock 1k([z]) —» W 35 wait until pv,([z]) - 1 = 1tv([z])
for [z] € ASet; { 36 :dismiss(T;, [z])
gv([z]) + gv([z]) + 1 37 if ac;([z]) # 0 and rv;([z]) < cv([z])
pv;([z]) < gv([z]) 38 :recover (T, [z])
unlock 1k9 39 1ev([z]) < pv,([z])
} w0 }
¥ 21 return A;
proc access(Transaction T;, Object [z], Method m) {4}
wait until pv,([z]) - 1 = 1v([z]) 23 proc :dismiss(Transaction Tj, Object [x]) {
if sty([z]) = L 22 if acy([z]) = 0 and rv;([z]) = cv([z])
:checkpoint (T;, [z]) 45 cv([z]) < pv;([z])
it 3[y) € aseti: wvi(ly)) > co([y)) w18 pry(le)) - 1 = 1v([z])
return abort(T;) 47 Ww([z]) < pv,([z])
execute m on [z] returning v 48}
aci([z]) «+ aci([z]) + 1 29 proc :checkpoint(Transaction Tj, Object [z]) {
it aci([z)) - supr, ([z]) o sta([z]) « [2]
:release(T;, [z]) si rvi([z]) < cv([z])
return v 52 }
¥ 53 proc :recover(Transaction T, Object [z]) {
proc commit(Transaction T3) { sa [z « sti([x])
for [z] € ASet; { 55 cv([z]) « rvi([z])
wait until pv,([z]) - 1 = ltv([z]) 56 F
:dismiss (T, [z]) 57 proc :release(Transaction Tj, Object [z]) {
} s ov([z]) < pvy([z))
1t 3y € Aset;: vi([y)) > cv([w)) w 1v([o)) « pvi([z])
return abort(7;) 60
for [xz] € ASet;
Low(fa]) « pvi(fz))
return C;
+

Figure 6.4: SVA+R.

[x] for the first time, it executes the :checkpoint procedure which stores a copy [z] to
buffer st;([«]). Then, when the transaction is aborting, it uses the stored copy of the
object to revert it to a consistent state. This is done by invoking the :recover procedure.

Nevertheless, since transactions retain exclusive access to every object in their access
set between the first access to that object and either commit or abort, the introduction of
the abort operation into the algorithm does not introduce inconsistent views. Hence, the
extended BVA+R algorithm preserves the original’s properties. Specifically, it is opaque,
and free from deadlocks.

Note that we also moved the assignment of private versions at the end of commit (and
also abort) to a separate procedure called :dismiss. We do this to indicate the semantics
of that assignment—an unreleased object is released at the completion of a transaction.
This is purely cosmetic at the moment and we do it for verisimilitude with algorithms
that follow.

6.2.2 Supremum Versioning Algorithm with Rollback

Supremum Versioning Algorithm with Rollback (SVA+R) is an extension of SVA that
allows it to operate in the arbitrary abort model. SVA+R was introduced in [74] (as SVA
with rollback) and implemented in Atomic RMI [75, 78]. We give the full pseudocode of
SVA+R in Fig. 6.4 and discuss the features of the new algorithm below.

Early Release

The main feature of SVA is that it employs an early release mechanism to execute con-
current transactions partially in parallel. The mechanism is illustrated in detail in Sec-
tion 4.1.2 and does not differ in SVA+R, so we only remind it here briefly.

The early release mechanism triggers for a given object at a point in time after a
transaction executes some operation on it and determines that it will execute no further
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start; m;([z]) =0 tryC;— C;
i © ? °
pv;([z])+1 | aci([z])+1
ub,([z])=1 ?ub;([z])=ac;([z])
1v([z])«1
start; m;([z]) ,—0 tryC; — Cj
1}- - == = — = = - D- 0
p'//(’.(: |)<2 ?1v([z])=1

Figure 6.5: Early release via upper bounds (SVA+R).

start; m;([z])—0 tryC, — C;
i© g 7 ;
pv;([z])+1 | v([z])«1 | Lev([z]) 1
T Ostart]- yog([z])—0 {thy,cl,,,g_} C;
J pv;([z])«2 ?1v([z])=1 ?1tv([z])=1

Figure 6.6: Commitment order preservation (SVA+R).

operations on that object in the future. This is determined based on a priori knowledge
of each object’s supremum, the maximum number of times it can be executed within a
given transaction (e.g. as determined by analysis of a particular subprogram). The release
is implemented by having the transaction write its private version to the object’s local
version counter at the point when the supremum was reached (via the release procedure),
rather than waiting until the transaction commits (or aborts). When this is done, the
transaction with the next consecutive private version number for the same object can
satisfy the access condition and proceed to execute operations on the object (regardless
of whether the first transaction committed yet or not). The early release mechanism is
further illustrated in Fig. 6.5.

The early release feature is instrumental in increasing the degree of parallel execution
among conflicting transactions, and, therefore, in making its implementation performant
(see Section 8.1). However, the early release mechanism introduces additional complexity
if transactions are allowed to abort in comparison to BVA+R. First of all, this design
decision makes it necessary to enforce the order in which transactions commit to prevent
a situation where transaction 7T; releases [z ] early and subsequently aborts, but before T;
does abort, T} reads [z and commits. That would mean that 7} committed having acted
on an invalid, inconsistent value of [x], which is incorrect behavior (i.e., not serializable).

Commitment Order Preservation

In SVA+R we preclude this scenario by reflecting the order in which transactions access
objects in the order in which they commit or abort. Each shared object has an associated
local terminal version 1tv([z]|) which holds the private version of the transaction that
either committed or aborted last. The local terminal version works by analogy to an
object’s local version, but transactions only write their private versions to the local
terminal counter on commit on abort, but never when executing early release. Then,
as the outset of executing the commit or abort procedure, each transaction 7; check
whether pv;([z]) —1 = 1tv([z]), which we call the commit condition. If the condition is
met, the transaction proceeds to commit or abort, and otherwise it must wait. In effect,
by analogy to accessing objects, if transaction T; accesses [x| before T}, it is ensured
that T; commits or aborts before Tj. It means that the algorithm has the capability to
forcibly abort any transaction that views inconsistent state.

We show an example of commitment order preservation in Fig. 6.6. Initially the local
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version 1v([x]) is 0. Transaction T; starts first and acquires the private version for [z]
of 1. Then, transaction T} starts and gets a private version for [z] equal to 2. Then,
T; attempts to execute an operation on [z]. Since it can satisfy the access condition
pv;([z]) =1 = 1v([z]), the access goes through. In addition, T; determines that this
was the last operation execution on [z|, so T; releases [x]. This means that, when
transaction T attempts to access [z soon after it also satisfies the access condition
and the operation executes. Afterward, T; attempts to commit, but in order to do so,
it must pass the commit condition pv,([z]) — 1 = 1tv([z]), but it cannot do so until
T; commits (or aborts) and sets 1tv([x]) to its pv,([z]) of 1. Hence, T; waits with its
commit operation until other transactions that accessed [z] before it also commit (or
abort).

Cascading Aborts

Furthermore, if some transaction potentially views the state of an object that was mod-
ified by another transaction, and the latter aborts, then the former cannot be allowed to
commit having possibly acted upon inconsistent state. Hence, the transaction must be
forced to abort.

To enforce aborts, SVA+R marks which version of an object is the most recent con-
sistent version via a current version counter cv([x]) shared by all transactions. This
is used in conjunction with each transaction T;’s own recovery version rv;([x]), which
indicates the last consistent version viewed by T;. The current version can be compared
to a transaction’s recovery version to check whether the transaction is using a consistent
(current) version of each object or not. Unlike other counters which are initially set to 0,
rv is initially set to —oc.

Specifically, whenever transaction T; gains access to shared object [x] for the first
time, it runs the :checkpoint procedure which buffers [z| and stores it in its buffer
sti([z]) (just like in BVA+R). In addition, the :checkpoint procedure sets its recovery
version rv;([z]) to [x]’s current version cv([z]).

The value of the current version for some object reflects the private version for this
object of such transaction that most recently committed or released this object early.
Thus, each transaction sets the current version for each object in its access set during
commit, and for specific objects during early release of those objects. A transaction which
aborts also updates the current version for each object in its access set while aborting,
however the value written to the current version is not the transactions private version,
but its recovery version—the last consistent version of the object that this transaction
viewed. Initially, current version counters for all variables are set to 0.

When transaction T; updates the current version of some object [z| during abort
(via the dismiss procedure), the new value will be lower than that transaction’s private
version pv,([z]). However, if T; released that variable early, it would have previously set
the current version of the variable to be equal to its private version. Thus, if any other
transaction T accessed [x] between T; released it and aborted, it would have acquired
a recovery version rv;([z]) equal to cv([z]), which was then equal to pv,([z|). However
once T; aborted, cv([z]) would become lower than pv,([z]), so lower than rv;([z]).

Thus, a difference between rv,([z|) and cv([x]) where rv;([z]) > cv([z]) signals
to T, that the version of [z| it accesses has become invalid, because some previous
transaction aborted and reverted it. Therefore, whenever a transaction tries to commit
or access a shared object, it must test the consistency of the object it operates on by
verifying that the current version of the object was not reverted to a lower value than
the transaction’s recovery version. If that is the case, the transaction is forced to abort
instead of executing the originally intended access or the commit operation. During
variable access, the condition for aborting is always checked for all objects in the access
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start; mi([z)) >0 iy > A,
i © % o i
pv([z]) <1 | rvi(fz])«0 | cv([z])«0
v([z])«1 1tv([z])«1
cv(h_)f—l [2] —sti([z])
sti([z])+ [z]
T» R Stath ‘*mj( LCJ ) —0 c:,r:ygz 77777 3 — A7
7 pv[(h'j)&Q ?1v([z))=1 ?21tv([z])=1 ?rvi(fz]) > 1
rv;([z]) 1
?2rv;([z])=1
st;([z])«[xz]

Figure 6.7: Forced abort (SVA+R).

set rather than just the one being accessed, in order to abort as quickly as possible, and
to prevent the transaction from operating on both consistent and invalidated variables
simultaneously.

Note that if the difference between rv;([z]) and cv([z]) but rv;([z]) < cv([z]) ,
transaction 7; does not need to abort, since that difference signifies that T; released
[]. The condition is also true if some other transaction whose private version for [z ] is
higher than T’s released it. It could also be true that some of these transactions aborted
and reverted [z], but this does not impact 7; nor force it to abort, since T; will have
released [x] by that time and (from its perspective) future invalid states are irrelevant.

We show an example of this in Fig. 6.7. Here, T; and T; access [z and have private
values for [z] equal to 1 and 2, respectively. Hence T; accesses [x] first. As this is executed
T; sets its recovery version to 0, the value of the current version for [z]. Then, after the
operation on [z] finishes executing, T; releases [z by setting the local version to 1 and
sets the current version cv([z]) to its own private version, i.e. 1. Subsequently T} meets
the access condition and accesses [z] for the first time, setting its own recovery version
to 1 (as cv([z]) = 1). Since rv;([z]) = cv([x]), the access is successful. However, as T
tries to commit, it is delayed because it cannot satisfy the commit condition. Meanwhile
transaction T; aborts. As it does so, it sets the current version to its recovery version
equal to 0. Then, T; sets the local terminal version to its own private version, allowing
T; to resume committing. However, T satisfies the condition rv,([z|) > cv([z]) during
commit, since rv;([z|) =1 and cv([z]) =0, so T} is forced to abort.

Inconsistent Views

While lifting BVA to its arbitrary abort variant BVA+R does not have consequences for
safety, lifting SVA to SVA+R does. This is because, unlike BVA/BVA+R, SVA/SVA+R
use the early release mechanism, which, by allowing transactions to view potential mod-
ifications done to objects by transactions that are still live, admits potential inconsistent
views. Originally, in SVA those potential inconsistent states do not result in transactions
seeing incorrect states of shared objects, because there are no aborting transactions. How-
ever, once transactions are allowed to abort, other transactions can view modifications
introduced by transactions that will later abort, which can result in some dangerous
situations (see Section 5.1.1).

Specifically, in SVA+R inconsistent views are limited to a particular situation. First,
there must be some transaction that 7T; executes some operation on [z], releases [z]
early (after last write) and subsequently aborts. In that case, some transaction T; can
view an inconsistent state of [x| if where, given two transactions T; and T; that both
access [z], transaction T; executes some operation on [z], releases [z | early (after last
write) and subsequently aborts, while T} executes some operation on [z | after T; releases
[2] but before T; aborts. In the next section we discuss a solution that eliminates this
scenario for selected transactions, causing them never to be forced to abort.
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proc start(Transaction T3) {
for [x] € ASet; in order
lock 1k([z]) —» W
for [z] € ASet; {
gv([z]) « gv([z]) +1
o ov,(le)) « gv([z))
7 unlock 1k(z)
s
9}
10 proc access(Transaction T;, Object [x], Method m) {
1 if T; € R
12 wait until pv,([z]) - 1 = 1tv([z])
13 else
14 wait until pv,([z]) - 1 = 1v([z])
15 if sti([x]) = L
16 :checkpoint (T;, [z])
17 execute m on [x| returning v
1 aci([z]) + aci([z]) + 1
19 if acy([z]) = supr;([=])
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20 :release(T;, [z])
21 return v
22 }

23 proc commit(Transaction T3) {

24 for [z] € ASet; {

25 wait until pv,([z]) - 1 = 1tv([x])
26 :dismiss (T, [z])

}
s if 3y| € ASet;: rvi([y]) > cv([y])
29 return abort (T};)
30 for [x] € ASet;
31 1tv([z]) < pv;([z])
32 return C;

33 }
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34 proc abort(Transaction Tj) {

35 for [z] € ASet; {

36 wait until pv,([z]) - 1 = 1tv([z])

37 :dismiss(Ty, [z])

38 if ac;([z]) # 0 and rv;([z]) < cv([z])
39 :recover (T;, [z])

o aw(fe)) = pdle)

a1

2 return Aj;

43 }

s proc :dismiss(Transaction Tj, Object [x]) {
45 if acy([z]) = 0 and rv;([z]) = cv([z])

w o))« pi(le))

a1t pry(fz)) - 1 = Tv([e))

o (el p(re)

9

50 proc :checkpoint (Transaction Tj, Object [z]) {
51 osti([z]) « [z

52 rvi([z]) « cv([z])

53 }

54 proc :recover(Transaction T, Object [z]) {
ss [z «+ sti([x])

s6 cv([z]) + rvi([z])

57

58 proc :release(Transaction T, Object [z]) {
o cu([z))  pvi([a))

o we(fe) o pri(fe)

61

Figure 6.8: RSVA+R.

Because inconsistent views are limited to the aforementioned cases SVA+R is last-
use opaque—we demonstrate and discuss this in detail in Section 7.2. Since it arranges
both accesses and commits in the order dictated by private versions it trivially preserves
commitment order. Like all versioning algorithms, SVA+4R is deadlock-free by nature of

concurrency control through versioning.

Reluctant Transactions

Given that a cascading abort may occur, SVA+R may be forced to abort transactions
that contain irrevocable operations. If the transaction aborted voluntarily, then the pro-
grammer takes responsibility. However, it may happen that a transaction with irrevocable

operations is forced to abort in a cascading abort scenario.

To solve this problem we introduce a variant of RSVA+R called Reluctant SVA+R
(or just RSVA+R). In RSVA+R we assume there to be a class of reluctant transactions
R, a subclass of all transactions T that use a more conservative access condition, which
prevents them from being drawn into a cascading abort. Specifically, reluctant transac-
tions refuse to access objects that were potentially modified by uncommitted transactions
by waiting until the transaction that modified it most recently commits. That is when
executing a method on some object z, reluctant transaction T; checks the commit con-
dition pv,([z]) — 1 = 1tv([x]) rather than the access condition pv,([z]|) — 1 = 1v([z]).
Hence, by the time T; executes its method on [z |, [z] is definitely consistent, and, since
inconsistent views are the only source of forced aborts, then T; is never forced to abort.

Thus, unless T; aborts voluntarily, it is irrevocable.

We give RSVA+R’s pseudocode in Fig.

6.8 with the changed access condition high-

lighted. In order for the condition to operate, the transaction must know (a priori)
whether it is reluctant. Reluctant transactions can be designated manually, or detected
via automatic means, like static analysis to find irrevocable operations within.
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Figure 6.9: Early release with a reluctant transaction (RSVA+R).

The solution trades parallelism for safety of irrevocable operations, which may be
deferred for a longer time than they would have been otherwise, but does so without
limiting the early release capability of ordinary transactions. As such, it is a compromise
between SVA+R and BVA+R and if R = T, then all transactions wait for preceding
transactions to commit, so RSVA+R behaves exactly like BVA+R. However, if the set
of reluctant transactions is limited, the solution retains a reasonable level of possible
parallelism, since, nothing stops reluctant transactions from releasing early themselves.
This contrasts our solution from algorithms like PLE and MS-PTM (Section 4.3.1-4.3.2)
and irrevocable transactions in [92], where irrevocable transactions execute sequentially,
for the most part.

We show an example of a reluctant transaction executing in Fig. 6.9. The history is
analogous to Fig. 6.7, but here T} is reluctant, meaning that when 7T; releases early, T}
still waits, and only starts performing its operation in earnest when 7; aborts. This means
that T); does not execute operations on the inconsistent state of z, so it does not need to
abort. Meanwhile, T; can release [x] early after its operation is executed, meaning the
next transaction (non-reluctant) T}, can benefit from improved concurrency.

RSVA+R retains all of the properties of SVA+R.

6.3 Optimized Supremum Versioning Algorithm

The versioning algorithms presented thus far all operate in the heterogeneous object
model where they assume that the semantics of a particular operation executed on each
object cannot be known. Hence, these algorithms treat all operations uniformly and
conservatively: each operation is treated as if it both potentially views and modifies the
object it is executed on. This approach applies to particular distributed application like
web service orchestration, where transactional memory’s shared objects are entire stateful
services with complex and heterogeneous interfaces, sometimes dynamically changing
interfaces among which the TM algorithm must maintain consistency. In systems as
these treating all operations the same is a practical general approach.

On the other hand, in systems like distributed data stores, as well just non-distributed
TM, where the homogeneous object model and the variable model apply, versioning al-
gorithms are not capable of as much parallelism as other TM algorithms. The reason for
this is that versioning algorithms do not take advantage of known semantics of opera-
tions, so they assume potential conflicts where they do not occur in practice. Hence, for
instance, two read-only transactions will block each other, which is not true for most TM
algorithms.
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In this section we describe the Optimized Supremum Versioning Algorithm with Roll-
back (OptSVA+R) introduced in [102], a variant of SVA+R that operates in the variable
model and takes advantage of the known semantics of operations to introduce a number of
far-reaching optimizations that aim to eliminate its predecessors limitations and improve
the degree to which conflicting transactions execute in parallel, and, in effect, efficiency
of execution. Specifically, OptSVA+R uses buffering in order to make local operations
invisible outside the transaction they are executed in. This allows to OptSVA+R trans-
actions to expedite early release, which happens after the last non-local write operation
on some variable (rather than once all operations are executed). In addition, OptSVA+R
transactions defer the moment of checking the accesses condition to a given variable to
the first non-local read operation or the last non-local write operation.

Furthermore, OptSVA+R delegate specific concurrency-control-related tasks to sep-
arate threads to achieve transaction-local asynchrony. That is, when a transaction has
to wait for the access condition or the commit condition to be satisfied, it can delegate
the waiting to a separate thread, and perform other computations in the meantime. This
allows a transaction to perform local computations and non-conflicting operations while
waiting to serialize conflicting operations with other transactions. This feature is espe-
cially valuable in distributed systems, where network communication introduces delays.

OptSVA+R is specified in full in Fig. 6.10 and we describe it in detail below. Given
that the versioning concurrency control, commitment ordering, and forced abort portions
of the algorithm are inherited from SVA+R, we do not discuss them again, instead fo-
cusing on the novel optimizations OptSVA+R introduces. These use the combination of
the explicit distinction between read and write operations, buffering, and asynchronous
execution of specific synchronization-related tasks to optimize accesses to read-only vari-
ables, to delay synchronization of the initial operation upon an initial write, and to
expedite early release to the last (closing) write. We then summarize the entire algo-
rithm.

Further, we show through formal analysis that OptSVA+R can produce tighter in-
terleavings than SVA+R due to the increased level of parallelism, and, therefore, is more
likely to produce tighter schedules than its predecessor.

Finally, we present two variants of OptSVA+R: one that allows a class of reluctant
transactions which are never forced to abort, and one that precludes voluntary aborts.
These variants trade parallelism or generality in return for precluding inconsistent views.

6.3.1 Read-only Variables

Since originally versioning algorithms did not distinguish between reads and writes, they
did not allow read-only transactions to be executed in parallel to other read-only trans-
actions. This is a run-of-the-mill optimization found in all but a small number of TMs,
so it is also introduced in OptSVA+R. However, OptSVA+R goes a step further, and
allows partial parallelization of transactions whenever a variable in a transaction is only
read from and not written to, without requiring that all the variables in a transaction
are not written to.

First, while OptSVA+R inherits the early release mechanism based on a priori knowl-
edge, the information provided a prior: is different. Each transaction still knows the
suprema for each variable, but unlike in SVA+R, the suprema are divided into the max-
imum number of times the transaction will respectively read and write each individual
variable. These suprema for reads and writes are denoted for transaction 7; and z as,
respectively, rub;(z) and wub;(z).

Whenever transaction T; accesses z in such a way that it reads from z but does not
write to z (i.e., rub;(z) > 0 and wub;(z) = 0), we will refer to z as being a read-only



1 proc start(Transaction Tj) {
2 // Acquire private versions.
3 for x € ASet; in order

4 lock lk(z) —» W

s for x € ASet; {

6 gv(z) « gv(z) + 1

T pv,(a) « gi(a)

8 unlock 1lk(z)

9 F

10 // Asynchronously buffer read—only variables.
11 for x € ASet;: wub;(z) =0

12 async run :read_buffer(T;, x)
13 when pv,(z) - 1 = lv(x)

14 return ok;

15}

16 proc read(Transaction T;, Variable z) {

17 // Wait for read—only variable to be bufferred.
18 if wub;(z) =0

19 join with :read_buffer(T;, z)

20 // Copy value of variable to buffer on first read.
21 else if wc;(z) = 0 and rc;(z) = 0 {

22 wait until pv,(z) - 1 = lv(z)
23 :checkpoint (T}, z)

2 buf; (z) « st;(z)

25}

2% // Abort on inconsistent view.

o7 if Jy: rvi(y) # cv(y)

28 return abort (T})

20 rei(z) < rei(z) + 1

30 // Return bufferred value.

31 return buf;(z)

32

33 proc write(Transaction T;, Variable x, Value wv) {
a4 // Abort on inconsistent view.

s if Jy: rvi(y) # cv(y)

36 return abort(T;)
v // Write to buffer.
38 buf;(z) < v

30 wci(z) < wei(z) + 1

a0 // Asynchronous release on last write.
a1 if wei(x) = wub, ()

42 async run :write_buffer (T}, )
43 when pv,(z) - 1 = 1lv(z)

422 return ok;

45}

46 proc :read_buffer(Transaction T;, Variable z) {
a7 // Buffer and release a read—only variable.

a8 rvi(z) « cv(z)

29 buf;(z) < z

s0 :release(T;,x)

51 async run :read_commit (73, x)

52 when pv,(z) - 1 = ltv(z)

53}

54 proc :read_commit (Transaction T;, Variable z) {
5 // Commit a read—only variable early.

s6  if Jy: rvi(y) > cv(y)

57 return abort(T})
s 1tv(z) < pv,(x)
59 ;

60 proc :write_buffer(Transaction T, Variable z) {
61 if sti(z) = L

62 :checkpoint (T, z)

63 if Jy: rvi(y) # cv(y)

64 return abort (7T;)

65 x4 buf;(z)

66 :release(Ty,x)

67 }

68 proc commit(Transaction T3) {

6o for x € ASet; {

70 // Synchronize with extant read thread.
7 if wub;(z) =0

72 join with :read_comit(T;,z)

73 else {

74 // If released, synchronize with write thread.
75 if wei(z) = wub;(z)

76 join with :write_buffer (T} ,x)

7 else {

78 // Catch up: get access and update variable.
79 wait until pv,(z) - 1 = 1lv(z)

80 if st;(z) = L

81 :checkpoint (T}, x)

82 if Jy: rvi(y) # cv(y)

83 return abort(7T})

84 if wei(z) > 0

85 z < buf,(z)

86 ¥

87 // Maintain commitment order.

88 wait until pv,(z) - 1 = ltv(z)

89 :dismiss(T', x)

90 +

91}

92 // Abort on inconsistent view.
93 if Jy: rvi(y) > cv(y)

94 return abort(7};)
95 for x € ASet;

96 1tv(z) + pv,;(z)
97 return C;

98 }

99 proc abort(Transaction T;) {

1o for(zx € ASet;) {

101 // Maintain commitment order.

102 wait until pv,(z) - 1 = ltv(z)

103 // Restore if consistent backup and modified.
104 if (wei(z) > 0 and pv,(z) - 1 > lv(z)

108 and rv;(z) = cv(z)) {

106 if wc;(z) = wub;(z)

107 join with :write_buffer(T;,z)
108 :recover (T;, x)

109 b

110 :dismiss(T;, )

111 1tv(z) + pv,;(z)

112}

113 return A;

114

115 proc :dismiss(Transaction T;, Variable z) {
16 if pv,(z) - 1 = 1lv(z)

117 v(z) < pv,(z)

s if (wc;(z) + rc;(x)> 0 and rv;(z) = cv(z)
119 and pv,(z) - 1 > lv(x))

120 cv(z) + pv,;(z)

121 }

122 proc :checkpoint(Transaction T;, Variable z) {
123 sti(z)  x

126 rvi(z) + cv(z)

125 F

126 proc :recover (Transaction T;, Variable z) {
127 x4 sti(z)

128 cv(z) < rvi(z)

129 }

130 proc :release(Transaction T;, Variable z) {
131 cv(z) + pv,(z)

132 lv(z) + pv,(z)

133 }

Figure 6.10: OptSVA+R.
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Figure 6.11: Read-only variable optimization (OptSVA+R).

variable in T;. In the case of such variables, OptSVA+R can optimize the accesses by
buffering the variable and reading the buffer instead of the actual variable. In addition,
since all the reads will be done using the buffer, and the upper bounds indicate that no
writes will follow, the variable can be released after it is buffered, irrespective of what
operations the transaction will execute later.

Obviously, it is best for parallelism to release any variable as soon as it is no longer
needed by a transaction, because it allows other transactions to start acting sooner.
Since read-only variables are not needed after they are buffered, they can be released
immediately after this happens. The variable must be buffered before or during the first
read operation on it is executed, but it could be buffered before that point, even during
transaction start. However, in order to buffer a variable, its state must be viewed, so, for
the sake of consistency, buffering within versioning concurrency control must be done only
after the transaction passes the access condition. Since waiting at the access condition
would prevent the transaction from executing operations on other variables or performing
local computations, it is best for parallelism for the transaction not to start waiting until
it is absolutely necessary.

The algorithm finds balance between buffering as soon as possible and delaying syn-
chronization much as necessary by executing it asynchronously. This is achieved by using
the async run P when C construct which relegates the execution of procedure P to some
separate thread. However, before the thread starts executing P it waits until condition
C is satisfied. This allows the transaction to wait at condition C without preventing the
procedure from delaying other operations that could be executing in the mean time. On
the other hand, P will be executed as soon as C is satisfied, so as soon as it is safe.

OptSVA executes buffering via procedure :read_buffer. This procedure is relegated
to asynchronous execution at lines 12-13, and will execute once the access condition
is satisfied. Within the :read_buffer procedure, the transaction 7; saves the value of
some variable z to its buffer buf,(z) (line 49), and releases it immediately afterward by
executing :release (line 50). Since it is possible that the transaction that wrote the value
of z that is being buffered will subsequently abort, T; also updates its recovery value (line
48), but it does not need to make a checkpoint for z, since the transaction will not modify
z. Once read-only variable x is buffered, read operations can use the buffer to retrieve
that value, without accessing the variable (line 31), so without waiting. However, a read
on a read-only variable cannot be executed until buffering is finished (line 19), which we
indicate using the join with P construct.

Since a transaction does not modify a read-only variable, if it aborts, it does not need
to force other transactions to abort to maintain consistency. Hence, the transaction tries
to immediately perform all commit-related operations for a read-only variable immedi-
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Figure 6.12: Aborts and read-only variable optimization (OptSVA+R).

ately after buffering it. This involves waiting for the local terminal version of the object,
so by analogy to buffering, the procedure is executed asynchronously, so as not to block
other operations. The procedure that executes the commit for variable z is :read_commit
and it is started asynchronously at line 52. The procedure executes a simplified version of
commit for just z. Hence, once commit is executed by the transaction for other variables,
it can be skipped for z, and the transaction simply waits for :read_commit to finish
executing.

We show an example of an execution of a transaction 7 with a read-only variable z
in Fig. 6.11. Transaction 7} asynchronously waits for the access condition on z to be met
right after T starts, but before any reads actually occur. A parallel line below transaction
(such as the one below T}) indicates procedures executed asynchronously with respect
to the thread executing the transaction. Meanwhile T); can perform local operations or
operations on other variables without obstacle. Once T releases z, T; immediately buffers
z, and releases it. Then T} asynchronously tries to commit x, which requires that it waits
for the appropriate local terminal version of z. Meanwhile T} can now access z in parallel
to T and even write to it, without interfering with 7}’s consistency. Once T; commits, T}
can then asynchronously commit z, which then allows T} to commit earlier than it would
have otherwise. Since T} treats = as read-only and hence releases it earlier, transaction
Ty, is able to execute its operations much sooner, and thus shorten the total execution
time of the three transactions.

Note, that in Fig. 6.11, since T; eventually commits, the value of z read by T} is
always consistent, regardless of whether T} aborts, because T; never modifies z (or any
other variable read by T}). Hence, if does T} abort, it does not force T}, to abort and the
history is nevertheless consistent. On the other hand, if the history is analogous, but T;
eventually aborts, as we show in Fig. 6.12, both T; and T}, read inconsistent values, so
both must be aborted. This will happen, because when T; first accesses z it sets its rv;(x)
to 0, and as it releases z, T; sets cv(z) to 1, i.e. T;’s private version. Then both T} and
Ty, will both set their own recovery versions, rv;(z) and rvy(z) respectively, to 1. This is
because transactions do not set a new value of cv for read-only variables. Then, when T;
eventually aborts, it reverts z to some earlier state and sets cv(x) to its recovery version
rv;(z) which is 0. Whenever transactions execute operations they must check one of the
following conditions, rv;(z) > cv(k)z or rv;(z) # cv(k)z, and are forced to abort if they
fulfill any of them. Since both T} and T},’s recovery versions for z equal 1, and the current
version of x equals 0, then both transactions fulfill those conditions. So, from this point
on, whenever the transactions check those conditions, they will be forced to abort. In
the case of T; the condition is first fulfilled when the thread handling read-only variables
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Figure 6.13: Delayed synchronization on first write (OptSVA+R).

tries to execute procedure :read_commit, which causes that thread to end and force the
main thread of the transaction to execute the abort procedure (which we mark in the
diagram as tryA; — Aj, but this is not a voluntary abort). If an operation in the main
thread fulfilled the condition in 77, then it would have returned A; and the main thread
would terminate all other threads instead. Transaction T} checks the condition when
it finally attempts to commit, but since the condition is fulfilled, it is forced to abort
instead. Thus, 7T}’s abort forces both T; and T} to abort and consistency is maintained.

From the examples above it is apparent, that the read-only variable optimization
moves the point at which such a variable is acquired, released, and committed forward in
time. The earlier a shared variable is released by a transaction, the earlier another trans-
action can start using it, increasing the possibility of acting in parallel, and, therefore,
shortening the schedule of execution.

6.3.2 Delayed Synchronization on First Write

If the first (or only) operation that a transaction executes on a particular shared variable
is a write operation, then all read operations on that variable are local, i.e., they only need
to view what the current transaction wrote, and can ignore writes by other transactions.
Hence, there is no need for the transaction to synchronize on this variable with other
transactions for the sake of those operations. The synchronization is only needed to
prevent the current transaction from writing a value to the variable in the middle of
another transaction’s operations on it. But if the write is saved to a buffer, rather than
immediately updating the state of the variable, the synchronization can be delayed until
after the write itself, or even after any of the successive read operations.

Since it is beneficial to synchronize as late as possible while performing other tasks
beforehand, OptSVA then never checks access conditions on writes (see procedure write):
either the transaction started with a write, and no synchronization is necessary, or there
was a preceding read that already did all the necessary synchronization. Instead, the
operation is performed on a buffer (line 38). Then, since all the written values are only
visible to the current transaction, the transaction must at some point update the state of
the actual variable. This is done either upon executing the last write or during commit.
In the former case, when the upper bound on writes is reached (line 41), the transaction
asynchronously starts procedure :write_buffer (line 43), which executes when the access
condition is met, and updates the state of the variable (line 65). If the upper bound is not
reached during execution, the transaction will instead catch up by update the variable
(line 85), also after waiting at the access condition (line 79).

We illustrate this optimization further in Fig. 6.13. Here transaction T; can pass
access condition for z first, but nevertheless T} performs a write simultaneously, since it
writes to the buffer rather than wait at the access condition. Transaction 7} only waits



6.3 Optimized Supremum Versioning Algorithm 107

start; ri(z) =0 w;(x)1— ok; ri(z)—1 tryC; — C;
o 0
wub; (z)=1 buf;(z) 1
pv,;(z)«1 wci(z)+1
?Twe;(x) =wub;(z)
1v(z)=1
r+1
start; i () ;ﬁ 1 w;(z)2— ok; tryC;— Cj
Tj e - = b o
pv; () <2 ?1lv(z)=1

Figure 6.14: Early release on last write (OptSVA+R).

at the access condition when it had performed all of its write operations (of which there
is one) and starts a separate thread (indicated by the line below) to write the changes to
the variable once the access condition is passed. The thread passes the access condition
once Tj; releases x. Then, T} applies the value from the buffer to z.

6.3.3 Early Release on Last Write

Various TMs with early release determine the point at which variables are released var-
iously. For instance, DATM (see Section 4.4.1) releases variables after each operation,
erring on the side of efficiency and guaranteeing only conflict-serializability. SVA, on the
other hand, errs on the side of caution and only allows early release after last access to
some variable, which it must do because it treats read and write operations uniformly.
OptSVA improves on this, since it distinguishes between reads and writes, so early release
is done after last write not last access. In effect all reads following last write are executed
as if privatized. We argue in [79] that this approach is a solid compromise for TMs with
early release.

The early release happens if at some point in the execution of transaction T;, the
upper bound on the number of writes for some variable x is reached when performing a
write (line 41). The transaction asynchronously executes :write_buffer in that instance
for the purpose of applying the changes from the buffer to the actual shared variable.
After this is done, x will no longer be accessed directly by the transaction, so T; also
executes :release (at line 66), which sets 1v(z) to pv,(z), which allows other transactions
to pass the access condition. Nevertheless, since z was buffered during writes, subsequent
reads still have access to a local, consistent value of z (retrieved from the buffer at line
31).

This is illustrated in Fig. 6.14. Here, T; knows a priori that it will write to x at most
once, since wub;(z) = 1. Hence, after the one write to x, a separate thread is started
which releases = by setting 1v(z) to 1. Since T; passes the access condition, this happens
almost instantaneously (the figure shows a wait time merely for the reason of aesthetics).
Once z is released in this fashion, T}, whose private version for z is 2, can execute its
own read and write operations on z freely. Nevertheless, T; can continue to execute reads
on z after releasing z, and since the value of z is read from T} s buffer, T}’s operations
do not interfere.

6.3.4 Summary

OptSVA+R operates on the basis of the versioning mechanism, using private, local,
and local terminal version counters to ensure that accesses to objects and commits are
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performed in the order defined by private versions. The individual operations are handled
as follows:

Start

When an OptSVA+R transaction T; starts it acquires a private version pv,(z) for each
shared variable in its access set. If any of these variables are read-only (its supremum for
writes equals 0), the transaction also starts separate threads that clone such variables
into buffers buf;(z) and release them afterward.

Read

Whenever transaction T; attempts to execute a read operation on some variable z, its be-
havior primarily depends on whether the variable is read-only. If it is, the read operation
waits until the separate read-only thread finishes buffering the variable, and executes the
read operation on the buffer buf,(z).

Otherwise, the transaction checks whether the variable was previously accessed. If
not, then the transaction must wait until the access condition to z is satisfied and makes
a checkpoint by copying the state of the shared variable to buffer st;(z). Buffer st;(z) is
a copy buffer like buf;(z), but it is never modified and only used to restore the variable in
the event of an abort. Next, the transaction checks if any variable (for which T; acquired
a recovery version) was invalidated so far, and if so forcibly aborts. If any variable from
the access set was invalidated at any point, the transaction is doomed to abort eventually,
so by checking for all the variables we force it to do so as early as we can detect. This
is also vital in enforcing safety: transactions should not execute any operations or local
computations using stale values of variables. If there are not invalidated variables, the
transaction returns the value of the buffer buf;(z).

Write

When write operations are executed, the transaction first checks whether any variable for
which it has a recovery version was invalidated, and aborts if that is the case. Otherwise,
the write may proceed and transaction T; simply writes a new value to its buffer buf,(z).
If the transaction determines this was the closing write on z, i.e. there will be no further
writes on z within this transaction, T; releases z by starting a separate thread. The
thread will wait at the access condition and subsequently: make a checkpoint to st;(z)
(if none was made before), copy the value from the buffer buf;(z) to the original variable
x, re-check consistency of all variables in the access set, and release x. Meanwhile, the
transaction’s main thread proceeds.

Commit

When the transaction commits it waits for extant threads to finish in the case such
threads are still running for read-only variables and variables that are being released
after last write. Afterward, the transaction waits until the commit condition is satisfied
for all variables in its access set. Then, if the transaction did not access a particular vari-
able at any time, it makes a checkpoint. If it only ever executed writes on an variable,
the transaction applies the log buffer to the variable. If the variable was not released,
the transaction releases it. Afterward, the transaction checks whether any variable was
invalidated, and aborts if that is the case. Otherwise, the transaction updates the lo-
cal terminal versions of all variables and finishes execution. No further actions may be
performed by the transaction after the commit finishes executing.
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Abort

When the transaction aborts, just like with commit, it waits for the appropriate threads
to finish, and for the commit condition to be satisfied. Then, each variable in the trans-
action’s access set is restored from st;(z), unless some other transaction that previously
aborted already restored it to an older version beforehand. Then, the transaction updates
the local terminal versions of all variables and finishes execution. No further actions may
be performed by the transaction after the abort finishes executing.

6.3.5 Interleaving Comparison

In this section we compare the histories admitted by OptSVA+R to those admitted by
SVA+R.

Definitions

In order to compare the interleavings of the two algorithms, let us first provide definitions
of the relevant concepts.

As program P is being evaluated by some TM implementation, by a set of processes
I1, it takes time to evaluate each statement. Hence, each event e in a trace 7 F E(P,1I)
appears at a specific point in time, which we denote 74 (e). Since each process py executes
statements in Py in sequence, then, given two events eq, es s.t. 1 <z e, it is true that
T7(e1) < 7o (e2). Given a complete operation execution op consisting of an invocation
event e; and a response event e, the point of time at which op starts executing is
75 (op) = 77 (e1) and the time at which op finishes executing is 7 (op) = 75 (e2). The
execution time of trace 7 + E(P,1I), denoted 77, is equal to the largest execution time
for all events in 7.

The release time of variable z in transaction T; in .7, denoted 75 (T}, z), is the point
in time at which T; updates 1v(z). The completion time of variable z in transaction T;
in .7, denoted 75 (T}, z), is the point in time at which 7; updates 1tv(z).

Execution Time

In this section, we show that the execution time of OptSVA+R histories is lower than
that of SVA+4R histories resulting from the execution of the same program by the same
processes.

Let &s(P,II) denote a complete execution of program P by processes II accord-
ing to the SVA4R concurrency control algorithm, and Eo (P, II), an otherwise identi-
cal execution, but according to OptSVA+R. Then, there are traces I b Es(P,II) and
Jo F Eo(P,1II), and histories Hg = Hist(Js) and Ho = Hist(J5). We denote the set of
all transactions in Hp and Hg as T. The histories contain corresponding transactions:
T; € Hg if, and only if, T; € Hp. Note that corresponding transactions execute the same
sequence of operations in both histories, i.e., for any T; € T, Hs|T; = Hol|T;. We also
assume the variable model for both SVA4+R and OptSVA+R, so Obj = Var.

For the purpose of the comparison we assume that the events in histories are instan-
taneous. We also do not account for the time it takes to execute concurrency control
code. This means that if some operation execution op does not wait for either the access
condition nor the commit condition, we consider op to be of constant length between
SVA+R or OptSVA+R, i.e, 75, (op) = 77 (0p) + Afp, 7., (op) = 11 (0p) + A?p, and
Afp = A?p. Finally, we assume that apart from the details of the concurrency control,
the execution proceeds the same, regardless of whether it is SVA+R or OptSVA+R.
This means that transactions start executing at the same time in both SVA+R and



110

6 New Algorithms

OptSVA+R histories: for each T; € T, Tgs (start; — ok;) = 7‘150 (start; — ok;). It
also means that the time between operation executions is constant within a transac-
tion (although the time between an invocation event of an operation execution and the
response event of that operation execution may differ between algorithms). More for-
mally, for any T; € T, if Hg|T; = Hol|T; = [opl, 0ps, ...opn}, then for any k = 2,3, ..., n,
Ths(0p1) = T (0p—1) + 6715 Tiro (0pk) = Ty (0pg—y) + 05, and 67, = 67,

We say transaction T; is initial if for every « € ASet;, pv,(z) = 1. Note that initial
transactions instantaneously satisfy the access and commit conditions for all the variables
in their access sets. We say transaction T; waits for transaction T; (on variable z) if for
some variable z € ASet; N ASet;, pv;(z) = pv,(z) + 1. Intuitively, if T; waits for Tj
then 7 is the older transaction, since it started earlier. Note that in both SVA+R and
OptSVA+R, if T; waits for T}, then for every variable y € ASet; N ASet;, it is true that
pv;(y) > pv;(z).

The main lemma of this demonstration will be proved by induction, after we introduce
some helper lemmas. In the first step we show that in the case of initial transactions
an OptSVA+R transaction executes operations at the same time as the corresponding
SVA+R transaction (which implies that the OptSVA+R transaction executes operations
no later than the corresponding SVA+R transaction).

Lemma 29 (Initial Early Operation Execution). For any initial T; € T, and any oper-
_'

ation execution op in Ho|T; and Hs|T;, 77 (op) = 74 (op).

Proof. Since T; is initial it does not wait at any access conditions or commit conditions.
Then, any operation execution op in Ho|T; and Hg|T; is constant in both SVA4R and
OptSVA+R, so:

Tf‘?s(op) = TES(OP) + AOP’
THo (00) = Thr, (0p) + Aoy
Then, since local computations performed by transactions are constant between SVA-+R
and OptSVA+R, and since TES (start; — ok;) = Tj; (start; — ok;), then trivially:
. .
THO(OP) = THg (op). O
Next, we show that an OptSVA+R transaction releases variables, commits, and aborts

(i.e., update 1v and 1tv counters) no later than the corresponding initial SVA+R trans-
action.

Lemma 30 (Initial Early Release). For any initial T; € T and r € ASet;, 74 (T, z) <
TI,:rIS (7—;’ I) °

Proof. An SVA+R transaction releases x by updating 1v(z) on commit, on abort, and
during the last operation execution on z. An OptSVA+R transactions does so on commit,
on abort, during the last write operation execution on z, and after buffering a read-only
variable.

a) If z is a read-only variable an SVA+R transaction releases z no sooner than the last
operation execution on z, so given any read operation execution r;(z) =0 € Hg|T;:

T (Tiy ) = T}?S (ri(z)—0).

On the other hand, OptSVA+R releases z as soon as possible. That is during
start; — ok; at the earliest and no later than any r;(z) v € Ho|T; at the latest.
Thus:

T;O(starti — ok;) < 1, (Th, 7) < TI;O(T}'(I)—)D).
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From Lemma 29:
T}?O (ri(z)—0) = le,s (ri(z)—0).

In that case:
Tho (Ti, @) < 7, (15, 7).

Alternatively, if the last operation execution in Hg|T;|z is r;(z) — [ and assuming
tight suprema, an SVA+R transaction releases x during r;(z) — 0O, so:

T (Th, ) = les (ri(z)—0).

On the other hand, if the last operation execution in Ho|T;|z is 7;(z) — O and if
the suprema are tight, then an OptSVA+R transaction releases x no sooner than
any w;(z)0— ok; in Hp|T; and no later than r;(z) — . Hence:

Tgo(n(:r)%ﬂ) > T, (T;,z) > T}?O(wi(x)D% ok;).

From Lemma 29:
TI}'O (ri(z)—0) = TI;S (ri(z)—0).

Therefore:
i (T x) < 7 (Tiy ).

Otherwise, if the last operation execution on z in T is 7;(z) — O but suprema are
not tight, then both OptSVA+R and SVA+R release z either during commit, or
abort. Thus:

THe (T3, x) = g (res; [CZ]) or T (T3, x) = T (res; [AZ-]), and

Trro (Ti, ©) = T, (Tes; [C’Z]) or g, (T, x) = Tr, (res; [A,»]).
From Lemma 29, for any op in T;:

THo (0P) = T, (0p).

This implies that:
Tho (res; [ Ci]) = Thg (res; [ C]) or T, (res; [A;]) = Thg (res; [Ai]).

Therefore:
Tho (1i, @) = 7, (15, 7).

Finally, if the last operation execution in 7T; is w;(z)d — ok;, both SVA+R and
OptSVA+R transactions will release = during w;(z)0d — ok; if the suprema are
tight or otherwise during commit or abort. In the former case, from Lemma 29:

T, (wi(2)0— ok;) = les (w;(2)0— ok;).

Thus:
Tho (Ti, @) = 7, (15, 7).

In the latter case, by analogy to c:

Trro (Tiy ) = 7 (T3, ).

Thus, for any initial transaction 7; and any = € ASet;, 7/ (T3, z) < 74, (Ti,2z). O
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Lemma 31 (Initial Early Completion). For any initial T; € T and x € ASet;, 757 (T, z) <
7i1s (T, ).

Proof. An SVA+R transaction updates 1tv(z) on commit or on abort, so:
7. (Ti, 1) = Ty (res; [ Ci]) or 7, (Ty, ©) = Tag (res; [ Ai]).

An OptSVA+R transaction updates 1tv(z) on commit, on abort, or after releasing a
read-only variable. The latter-most potentially precedes a commit, so:

Tho (T w) < The (res; [ Gi]) or 75, (Ty, ) < T (res; [Ai]).

From Lemma 29, for any op in T;:

Tf}{o(op) = Tf}{s<0p)‘

This implies that:
To (res; | Ci]) = Ths (res; [ Ci]) and T, (res; [A;]) = Tug (res; [As]).
Therefore for any initial T; € T:
Tio (Ti, v) < 7 (T3, ). O

We then demonstrate that any OptSVA+R transaction 7; executes operations no
later than the corresponding SVA+R transaction, provided that each transaction T} for
which T; waits releases variables, commits, and aborts no later than the corresponding
SVA+R transaction.

Lemma 32 (Consecutive Early Operation Execution). For anyT; € T and any operation
execution op in Ho|T; and in Hg|T; it is true that TI}'O(op) < T;S(Op), given that if T;
waits for any older transaction T; on some variable x, then 7 (T;,x) < 7/ (T}, z) and
TI—?IO (TJ? "I") < T}?[S (ij I)

Proof. The case for pv,(z) = 1 is trivial. If pv,(z) > 1 then there exists T; € T s.t.
pv;(z) + 1 = pv,(z). We first assume for convenience that op is not preceded in 7; by
operations on variables other than z.

I If op is a read operation execution, op can return a value and be a non-local read
operation execution, or a local one, or the operation can return A;.

a) If op = r;(x)— v is a non-local read operation execution in both SVA+R and
OptSVA+R, then there is some non-local op, = r;(z) — v (possibly op, =
op) such that op, is the first operation in Hg|T;|x and Ho|T;|z. Operation
execution op, will not finish before the access condition is satisfied. If the
access condition is met before op, starts, then trivially from V (below):

4 4

T (0P;) = Tag (0p;.)-

Otherwise, the operation will finish executing as soon as the access condition

can be satisfied, so:

_'
THS (Op’l‘) = T;}s (T]’ .Z'),
4{ -
Tro (0P;) = Ti1o (Tj, ).

Then, since T; waits for T}, then from the Lemma’s assumption:

TISO (T]7 I) g TISS (T]) x)?
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Therefore:
4|

4|
THo (0P) < Ty (0p,).
Then, since either op,. = op or op, precedes op, and since any non-local read
operation executions on z following op, already satisfy the access condition:

712 (0p) < 741, (op).

If op = 7;(z) — v is a local read operation execution, then, by definition, local
reads follow a write operation execution, so there is some op,, = w;(z)d— ok;
in T; s.t. op,, <m, op and op,, = w;(x)v — ok; € Hs|T; s.t. op,, <ps op.
We assume without loss of generality that op,, immediately precedes op in T;.
Since local computation time is equal in both Hg and Hg, if we denote the
length of time between the write operation returns and the read operation is
invoked in either history as §, then:

Tiz.(0p) = 7. (0p,,) + 0,

Tho (0P) = Tr, (0py) + 6.

In addition, given that in SVA+R the access condition will already have been
passed by the time op executes, and given that the access condition is not
checked in OptSVA+R for non-local reads, then op executes in constant time
in both algorithms. Thus:

TI—;{S<0p> = TES(Op) + ADP = T;g(opw) + 6 + Aopa

7., (op) = T, (0p) + Aop = T (0D,,) + 6 + Aoy

From II (below):

i, (0P,,) < Th(0p,,).

Hence, it follows that:
4|

T, (00) < 7o, (0p).-

If op = ri(x) — A;, then in both SVA4+R and OptSVA+R the operation
execution waits until 1tv(y) = pv,(y) — 1 is true for all y € ASet;. So, for
each y, there is some transaction T}, s.t. pv,(y) — 1 = pv,(y). Every such T}
must update 1tv(y) to pv,(y) before T; can abort. If this happens before the
invocation event of op, then the execution of the abort depends only on the
execution of preceding operations in 7;. Thus from Ia, Ib, ITa, IIb, III, and V:

. .

TH, (0p) < T (0p).

Otherwise, the operation will finish executing as soon as the last transaction
Ty s.t. pv,(y) — 1 = pv,(y) updates 1tv(y) to pv,(y). Thus:

i, (op) = max 7f7s Tk, y), where pv,(y) — 1 =pv,(y),

T}}'O(op) = \%2);7130 (T, y) where pv,(y) — 1 = pv,(y).
Since T; necessarily waits for each such T}, then, from the Lemma’s assump-
tions:

Ti6 ks y) < T (T, y),
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Therefore:

. o
Tho (0p) < Ty, (0p)-

=

Thus, if op is a read operation execution, TI}'O(op) < 7y, (0p).

IT If op is a write operation execution, op can return ok; and be preceded by a non-

local read operation execution. Alternatively, it can return ok; and be preceded by

no operations or by a write (and possibly by non-local read operation executions).

Otherwise the write operation execution can return A;.

a)

If op = w;(z)0— ok; is preceded by some non-local op, = r;(z) = O in Tj,
in both SVA+R and OptSVA+R then we assume without loss of generality
that op immediately follows op, in T;. In that case, since local computation
time is equal in both Hg and Ho, if we denote the length of time between the
read operation returns and the write operation is invoked in either history as
§, then:

. (0p) = 74, (0p,) + 9,

TEO<0p) = T;o(op’r) + 6

In addition, given that in SVA+R the access condition will already have been
passed by the time op executes, and given that the access condition is not
checked in OptSVA+R for non-local reads, then op executes in constant time
in both algorithms. Thus:

T;S(Op) = TES(OP) + A‘)p = Tf}‘s(op’r') + 4 + AO}M

71, (op) = 71, (0p) + Aop = T4 (0p,) + 0 + Agp.

From Ia:

i, (0p,) < 7. (0p,.).

Therefore:
Try (0p) < 7y, (0p).

If op = w;(x)O— ok; is not preceded by non-local read operation executions,
then there is such op,, = w;(z)0 — ok; (possibly op,, = op) such that op,,
is the first operation in Hg|T;|z and Ho|T;|z. In addition, op,, is necessarily
preceded by op, = start; — ok;, so:

4 4
Trs (0Pw) > T (0p5),
4 4
THo (0Pw) > T, (0Ds)-
In SVA+R the first write waits for the access condition, so:

Tf}‘s (Op) 2 ma’X(TIgs (T]7 .T), Tf}{s (Opé))

In OptSVA+R such writes do not wait for the access condition at all, so:

Tﬁo(op) > Tﬁo(ops), regardless of 757 (T}, z).

From V:

THo (0Ps) = T (0p,)-

Then, since either op,, = op or op,, precedes op:

T, (0p) < 7. (op).
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¢) If op = w;(z)d— A;, then, by analogy to Ic:

Tho (0P) < g (0p).-

Thus, if op is a write operation execution, Tg'o(op) < TI}'S(op).

IIT If op = tryC; — O, then in both SVA+R and OptSVA+R transactions wait until
1tv(y) = pv;(y) — 1 is true for all y € ASet; before returning from op. This means
that each transaction T} s.t. pv,(y) + 1 = pv,(y) must update 1tv(y) to pv,(y)
before T; can commit or abort. If this happens before the invocation event of

op, then the execution of the commit depends only on the execution of preceding
operations in T;. Thus from Ia, Ib, Ila, ITb, and V:

4 4
THo (0p) < o (0p).

Otherwise, the operation will finish executing as soon as the last transaction Tk s.t.
pv;(y) — 1 = pv,(y) updates 1tv(y) to pv,(y). Thus:

T;S(Op) = %?); Tz (Th, y), where pv,(y) — 1 = pv.(y),

Tl}'o(op) = \%Z:); Tio (Th, y), where pv,(y) — 1 = pv,(y).

Since T; necessarily waits for each such T}, then, from the Lemma’s assumptions:

Tio Tk, ) < T, (T, y),

Therefore:

Tf‘;{o(op) < Tf‘?s(op)‘

IV If op = tryA; — A;, then, by analogy to III:

T, (0p) < 7. (op).

V If op = start; — ok;, then, trivially:

THe (0P) = Trg (0p).

Let us now assume that op is preceded by operations on variables other than z in
Hg|T; and in Ho|T;. In that case, there is some operation execution op’ on variable y
that precedes op in Hs|T; and in Hp|T; and that is not preceded by operation executions
on variables other than y. It then follows from I-V that:

Tr, (0p") < Ty, (0p).
Since the time it takes to execute local computations is constant between OptSVA+R
and SVA+R, then trivially, for any operation execution in op” that follows op’ in Hg|T;
and in Ho|T; it is also true that:

T (00") < Th, (0p").
Therefore, for any operation execution op in T; given that for any T}, s.t. T; waits (on
z), it is true that 7 (T3, z) < 74, (T, 2) and 75 (T3, x) < 75, (T}, 2):

Tro (0p) < T (0p). O
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We also demonstrate that any OptSVA+R transaction T; releases variables, commits,
and aborts no later than the corresponding SVA+R transaction if each transaction T for
which T; waits executes operations no later than its corresponding SVA+R transaction.

Lemma 33 (Consecutive Early Release). For any T; € T and x € ASet;, 7 (T}, z) <

71 (T3, ) given that if T; waits for any older transaction T; on some variable y, then
Ti1o (T5:y) < i (T, y) and 77, (Tj, y) < 73,(T5, y).-

Proof. An SVA+R transaction releases x by updating 1v(z) on commit, on abort, and
during the last operation execution on z. An OptSVA+R transactions does so on commit,
on abort, during the last write operation execution on z, and after buffering a read-only
variable.

)

If z is a read-only variable, an SVA+4R transaction releases x no sooner than the last
operation execution on z, so given any read operation execution r;(z) =0 € Hg|T;:

T (Tiy ) = TI?S (ri(z)—0).

On the other hand, OptSVA+R releases z as soon as possible. That is during
start; — ok; at the earliest and no later than any r;(z) = v € Ho|T; at the latest.
Thus:

T;O(starti — ok;) < 1 (Th, 7) < TI;O(T}'(I)—)D).

From Lemma 32:
T}?O (ri(z)—0) < T]j,s (ri(z)—0).

In that case:
i (Tiy x) < 7, (Tiy ).

Alternatively, if the last operation execution in Hg|T;|z is ;(z) =0 and assuming
tight suprema, an SVA+R transaction releases x during r;(z) — 0O, so:

il (T;,z) = le,s (ri(z)—0).

On the other hand, if last operation execution in Ho|T;|z is r;(z) — O and if the
suprema are tight, then an OptSVA+R transaction releases z no sooner than any
w;(z)d— ok; in Ho|T; and no later than r;(z) — 0. Hence:

leo(m(x)%lj) > 1h, (T, ) > Tl}'o(w,-(x)D% ok;).
From Lemma 32:
Tf}'o(ri(x)ﬁ[l) < Tﬁs(n(w)—ﬂj).

Therefore:
T;}o (7-‘17 ‘T) < TITIS (7-‘1’ .Z')

Otherwise, if the last operation execution on z in T; is 7;(z) — O but suprema are
not tight, then both OptSVA+R and SVA+R release z either during commit, or
abort. Thus:

THe (T}, ) = Thg(res; [Cl]) or T (T3, ) = T (res; [Al] ), and

Ti1o (Th ©) = Te (res; [ Ci]) or 74 (Ti, @) = Th (res; [Ai]).
From Lemma 32, for any op in T;:

i, (0p) < 7. (op).
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This implies that:
TH, (Tes; [C’l]) < T (1es; [CZ]) or T, (res; [Ai]) < T (Tes; [AZ-]).

Therefore:
THo (T;,z) < il (T;, x).

d) Finally, if the last operation execution in T; is w;(x)00 — ok;, both SVA+R and
OptSVA+R transactions will release z during w;(z)d — ok; if the suprema are
tight or otherwise during commit or abort. In the former case, from Lemma 32:

TI}‘O (wi(z)d— ok;) < TI;S (w; ()0 — ok;).

Thus:
Trro (Tiy ) < 7 (T3, ).

In the latter case, by analogy to c, also:
TI"'}O (1_1“ I) = Tﬁs (E’ I)

Therefore, given T; as defined above, 7y (1}, z) < 77 (T3, 7). O

Lemma 34 (Consecutive Early Completion). For anyT; € T and z € ASet;, 77 (T}, ) <
T4 (T;, x) given that if T; waits for any older transaction T; on some variable y, then

Tlgo (7}7 y) g TI’TIS (TJ y) a’nd TI‘CI() (1—}7 y) < TI‘CIS (TJ7 y)

Proof. An SVA+R transaction updates 1tv(z) on commit, or on abort, so:
7. (Ti, 1) = Ty (res; [ Ci]) or T, (Ty, ©) = Tag (res; [Ai]).

An OptSVA+R transaction updates 1tv(z) on commit, on abort, or after releasing a
read-only variable. The latter-most potentially precedes a commit, so:

T, (Tis 2) < Thg (res; [CZ]) or 7 (T, ) < THg (Tes; [AJ)

From Lemma 32, for any op in T;:

T;o(op) < T;s<0p)‘

Therefore, for any such 7; € T:
Tiro (Ti, 1) < 7 (T, ). O

Finally, we show by induction that any OptSVA+R transaction executes any opera-
tion no later than the corresponding SVA+R transaction, which means that the execution
time of an OptSVA+R history will be equal to or shorter than that of an SVA+R history
generated from the same execution.

Lemma 35 (Early Operation Execution). For any T; € T, and any operation execution
op in Ho|T; and Hs|T;, T;O(Op) < T;S(Op).
Proof. Induction:
I For any initial T; € T:
a) From Lemma 29, for any operation execution op in Tj, TI_?O(OP) < le,s(op),

b) From Lemma 30, for any variable z € ASet;, 7y (T;, z) < 7y (T3, x), and
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¢) From Lemma 31, for any variable z € ASet;, 5 (T}, z) < 7 (T3, 7).
IT For any transaction T; € T, if for each T; € T s.t. T} waits for T}:

a) For any operation execution op in T} THO (op) < THS(Op)

b) For any variable z € ASet;, 77 (T}, ) < 77, (T}, ), and

c) For any variable z € ASet;, 75 (T}, ) < 74, (T}, ©).
Then:

a) From Lemma 32, for any operation execution op in Tj, T,}‘ (op) < THS(Op)
7y (T3, ), and
71 (Ti, ).

b) From Lemma 33, for any variable z € ASet;, 75 (T}, ) <
c¢) From Lemma 34, for any variable z € ASet;, 7 (T}, ) <
It follows from induction that for any T; € T, and any operation execution op in Ho|T;

and Hg|T;, THO(op) THS(Op) O
Corollary 18 (Lower Execution Time). Th, < Try.

Hence, the execution time of OptSVA+R is no worse than SVA+R. Intuitively,
OptSVA+R is likely perform better in almost all cases though, and especially, if high con-
tention causes many transactions to wait to access the same object—then, the expedited
release times and delayed synchronization come into play.

6.3.6 Properties

Despite achieving a higher level of parallelism, OptSVA+R retains the property of last-
use opacity, just like SVA+R. We provide a proof and a discussion of the proof technique
employed in Section 7.3. OptSVA+R is also trivially deadlock free. However, OptSVA+R
does not preserve commitment order, like SVA4+R does (see Fig. 6.11). We consider
commitment order a guarantee of secondary important for TM though. On the other
hand, commitment order preservation can be trivially ensured in OptSVA+R, if the
read_commit procedure is not executed asynchronously at the end of the read buffer
procedure, but instead, executed synchronously during commit.

6.3.7 Reluctant Transactions

Given that a cascading abort may occur, OptSVA+R may be forced to abort transactions
that contain irrevocable operations. Hence, we present a reluctant variant of OptSVA+R.
ROptSVA+R operates by analogy to RSVA+R: a class of reluctant transactions R may
be designated (manually by the programmer or through static analysis), that use a more
conservative access condition, and all transactions within that class refuse to access vari-
ables that were potentially modified by uncommitted transactions by waiting until the
transaction that modified it most recently commits or aborts. As with RSVA+R, this
is accomplished by checking the commit condition pv,;([z]) — 1 = 1tv([z]) rather than
the access condition pv,([z|) — 1 = 1v([z]|) when accessing variables. Reluctant trans-
actions never encounter inconsistent views, and therefore may be treated as irrevocable.
The drawback of this solution is that such transactions may wait longer to access shared
objects, but, in return, they never forcibly abort. Nevertheless, the programmer retains
the power to electively abort such transactions, e.g. due to some business logic require-
ment. We give RSVA+R’s pseudocode in Fig. 6.15 with the changed access condition
highlighted.



79 proc commit(Transaction T3) {

1 proc start(Transaction Tj) {
so  for x € ASet; {

2 // Acquire private versions.
3 for z € ASet; in order 81 // Synchronize with extant read thread.
4 lock lk(z) —» W 82 if wubi(z) =0
5 for =z € ASet; { 83 join with :read_comit (T}, x)
6 gv(z) < gv(z) + 1 84 else {
7 pv; (z) « gv(z) 85 // If released, synchronize with write thread.
i .
8 unlock 1k(z) 86 if wei(z) = wubi(x)
9} 87 join with :write_buffer(T;,z)
10 // Asynchronously buffer read—only variables. 88 else { )
11 for x € ASet;: wubs(z) =0 89 // Catch up: get access and update variable.
- if T, € R 90 wait until pv,(z) - 1 = 1lv(z)
13 async run :read_buffer(7;, z) o1 if sti(z) = 1
14 when pv,(z) - 1 = ltv(z) 92 ) :checkpoint (T}, x)
15 else 93 if Jy: rvi(y) # cv(y)
16 async run :read_buffer(7;, x) 94 _ return abort (T53)
17 when pv,(z) - 1 = 1v(z) % if wei(z) > 0
18 return ok; E z < buf;(z)
19} 97 3
20 proc read(Transaction Tj, Variable ) { %8 // Maintain commitment order.
21 // Wait for read—only variable to be bufferred. 99 wafi-t .until pv;(z) - 1 = 1tv(z)
22 if wubg(z) =0 100 :dismiss(T', )
23 join with :read_buffer(T;, z) 101 ) ¥
102

24 // Copy value of variable to buffer on first read.

25 else if wc;(z) = 0 and rci(z) =0 { 103 // Abort on inconsistent view.

26 if T; € R 100 if Jy: rvi(y) > cv(y)

27 wait until pv,([z]) - 1 = ltv([z]) 105 return abort(T;)

28 else 106 for x € ASet;

29 wait until pv,([z]) - 1 = 1v([z]) 107 1tv(z) < pv;(z)

30 :checkpoint (T}, x) 108 return Cj

31 buf;(z) < st;(z) 109 } .

32 F 110 proc abort(Transaction T;) {

33 // Abort on inconsistent view. 11 for(z € ASet;) {

s if Jy: rvi(y) # cov(y) 112 // ]\Ju,in,'/,u,in, commitment order.
35 return abort (T}, z) 113 wait until pv,(z) - 1 = ltv(z) )
114 // Restore if consistent backup and modified.

36 rci(z) «— rei(z) + 1

v // Return bufferred value. 15 if (wei(z) > 0 and pv,(z) - 1 > 1v(z)
35 return buf;(x) 116 and rv;(z) = cv(z)) {
29} 117 if we;(z) = wub;(z)
10 proc write(Transaction Tj, Variable z, Value v) { ''® join with :write_buffer(T;,z)
41 // Abort on inconsistent view. 19 irecover (Ty, )
a2 if Jy: rvi(y) # cv(y) 120 3 o
43 return abort(T};) 121 :dismiss (T3, =)
4a  // Write to buffer. 122 ) 1tv(z) = pv;(2)
123

45 bufi(z) < v

46 wei(z) +— wei(z) + 1 124 return A,

47 // Asynchronous release on last write. 125 }

s if wci(z) = wub,(z) 126 proc :dismiss(Transaction T;, Variable z) {
49 it T; € R 17 if pv,(z) - 1 = lv(x)

50 async run :write_buffer(T;,z) 2s 1v(z) < pv(a)

51 when pv,(z) - 1 = ltv(z) 129 if (wei(x) + rei(x)> 0 and rvi(z) = cv(x)
o cilEe 130 and pv,(z) - 1 > 1v(z))

53 async run :write_buffer (T;,x) 8t cv(z) « pv;(z)

54 when pv,(z) - 1 = lv(xz) 132 }

55 return ok; 133 proc :checkpoint(Transaction T;, Variable z) {
56} 136 sti(z) « @

57 proc :read_buffer(Transaction T;, Variable z) { 15 rvi(z) = cv(z)

s8 // Buffer and release a read—only variable. 136 }

137 proc :recover (Transaction T;, Variable z) {
138 @ 4 sti(z)

139 cv(z) < rvi(z)

140 }

141 proc :release(Transaction T;, Variable z) {

59 rvi(z) < cv(x)

60 buf;(z) « =

61 :release(Ty,x)

62 async run :read_commit(7j, z)
63 when pv,(z) - 1 = 1ltv(z)

o} 142 cv(z) <= pv,(x)
65 proc :read_commit(Transaction T;, Variable z) { 143 3 1v(z) = pv;(x)
144

66 // Commit a read—only variable early.
67 if Jy: rvi(y) > cv(y)

68 return abort(7;)
69 1tv(z) < pv,(x)
70}

71 proc :write_buffer(Transaction Tj, Variable z) {
72 if st(z) = L

73 :checkpoint (T, x)
7aif Jy: rvi(y) # cv(y)
75 return abort(T})

76 T 4 buf;(z)
77 :release(T;,x)

78 }

Figure 6.15: ROptSVA+R.
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1 proc start(Transaction Tj) {
2 // Acquire private versions.
3 for x € ASet; in order

4 lock lk(z) — W

s for x € ASet; {

6 gv(z) « gv(z) + 1

T by, (@) « gu(@)

8 unlock 1k(z)

g }

10 // Asynchronously buffer read—only variables.
11 for x € ASet;: wub;(z) =0

12 async run :read_buffer(T;, x)
13 when pv,(z) - 1 = 1lv(z)

14 return ok;

15 F

16 proc read(Transaction T;, Variable z) {

1w // Wait for read—only variable to be bufferred.
18 if wub;(z) =0

19 join with :read_buffer(T;, z)

20 // Copy value of variable to buffer on first read.

21 else if wc;(z) = 0 and rc;(z) = 0 {

22 wait until pv,(z) - 1 = lv(z)
23 buf;(z) + z
2

25 rei(z) < rei(z) + 1

26 // Return bufferred value.

27 return buf;(z)

28 }

29 proc :read_buffer(Transaction T;, Variable z) {
30 // Buffer and release a read—only variable.

31 buf;(z) « =

32 :release(T},x)

33 async run :read_commit(7j, x)

34 when pv,(z) - 1 = ltv(z)

3}

36 proc :read_commit (Transaction T;, Variable z) {
a7 1tv(z) + pv,(x)

38 }

39 proc :write_buffer(Transaction T;, Variable z) {
20 x4 buf,(z)

41 :release(T;,x)

a2}
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sz proc write(Transaction T;, Variable z, Value v) {
4 // Write to buffer.

45 buf;(z) «+ v

w6 wei(xz) +— wei(z) + 1

a7 // Asynchronous release on last write.

48 if wey(z) = wub;(z)

49 async run :write_buffer(T;,z)
50 when pv,(z) - 1 = 1lv(z)

51  return ok;

52 }

53 proc commit(Transaction T3) {

sa  for x € ASet; {

55 // Synchronize with extant read thread.
56 if wub;(z) =0

57 join with :read_comit (T}, z)

58 else {

59 // If released, synchronize with write thread.
60 if we;(z) = wub,;(z)

61 join with :write_buffer(T};,z)

62 else {

63 // Catch up: get access and update variable.
64 wait until pv,(z) - 1 = 1lv(z)

65 if wei(z) > 0

66 z < buf;(z)

67 }

68 // Maintain commitment order.

69 wait until pv,(z) - 1 = ltv(z)

70 if pv,(z) - 1 = lv(x)

71 :release(T, x)

72 ¥

73 1tv(z) « pv,;(z)

7}

75 ¥

76 proc :release(Transaction T;, Variable z) {
77 1v(z) < pv,(x)
78 }

Figure 6.16: An abort-free variant of OptSVA.

6.3.8 Commit-only Model

OptSVA+R is designed to operate in the arbitrary abort model. We submit that this
model is the most practical for distributed applications, where partial failures may ne-
cessitate that some transaction perform an abort in order to maintain the consistency
of the system as a whole. However, the abort mechanism introduces a lot of additional
complexity into OptSVA+R. Since the algorithm is pessimistic, the aborts are not nec-
essary for the purpose of concurrency control, and as such the mechanisms for restoring
variables after an abort can be excluded from it completely if the abort operation is
missing from the transactional API.

Hence, we introduce an abort-free variant of OptSVA for the commit-only system
model, where the transaction cannot issue a tryA operation. This allows us to remove
the checkpoint and forced abort mechanisms completely (see Sections 6.2.1 and 6.2.2
respectively). We present the algorithm in Fig. 6.16.

The algorithm is last-use opaque by analogy to OptSVA+R. We conjecture that it
also produces histories equivalent to opaque by analogy to SVA. Finally, transactions
never abort or deadlock.
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6.4 OptSVA in Control Flow Distributed TM

Initially, versioning algorithms were conceived as operation-type agnostic, which made
them suitable for use with heterogeneous objects used in the CF model. These objects
have arbitrary interfaces, whose operations (methods) execute arbitrary computations
on state that can be composed of multiple discrete variables (fields). Such operations
may not be limited to reading or writing the state of the object, but may do both, or
neither, or cause side-effects in the process. Furthermore, each object may have a different
interface. It is therefore practical to treat such objects as black boxes with respect to
their state and operations they execute.

Contrast this to variables, used commonly in TM, where each object has a single
read operation that reads the state of the object, and a single write operation which
supersedes the previous state of the object with a new state. Both operations are simple,
completely transparent, and contain no side effects, which allows to better orchestrate
their execution.

An apt example is that of operation locality. According to [33], a local read is a read
that is preceded during transaction execution by a write on the same shared variable—
because it only depends on state written by that write operation, so it does not depend
on what other transactions write. A local write is a write that is followed by a write on
the same variable—because whatever that first write writes is superseded by the value
written by the second. Local operation executions do not impact the system outside of
their transaction. Thus, buffering can be used to make them invisible to the outside
world. A local write modifies a transaction-local buffer, rather than the actual object.
This means that local writes de facto do not operate on shared objects, so they do not
need to pass the access condition to be executed. As we showed with OptSVA+R, using
such optimizations with this model means that transactions execute more in parallel, and
produce tighter schedules as a result, which improves system throughput.

On the other hand, the simplification of heterogeneous objects to variables restricts
the flexibility of such a system model and limits its applicability in distributed systems.
This is especially true in the CF model, where a complex object can be used not only
to store and retrieve data, but also to delegate more involved, possibly long-running
computations to a remote host. Once the arbitrary nature of interfaces and operation
semantics is removed, the latter is lost and the system model loses its expressiveness, as
well as the room for optimization.

Hence, in this section we introduce the distinction between read and write opera-
tions in the heterogeneous object model with arbitrary interfaces. We then list explain
how OptSVA-CF+R extends the buffering system used in OptSVA+R to accommodate
heterogeneous object operation executions. Next, we show how the optimizations intro-
duced in OptSVA+R are lifted into the new model, and discuss the changes between
OptSVA+R and OptSVA-CF+R executions. Finally, we summarize OptSVA-CF+R in
full and discuss its properties as well as variants with irrevocable operation support. The
algorithm was introduced and implemented in [82].

6.4.1 Heterogeneous Objects

OptSVA-CF+R requires that given some object [ each operation m € Mr,| be classified
as one of the following:

a) a read operation is any operation that executes any code (including code with side
effects) and may read the shared object’s state and return a value, but during
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execution the state is never modified,

b) a write operation is any operation that executes any code and may modify the state
of the shared object, but the state is not read and a value is not returned,

¢) an update operation is any operation that executes any code and may both modify
and read the object’s state and return a value.

This classification allows us to mimic the optimizations used within the variable model
when synchronizing operations in the heterogeneous object model, but without knowing
the details of each operation’s semantics. We introduce the update operation, because
we expect a typical operation on a complex object to modify its state based on the
existing state of the object, hence to behave both like a read and write. However, such
an operation is difficult to make invisible and parallelize. On the other hand, “pure”
writes, can be expected to be rare, but they do not need to view the state to execute,
so more optimizations apply to them. Specifically, they can also be made to execute on
an “empty” buffer without prior synchronization, just like writes in OptSVA. Thus, we
keep them apart from updates. Note that the complex shared object may still contain
composite state, consisting of some number of independent variables, and read, write, and
update operations are not required to read and/or modify the state holistically. Whether
or not a particular operation will only read state written locally or whether it requires
synchronization depends largely on how objects buffering is implemented.

Not also that the operation types presented here can be used with reference to homo-
geneous objects. A read operation in the heterogeneous object model is equivalent with
a read operation in the homogeneous model, and either the update or a write operations
may be selected to represent a write operation in the homogeneous object, depending on
the semantics of the operation.

6.4.2 Buffering

When creating buffers for variable-like objects, given the semantics of the two available
operations, it is simply a matter of copying a value from a shared variable to some local
variable. Such a buffer can also be locally written to without knowledge of its state, since
the new value of the variable supersedes the old. Thus, local writes can simply write to
uninitialized local variables.

Given the composite state of complex objects and arbitrary semantics of operations,
two types of buffers are needed. The first, a copy buffer, is one that copies the entire state
of a shared object, and can be used to both locally read and modify the object. Such a
buffer can be used to read a released object or restore an object during abort. For the
first purpose we use a buffer denoted buf;([z]) (for some transaction T; and some object
[]), and for the latter we use a buffer denoted st;([z]). However, since the state of
the original object is copied, in order to create a copy buffer the transaction must check
fulfill the access condition before doing so. Such a copy buffer is not universal, since it
cannot be used to execute local writes without prior synchronization.

Thus, we introduce a second buffer type. A log buffer is an object that maintains the
interface of the original shared object but none of its state. When a method is executed on
the object, the buffer logs the method and its parameters. The method may be executed
completely, assuming that it does not need any state other than local data to do so. In
that case, any changes the method does to the state are tracked and stored. If this is
impossible, the method will not execute, apart from being logged. The log buffer can be
applied to the original object to update the state of the latter. If some method was pre-
executed before applying the log, its effects are applied to the state of the original object.
If a method was not previously executed, it is executed on the original object at the time
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the log is being applied. Given the log buffer does not use the object’s state, it can be used
to execute write operations without prior synchronization. Since write operations modify
the object’s state without viewing it, write operations are always capable of executing
methods on the log buffer in place, and do not need to commute the execution to the
point when the buffer is applied.

Since the CF semantics require that computations are performed wherever the shared
object is located in the distributed system, either type of buffer resides on the same host
in a distributed system as the original object. Otherwise, not only would the assumptions
of the CF model be violated, but if the execution of operations caused any side effects,
the side effects would be removed from the location of the original node.

6.4.3 Asynchronous Buffering

If a transaction only ever executes read operations on a shared object (although it may
execute writes and updates on other objects), we will refer to such an object as a read-
only object with respect to this transaction. OptSVA-CF+R handles read-only objects
similarly to how OptSVA+R handles variables. In the case of such an object, synchro-
nization needs to be done when the first read is executed, but all subsequent reads only
need to use the buffer to execute. Hence, once the buffer is created, the reads execute as
if they were local and the read-only object can be released. Other transactions benefit
from the object being released as soon as possible, and it is possible for a read-only ob-
ject to be released even before the first read operation occurs. lL.e., first write does not
need to access the actual object either, as long as the state of the object is buffered. The
only condition that must be satisfied to store the state of some object in the buffer is
that it must pass the access condition, but otherwise it can be done at any point in the
transaction. Hence, OptSVA-CF+R transactions attempt to buffer a read-only object as
soon as they retrieve private versions at start. But, since waiting at the access condition
may block the executing of operations that precede the first read on the read-only object
in the code of the transaction, the buffering procedure is executed asynchronously: the
transaction delegates it to a separate thread and proceeds to execute other operations
as normal. The separate thread waits until the access condition for the object is met,
following which the thread buffers, and immediately releases the object. Then, all reads,
including the first read, execute the operation on the buffer. In effect, early release of
read-only objects is potentially expedited.

Similar asynchrony is used in the case of a final modification of an object. The pro-
cedure is more complex and more conservative in OptSVA-CF+R than in OptSVA+R,
since there are more operation and buffer types. When a transaction executes its last
write or update operation on some shared object, the object is immediately buffered
afterward and released. This allows all following read operations to only use the buffer,
and therefore be invisible to outside transactions. The final update can only be executed
if the access condition is passed, since it may need to view the state of the object to
execute. However, a write may execute using the log buffer instead and do it without
synchronization, since it does not view the state. Then, in the specific case of a write
operation that is the only write operation on an object, or in case of a write operation
preceded only by other write operations on that object, the transaction may not have
attempted to satisfy the access condition yet. In such a case, the final write can be split
into a write that executes using the log buffer without synchronization, and a proce-
dure that subsequently updates the state of the actual object. This procedure can only
be executed if the access condition is passed, but it can release the object immediately
after it finishes updating the object’s state. The procedure is executed asynchronously
with respect to the main body of the transaction, since it has no impact on following



start; read;([z])—0 write;([z])1— ok; tryC,— C;
O

pvi([z)) 1 1v([2])=0? Tav(rapy 1
\\\
\\
start; write;([z])2— ok; write;([z])3— ok; update;([y]) — ok; * read;([z])—2 tryC; — C;
e o
wub;([z])=2 execute write; on log;([z]) execute write; on log;([«])
pv;([z]) <2 wej([z])«+1 wej([z])+3
Paubg([2)) = wey [2]) 2aby([2)) = wey(f2)
‘!1\/7((;;[):71 7777777777777777777777777777 | [z]+1og;([z])
| buf; ([z]) T[]
\1v(fz)) -2
starty, ready([z]) ‘* —3 writeg([2]) — ok tryCp— Ci,
po————————— ¢ - - s s s s s s s R ]
o)) 3 ?1v([a))=2

Figure 6.17: Asynchronous release (OptSVA-CF+R).
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operations—all following operations on this object, if any, will be reads, and will read
from the local buffer. In this way, the last write avoids blocking the entire transaction to
wait for the access condition. In addition, the point at which the transaction must wait
for the access condition for this object can be delayed to any point between the last write
and the end of the transaction.

We illustrate this optimization further in Fig. 6.17. Here, transaction 7; can pass
access condition for [z] first and execute a read and a write on [z|. Nevertheless Tj
performs operations on [z] simultaneously. First, T; executes a write, and can do so
without waiting at the access condition, since it works on the log buffer rather than
directly on [x]. Meanwhile T; can execute operations on the actual object. Then T}
executes another write operation, using the log buffer. Since this is the last operation
execution on [z] in T (which the transaction knows because wub;([z]) = wc;([z])), T;
may write the changes from the log buffer into the object. Hence, a separate thread starts
at the end of the write operation and it starts waiting at the access condition. When the
access condition is satisfied, the thread updates the state of [z] using the log buffer and
releases it, which allows T}, to start accessing [z]. The thread also creates a copy buffer
from the updated object, which is sufficient for future local reads to use. Note, however,
that T} can immediately start doing other operations, while the separate thread is still
waiting at the access condition to [z]. Hence T} can execute an update operation on [y],
which can be executed regardless of the access condition to [z]. Then, T} can continues
to execute read operations on [z | using the copy buffer, and does so in parallel to Ty, If
buffers were not used, none of these operations could be executed in parallel by several
transactions. In addition, if a separate thread were not used to synchronize and release
[z], but if instead this were done as part of the last write, the operation on [y]| in T}
would be significantly, but needlessly delayed.

6.4.4 Consequences of Model Generalization

OptSVA-CF+R is based on the optimizations introduced in OptSVA+R, but applies
them to a different, more universal system model. The complex object model is more
general, since a variable-like object can be implemented as a reference cell, a complex
object with one field, a read operation returning its value, and a write operation setting
the old value to a new one.

Given such a specification, OptSVA-CF+R will execute the same way as OptSVA+R
with one significant exception. Given a transaction that executes a write operation on
some object [z] followed by a read operation on [z], OptSVA-CF+R will execute the
write without synchronization, but must synchronize before the read executes. This is
because the changes in the log buffer must be applied to the actual object and copy
buffer before the read proceeds. Hence, the read might be forced to wait until the access
condition for [z] is satisfied. In contrast, OptSVA+R will allow the read to proceed
without synchronization, since it is a local operation, and therefore completely dependent
on the preceding write.

We show an example of this in Fig. 6.18. The figure shows the execution of the same
transactional code under the same circumstances using OptSVA+R in Fig. 6.18a and
OptSVA-CF+R in Fig. 6.18b. The object [x] is meant to represent a reference cell, a
simple object with effectively the same interface and semantics as z. In both histories T;
starts first, but executes a write operation writing 2 to z (or [x|) much later. In the mean
time T executes its own write to « ([z]), writing 1 to it. Since this is the initial write
OptSVA+R executes it on buffer buf;(z) and OptSVA-CF+R executes it on log buffer
logj(fgcj)7 so in neither algorithm is T} forced to wait for T;. Then, T} executes a read
operation on z (or [z]). In OptSVA+R the read operation can proceed without waiting
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6.4 OptSVA in Control Flow Distributed TM 127

since it is executed using buf;(z), but in OptSVA-CF+R the read cannot proceed, since
the read cannot be executed on log;([z]). Instead, in OptSVA-CF+R, T; must first
synchronize with T; to retrieve a consistent version of [2| on which it can apply the log
buffer. Only then can 7 finish reading from [z] in OptSVA-CF+R. Therefore, T; in
OptSVA-CF+R waits longer than in OptSVA+R.

In effect, we can see that given reference cells, there are certain executions that will be
allowed by OptSVA+R that are not allowed by OptSVA-CF+R. Since these OptSVA+R
executions are tighter than their equivalent executions in OptSVA-CF+R, OptSVA+R
admits a higher level of parallelism. Therefore, OptSVA-CF+R trades generality for
performance.

6.4.5 Summary

OptSVA-CF+R operates on the basis of the versioning mechanism, using private, local,
and local terminal version counters to ensure that accesses to objects and commits are
performed in the order defined by private versions. The individual operations are handled
as follows:

Start

When an OptSVA-CF+R transaction T; starts it acquires a private version for each
shared object in its access set. If any of these objects are read-only with respect to
T;, the transaction also starts separate threads that clone the objects into copy buffers
buf;([z]) and release them afterward.

Read

Whenever transaction T; attempts to execute a read operation on some object [x], its be-
havior primarily depends on whether the object is read-only, and whether it was released
or not. If the object is read-only with respect to T;, the read operation waits until the
separate read-only thread finishes buffering the object, and executes the read operation
on the buffer.

Otherwise, if the object was not previously accessed, then the transaction checks if
there were preceding reads or updates. If not, the transaction must wait until the access
condition to [x] is satisfied and makes a checkpoint by copying the state of the shared
object to buffer st;([x]). Buffer st;([«]) is a copy buffer like buf;([x]), but it is never
modified and only used to restore the object in the event of abort.

In addition, if only preceding operations were writes, then they were performed using
the log buffer log,([z]), so the transaction applies the log buffer to [z | before proceeding.
Next, the transaction checks if any object was invalidated so far, and if so forcibly aborts.
If any object was invalidated at any point, the transaction is doomed to abort eventually,
so by checking for all the objects we force it to do so as early as we can detect. If the
transaction is not aborted, it then executes the code of the read operation on [z . If this
is the last operation (of any kind) on [z, the transaction subsequently releases [z].

If the object was previously released, the read waits until the thread responsible for
releasing the object is finished. Once this is the case, the transaction executes the code
of the read operation on [z] using the copy buffer buf;([z]) (created at release).

Update

In the case of an update operation, the transaction checks whether any reads or updates
were executed on the same object before. If that is the case, the transaction waits until the
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56 }

// Acquire private versions.

for [z] € ASet; in order
lock 1k([z]) —» W

for [xz] € ASet; {
gv([z]) « gv([z]) + 1
pv;([z]) « gv([z])

unlock 1k([z])

// Asynchronously buffer read—only variables.

for [x] € ASet;: wub;([z]) =0
async run :read_buffer(T;, [z])
when puy([2]) - 1 - 1v(fz))
return ok;

// Read—only object.
if [x| is read-only {
join with :read_buffer(T;,[z])
it 3yl rvilly)) # cv(ly))
return abort (T;)
execute m on buf;([x|) returning v
rea(le))  rei([z)) + 1
return v
}
// Object not previously released.
if (wei([z]) < wub;([z])
or uc;([z]) < wub;([z])) {
if we;([x]) = 0 and uc;([z]) =0 {
wait until pv,([z]) - 1 = 1v([z])
:checkpoint (T3, [z])
if (uci([z]) > 0)
apply log;([z]) to [z]

+
it 3yl rvilly)) # ov(ly))
return abort(7T})
execute m on [z] returning v
rei([z]) « rei([z]) + 1
if (rc;([x]) = rubi([z])
and wc;([z]) = wub;([z])
and uc;([z]) = uub;([z]))
release(T;, [z ])
return v
}
// Object previously released.
if we;([z]) = wub;([z])
and uc;([z]) = uub;([z])) {
if write_buffer(T;,[x]) is running
join with :write_buffer(T;,[z])
i 3yl rvilly)) # cv(ly))
return abort(7T})
execute m on buf;([z]|) returning v
rei(z]) « rei([z]) + 1
return v

}

75 proc write(Transaction T;, Object [z, Method m) {
76 // No preceding reads or updates.

77 if rc;([z]) = 0 and uc;([z]) = 0 {

78 execute m on log,([z])

79 wei ([x]) < wei([z]) + 1

80 if we;([z]) = wub;([z])

81 async run :write_buffer(T;,[z])
82 when pv,([z]) - 1 = 1v([z])
83 )

84 // Some preceeding reads or updates.
85 if rci([z]) > 0 or uci([z]) > 0 {
w it 3lyl? wvi(ly)) # ev(ly))

87 return abort(T})

88 execute m on [z]

89 wei ([x]) < wei([z]) + 1

90 if we;([z]) = wub;([z]) {

91 buf;([z]) + [z]
92 release(T;, [z])
93 ¥

94}

95 }

96 proc commit (Transaction T3) {
97 for([z| € ASet;) {
98 if wub;([z]) = 0

99 join with read_comit(T},[z])

100 else {

101 if (uei([z]) = wub;([z])

102 and rc;([z]) = uc;([z]) = 0)

103 join with write_buffer(T;,[z])

104 else {

105 if we;([z]) + rei([z]) = uc;([z]) = 0
106 wait until pv,([z]) - 1 = 1v([z])
107 if (uc;([z]) > 0

108 and rc;([z]) = uc;([z]) = 0) {
109 :checkpoint (T, [z])

it 3[y): rvi(Ty)) # cv(ly))

111 return abort(T};)

| appty dog,([2]) vo 2]

114 ¥

115 wait until pv,([z]) - 1 = 1tv([z])
116 if pv,([z]) - 1 = 1v([=])

17 w([z]) « pv;([z])

118 if (rc;([z]) + wei([z]) + uci([z]) > 0
119 and rv;([z]) = cv([z])

120 and pv,([z]) - 1 > 1v([z]))

121 cv([z]) < pv;([z])

122 ¥

123}

e if 3ly)s wvilly)) > ev(Tyl)

125 return abort(7})

126 for [z] € ASet;

= 1e(fa)) « pvy()

128 return ok;

129 }

130 proc abort(Transaction T3;) {

57 proc update(Transaction T;, Object [x], Method m) {131 for [z] € ASet; {

58

74}

if rci([z]) = 0 and ucy([z]) = 0 {
wait until pv,([z]) - 1 = 1v([z])
:checkpoint (T3, [x])
if (uc;([z]) > 0
apply log;([z]) to [z]

}
if 3ly): rvi(Tyl) # cv([y))
return abort(T})
execute m on [z| returning v
uci([z]) < uci([=]) + 1
if (wubs([z]) = wei([z])
and uub;([z]) = uc;([z])) {
but;([z]) + [z]
:release(T5;, [z])
}

return v

Figure 6.19:

132 wait until pv,([z]) - 1 = ltv([z])
133 if (rci([z]) + wei([z]) + uci([z]) > 0

134 and pv,([z]) - 1 > 1v([z])

135 and rv;([z]) = cv([z])

136 and wub;([z]) + uub;([z]) > 0) {
137 if wey([z]) = wub;([z])

138 join with :write_buffer(T;,[z])
139 :recover (T3, [z )

140 T

141 if pv,([z]) - 1 = 1v([z])

e w(fe)) e pry(fa))

143 ) 1tv([z]) < pv;([z])

145 return A;

146 }

OptSVA-CF+R.
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164

proc :read_buffer(Transaction T;, Object [z]) { 165 proc :checkpoint (Transaction T;, Object [x]) {
rv;([z]) < cv([z]) w66 sti([z]) « [z]
buf;([z]) «+ [z] w67 rvi([z]) + cv([z])
:release(T;, [x]) 168 }
async run :read_commit (7}, [z]) 169 proc :recover(Transaction T;, Object [z]) {
when pv,([z]) - 1 = 1tv([z]) 1o [x] < sti([z])
¥ w1 cv([z]) «+ rvi([z])
proc :read_commit(Transaction T, Object [z]) { 172 }
if Ayl rvi([yl) > cv([y]) 173 proc :release(Transaction T;, Object [z]) {
return abort(7T;) e cv([x]) = pv;([x])
el = prfa) v fal) o (e
176

proc :write_buffer(Transaction T, Object [z]) {
:checkpoint (T, rZEJ)
apply log;([x]) to [z]
vt ([z)) « 2]
:release(T;, [z])
+

Figure 6.19: OptSVA-CF+R.

access condition is satisfied and then makes a checkpoint. In addition, the transaction
will also apply the log buffer log;([z]) to [z] if there were preceding writes (but no
preceding reads or updates). In any case, the transaction subsequently checks whether
any objects were invalidated, and aborts if that is the case. Afterward, the code of the
operation is executed on [x]. If there are no further updates or writes to be performed
on [z], the transaction makes a copy of [z] in buf;([x|) and releases it.

Write

Pure write operations are executed in one of two ways, depending on whether there were
any read or update operations executed prior (by the same transaction). This is because
updates and reads both wait on the access condition, meaning that then the object
can be operated on directly. Otherwise, the write can be performed using a log buffer.
Specifically, if there were no preceding reads or updates, the transaction simply executes
the operation on the log buffer. If this is the final write and there will also not be update
operations on this object in the transaction, the transaction then starts a thread, which
will wait at the access condition and subsequently: make a checkpoint to st;([x]), apply
the log buffer log;([z]) to the original object [z ], copy the modified object to the copy
buffer buf;([z]), and release [z]. Meanwhile, the transaction’s main thread proceeds.

If there were preceding reads or updates, the transaction operates using the up-to-date
object that is already under its control. Making a checkpoint would be redundant, but the
transaction checks whether any objects were invalidated, and if so, aborts. Otherwise, it
executes the code of the operation on the object, and if this was the last write or update
operation on [z], then [z] is cloned to st;([z]) and released. The last step is not done
in a separate thread, since the transaction already has access to [z].

Commit

When the transaction commits it waits for extant threads to finish in the case such
threads are still running for read-only objects and objects that are being released after
last write. Afterward, the transaction waits until the commit condition is satisfied for all
objects in its access set. Then, if the transaction did not access a particular object at any
time, it makes a checkpoint. If it only ever executed writes on an object, the transaction
applies the log buffer to the object. If the object was not released, the transaction releases
it. Afterward, the transaction checks whether any object was invalidated, and aborts if
that is the case. Otherwise, the transaction updates the local terminal versions of all



130

6 New Algorithms

objects and finishes execution. No further actions may be performed by the transaction
after the commit finishes executing.

Abort

When the transaction aborts, just like with commit, it waits for the appropriate threads to
finish, and for the commit condition to be satisfied. Then, each object in the transaction’s
access set is restored from st;([z]), unless some other transaction that previously aborted
already restored it to an older version beforehand. Then, the transaction updates the
local terminal versions of all objects and finishes execution. No further actions may be
performed by the transaction after the abort finishes executing.

6.4.6 Properties

OptSVA-CF+R is last-use opaque, which we discuss in Chapter 7. We briefly demonstrate
the liveness, and progress properties of OptSVA-CF+R below.

Theorem 3. OptSVA-CF+R is deadlock-free.

Proof. There are two types of occurrence where an operation can wait. The first is waiting
on an access condition, or the similar condition when a transaction attempts to commit
or abort. In this case, the condition is satisfied in the order enforced by transactions’
private versions for specific objects. Since private versions are consecutive integers and
since they are acquired atomically by the transaction, it is impossible for a circular wait
to occur. The other case of waiting is during transaction start, when private versions are
acquired. In order for this to be done atomically, transactions lock a series of locks before
getting private versions, and release the locks afterward. These locks are always acquired
in accordance to an arbitrary global order, regardless of transaction. That eliminates
the possibility that a circular wait occurs during start. Since circular wait cannot occur
among transactions, OptSVA-CF+R is deadlock free.

O

Theorem 4. OptSVA-CF+R is strongly progressive.

Proof. Any transaction in OptSVA-CF+R can either abort manually or forcibly. In order
for a transaction T; to abort forcibly, there must be some transaction 7} that forces T;
to abort, i.e., such T that accessed some object [z] and released it before T; accessed
[z], and T; must have aborted after T; accessed [z]. Thus for every forcibly aborted
transaction, there must be another aborted transaction. Hence, given any set of conflicting
transactions, there will be at least one transaction that will not be forcibly aborted (but
it will be manually aborted). Therefore, OptSVA-CF+R is strongly progressive [33]. O

6.4.7 Reluctant Transactions

The versioning mechanism is pessimistic: it delays operations rather then aborting trans-
actions on conflict. Transactions only abort if the abort operation is invoked program-
matically, or as a result of a cascade. Further, cascading aborts start only due to a trans-
action being aborted manually. Hence, if no transaction in the system manually aborts,
no transaction ever aborts. Then, it is to execute any irrevocable operations within any
transaction. However, if any transaction manually aborts, it is possible that it will force
some other transaction into a cascade. In order for transaction T; to participate in a
cascading abort, a preceding transaction 7T; must release an object early and then abort
after the T; executed an operation directly on that object. These conditions rarely occur
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in practice, so cascading aborts are also infrequent. However, they do introduce a chance
of unsafe executions of irrevocable operations.

Hence, by analogy to RSVA+R and ROptSVA+R we introduce ROptSVA-CF+R.
In this variant of the algorithm in order to exclude the possibility of abort completely
for transactions with irrevocable operations, such transactions can be labeled reluctant.
ROptSVA-CF+R prevents reluctant transactions from ever becoming part of a cascade,
by replacing all access condition checks with termination condition checks. This means
that irrevocable transactions never “accept” objects released early. The drawback is that
such transactions may wait longer to access shared objects, but in return they never
forcibly abort.

We give the pseudocode of ROptSVA+R in Appendix B. It is almost identical to
OptSVA-CF+R.

6.4.8 Commit-only Model

It is also possible to derive a variant of OptSVA-CF that operates in the commit-only
model. Given that OptSVA-CF is pessimistic, it does not need to abort unless arbitrary
aborts are introduced, so OptSVA-CF in the commit only model is completely abort-free.
This means that it becomes impractical for certain classes of distributed systems, but
also completely safe for irrevocable operations. We give this algorithm in Appendix B in
full. It is similar to OptSVA-CF+R but lacks mechanisms for aborting transactions and
reverting objects to previous states, which makes it simpler.

6.5 Summary

We present a summary of the characteristics of versioning algorithms in Table 6.1. All
of the algorithms are pessimistic and blocking, as well as deadlock-free, so we omit this
from the table.

Using the original versioning algorithms as a base (primarily SVA), we introduced
three classes of novel TM algorithms that aim to take advantage of the versioning con-
currency control and early release mechanisms. First, we extended pessimistic algorithms
into the arbitrary abort model. This allows versioning algorithms to be used in a broader
range of systems, including in distributed systems with a possibility of partial failure.
Since SVA uses early release, the introduction of the abort operation into SVA+R re-
quired the introduction of additional mechanism to contain inconsistent views and retain
strong safety properties. These mechanisms are novel and are not needed for other pes-
simistic systems with the ability to abort (BVA+R, 2PL). However, the drawback of
these algorithms is that they are agnostic of the semantics of the objects on which they
execute operations, hence their performance falls short in comparison to traditional op-
timistic TM in systems where the semantics of operations are known. (We show this
experimentally in Section 8.1.)

The second class of versioning algorithms are aimed to alleviate the problem by
applying the versioning control mechanism in the variable model. OptSVA+R is the rep-
resentative of that class that introduces a number of optimizations to the basic modus
operandi of its predecessor: heavy use of buffering and commit-time updates rather than
encounter-time modifications, read operation parallelization, early release of shared ob-
jects on last write instead of last operation of any kind, and transaction-local operation
asynchrony which allows transactions to delegate some tasks that require waiting to sep-
arate thread and proceed with other computation in the mean time. These optimizations



Algorithm Updates Aborts A priori Objects Safety Early release Irrevocable
BVA encounter-time commit-only, abort-free ~ ASet heterogeneous opaque no T, €T
BVA+R encounter-time arbitrary abort ASet heterogeneous opaque no T, €T
SVA encounter-time commit-only, abort-free  ASet, supr heterogeneous opaque-equivalent yes T, €T
SVA+R encounter-time arbitrary abort, cascade ASet, supr heterogeneous last-use opaque yes %]
RSVA+R encounter-time arbitrary abort, cascade ASet, supr, R heterogeneous last-use opaque yes T; €R
OptSVA commit-time commit-only, abort-free ~ ASet, wub, rub, variable last-use opaque* yes T, €T
OptSVA+R commit-time arbitrary abort, cascade  ASet, wub, rub, variable last-use opaque yes %]
ROptSVA+R commit-time arbitrary abort, cascade  ASet, wub, rub, R variable last-use opaque yes T; €R
OptSVA-CF commit-time commit-only, abort-free  ASet, wub, rub, operation types any last-use opaque* yes T, €T
OptSVA-CF+R commit-time arbitrary abort, cascade ASet, wub, rub, operation types any last-use opaque yes %]
ROptSVA-CF+R  commit-time arbitrary abort, cascade  ASet, wub, rub, R, operation types any last-use opaque yes T; €R

Table 6.1: Summary comparison of versioning algorithms.
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reduce the amount of scenarios where one transaction has to wait for another and in this
way improve the transactional throughput, while maintaining the string safety properties
of SVA+R. We show this improvement theoretically and conclude that OptSVA+R is an
algorithm with high potential for parallelism. To the best of our knowledge OptSVA+R
is the first algorithm to use transaction-local asynchrony to execute transparently exe-
cute transactional operations in parallel with local computations and operations on other
variables.

However, the system model used in OptSVA+R is not as well-suited to practical
applications in distributed TM. Hence, we introduce a third class of versioning algorithms
which allow the generalization of the introduced algorithms to any system model, while
maintaining a high degree of parallel execution of conflicting transactions. We show
experimentally in Section 8.2 that an implementation of these algorithms can outperform
quality optimistic distributed TM systems.

In each class of algorithms we introduce variants that prevent specific reluctant trans-
actions from aborting, making them completely safe for irrevocable operations, and leav-
ing the decision whether a particular transaction can be allowed to abort to the program-
mer, who can determine this based on business logic and the code of the transaction and
decide whether it pays off to trade consistency for efficiency. We also include commit-only
variants of the algorithms which can be applied to systems where programmers are not
allowed to execute programmatic aborts, which makes the system completely abort free.
We conjecture that such systems are equivalent to opaque systems in terms of safety in
the commit-only model (we denote this in Table 6.1 by an asterisk). This also means
that all transactions safely execute irrevocable operations.






Safety

In this chapter we discuss the safety properties of selected algorithms from Chapter 6.
Specifically, in the first section we discuss the relationship between SVA and opacity.
SVA is not opaque, since it admits histories with early release, which are forbidden by
opacity. However, opacity prevents early release specifically to prevent inconsistent views,
and SVA histories do not allow inconsistent views. This is because SVA is pessimistic
and operates in the commit-only model, which means neither forced nor voluntary aborts
occur. Hence, we attempt to draw an equivalency between histories produced by SVA
and opaque histories, by showing the former are observationally indistinguishable from
the latter. The technique presented in this section were introduced in [80].

Next, we discuss the safety of SVA+R and demonstrate that SVA+R, is last-use
opaque. We first provide a proof sketch showing the intuition and describing the method,
and give the complete proof in Appendix A. The proof was originally presented in [79].

Then, we demonstrate the last-use opacity of OptSVA+R. Since OptSVA+R makes
heavy use of buffering and largely detaches operations from their actual effects on mem-
ory, the proof is not straightforward. For this reason, we introduce trace harmony, a
proof technique that allows to prove last-use opacity (and can be extended to opacity)
of algorithms that operate on buffers. Trace harmony decomposes last-use opacity into
several simpler criteria. If a history can be shown to satisfy those criteria, then it follows
that it is last-use opaque (we demonstrate this formally in Appendix A). Hence, we show
that OptSVA+R histories are harmonious, and therefore last-use opaque. The proof and
trace harmony were presented in [102].

Finally, we show that the proof for last-use opacity of OptSVA-CF+R follows from
the proof of OptSVA+R, after [82].

7.1 Opacity of SVA

Opacity introduces the requirement that transactions never read from live transactions,
since this could lead to situations where inconsistent views cause unexpected and danger-
ous situations to occur, like infinite loops and division by zero errors. However opacity
precludes early release, an important programming technique, where two transactions
technically conflict but nevertheless both commit correctly, and still produce a history
that is intuitively correct. This is particularly true with pessimistic concurrency control,
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Figure 7.1: A history with early release and no inconsistent views.

where transactions, as a rule, do not abort. If they do not abort, then viewing the fi-
nal state of a variable does not cause inconsistencies, even if the value is read from a
live transaction. On the other hand, systems that employ early release gain a significant
improvement in performance.

SVA is one such pessimistic concurrency control algorithm. SVA allows transactions
to read from other live transactions under the condition that the live transactions being
read from will not attempt to modify the objects in question. Since SVA transactions
also never abort, then they never experience inconsistent views, and are otherwise free
of all the dangerous situations opacity is meant to exclude. Nevertheless SVA does not
meet the requirements of opacity.

Here, we present a technique that can show that opacity can be fulfilled by transform-
ing the original history with early release to a different form called a decomposed history.
The transformation can be performed only under stringent assumptions with respect to
the original history, but the decomposed form can then be proven to be opaque. Since
we also show that the decomposed history is a refinement of the original history, this
suffices to acknowledge that the original history provides the same safety guarantees as
opacity. In this way, we can show TM systems with early release need not necessarily
relax consistency in trade for efficiency.

7.1.1 History Decomposition

In Section 3.2.6 we showed that a history with an instance of early release cannot be
opaque. However, the history shown in Fig. 7.1 is an intuitively correct execution, since
all operations are legal, the real-time order is preserved, and no inconsistent views are
introduced. Indeed, the history is even final-state opaque and only its prefix created by
removing both commit operation executions is not (proof in Appendix A).

This intuition that the history is correct would be especially true if history H; were
generated by a pessimistic TM system or any system in the commit only model, where
aborts do not occur. In the particular case of these systems, forming a completion by
defaulting an execution of an uncommitted transaction to an abort is too conservative
and leads to perfectly legal histories being unable to satisfy opacity. On the other hand,
the assumption that all transactions will eventually commit is not one that can be in-
corporated into the definition of opacity without compromising its meaningfulness for
optimistic TMs.

Therefore, rather than modifying the definition of opacity to allow for non-aborting
pessimistic TMs with early release, in this section we propose a simple technique called
decomposition. The technique allows to create a decomposed history by splitting trans-
actions with early release into sequences of atomic single-operation transactions (given
certain stringent assumptions about their execution). This history will prevent transac-
tions with early release from violating the consistency requirements of opacity, but will
nevertheless be commensurate with the original history on the basis of observational
refinement.
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However, please note that this is a transformation done “on paper” rather than a
technique that is used during the actual execution of operations by a particular TM
system, i.e., the state changes are done by the system as if all transactions were atomic.

Intuition

Intuitively, the idea behind decomposition is to redefine any non-aborting transaction
that releases early as a sequence of smaller transactions, each of which performs a single
complete operation (i.e., an invocation and a response) and immediately commits. Such
a decomposed transaction preserves the semantics and operations of the original transac-
tion, but, since it is executed piecemeal, it no longer meets the definition of early release.
This allows a transaction that originally had early release to satisfy opacity.

An example of this is given in Fig. 7.2 where Fig. 7.2b shows history H’ which
decomposes H from Fig. 7.2a. Here, T; from H is emptied, and the original operations
comprising T; are executed as separate sequential transactions T; 1, Tj 2, T; 3, and Tj 4.
This can be thought of essentially as nesting transactions 75 1, 15 2, T 3, and T; 4 within
T; and using them to execute code within 7;.

The decomposed history may be considered interchangeable with the original his-
tory because decomposed histories behave exactly like the original histories from which
they were produced. That is, the decomposed history observationally refines the original
history.

Definition

Let H be a TM history with unique writes. Let T,, be a set of transactions s.t., T, C T
and T; € T, if, and only if, T; is guaranteed to eventually commit and T; releases some
object early. We say a transaction eventually commits if the semantics of the TM ensure
that it never aborts.

Given two transactions T; and T} (T;,T; € T) and some invocation or response event
e; executed by transaction Tj, let reassign; (e;) be an event executed by T; and defined
as,

. {z'm}j [op(z)w] if e; = inv; [op(z)w],
reassign;(e;) = .
Tes; [u] if e; = res; [u].

Intuitively, reassign;(e;) is the same event as e;, only executed by transaction T; rather
than T;.

Given some transaction 7; and an event e, let open;(e) and close;(e) denote sequences
defined as follows:

open;(e) = [start; — ok;] - [e], and
close;(e) = le] - [tryC; — Ci].

Note that using open on the first event and close on the last event of some sequence of
events “envelops” them in a transaction.
Then, we define history decomposition as follows:

Definition 28. Given a history H, let its decomposition Hy = Decomp(H) be identical
to H except that every transaction T; € H s.t., T; € Te, is transformed as follows:

a) every complete operation execution in T; that consists of an invocation event e and
1 !y . . ! "y

a response event e;/, e} is replaced in Hy by open,(reassign;(e})) and e is replaced
in Hq by closej(reassign;(e]')), where j is fresh, i.e. there is no Tj in H,
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(b) Decomposed history.

Figure 7.2: Decomposition example.
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b) every pending operation execution in T; that only consists of an invocation event
e;, e} is replaced in Hy by open(reassign;(e;)), where j is fresh, i.e. there is no T}
i H.

Note that decomposition produces a set of new transactions for each transaction T; €
T.,.. We call such a transaction T; a decomposed transaction. The set of all transactions
produced by decomposition to execute the events of a decomposed transaction T; is
denoted T?. This set explicitly contains the decomposed transaction 7;. We will refer to
any transaction T € ']I‘fi s.t. T; # T; as a product of decomposition.

Next, let us show the opacity of a decomposed history, as follows.

Lemma 36. Given H, a final-state opaque history, and Hq = Decomp(H), Hy is final-
state opaque.

Proof. Let S be a sequential history fulfilling Def. 12 for H. Since H is final-state opaque
then, by Def. 12, every transaction T; in S is legal in S because Vis(S,T;) is legal.

Let Sy be a sequential history identical to S except that for every event e; in some
transaction T; in S,

a) if e; in H was replaced in Hy by open;(reassign;(e;)) (given some T}), then it is
also replaced in Sy by open;(reassign;(e;)),

b) if e; in H was replaced in Hy by close;j(reassign;(e;)) (given some T}), then it is
also replaced in Sy by close;(reassign;(ei)),

¢) otherwise it remains e;.

In addition every decomposed transaction directly precedes all of its product transactions.
For every transaction T} in S; exactly one of the following is true:

a) Ty is neither a decomposed transaction nor a product transaction. In that case,
if Vis(Sq,Tx) = Vis(S,Ty), then, since every transaction T in S is legal in §
because Vis(S,T;) is legal, so, by extension, T in Sy is legal in Sy. Alternatively, if
Vis(Sa, Ty,) # Vis(S,Ty), then Vis(Sq4, Tk) contains operations executed by product
transactions of one or more decomposed transaction T;, where Vis(S,T})) contains
operations executed by T;. The definition of Sy implies that Sy contains the same
read and write operation executions as S, but some of the operations are executed
by product transactions. Since the sequential specification Seq(z) of any variable z
ignores which transaction executes the operation as long as the written and read
values are correct, then, if Vis(S,T}) is legal, then Vis(Sy, Tk ) is also legal. Hence,
Ty in Sy is legal in Sy.

b) Ty is a decomposed transaction in Sy. Then, from Def. 28, transaction T}, does not
contain any read or write operation executions. Therefore, T}, in Sy is legal in Sy if
there is no other transaction T; s.t., T; <g, Tk. This is because Vis(Sq,T}) contains
no read or write operations, so it is in Seq(z) for any z, and thus Vis(Sg, Tk ) is legal.
Otherwise, transaction T}, is preceded in Sq by any transaction T (7 <gs, Tk). For
the sake of simplicity, let 7; be such a transaction that there is no other transaction
T;,8.4. T; <s, T and T; <g, T;. Then, Vis(Sq, T)) contains the same read and write
operation executions as Vis(Sq4,T;). Hence, if Vis(Sq,T}) is legal, then Vis(Sq, T})
is also legal. Thus, if the preceding transaction 7} in Sy is legal in Sq, then T} in
Sq is legal in Sy. Since we show in (a) and (c) that other types of transactions in
Sq are legal in Sy and since Ty in Sy is legal in Sy if no transaction precedes T},
then, trivially, T} in Sy is legal in Sy.

¢) T is a product transaction such that Ty ¢ S and Ty € ’]I‘;-i for some decomposed
transaction T;. In that case Vis(Sq, T)) is the same as Vis(Sq, T;) with the exception
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that Vis(Sq,Tk) also contains the operations executed by product transactions
T, € 'H‘fi of the decomposed transaction 7}, but only if ¢ = k or T; <g, T). Let T,
be a special case of a product transaction of T} for which there is no other product
transaction T; € T} s.t., T; <s, Tj. Then, note that the definition of Sy implies
that Sq|T, contains the same read and write operation executions as S|T;, with the
exception that some of the operations are executed by product transactions. By
analogy to (a), since the sequential specification Seq(z) of any variable z ignores
which transaction executes the operation as long as the written and read values are
correct, then, if Vis(S,T;) is legal, then Vis(Sy, T)) is also legal. Hence, T, in Sy
is legal in Sy. Since Seg(x) is prefix closed, then if Vis(Sy,T,) is legal, then every
prefix of Vis(Sg,T;) is also legal. Since T} precedes T, in Sy then Vis(Sq,Ty) is a
prefix of Vis(Sg,T;). Therefore Vis(Sq4,T}) is legal, and thus T} in Sy is legal in
Sq.

Thus, all transactions in S, are legal in S,;. Trivially, Sy preserves the real-time order of
H,; and S; = Hy. Since Sy preserves the real-time order of H and every T; in Sy is legal
in Sy, then, by Def. 12, H; is final-state opaque. O

Theorem 5. Given H, a final-state opaque history, and Hg = Decomp(H), Hy is opaque.

Proof. Since H is final-state opaque, then, from Lemma 36, H; = Decomp(H) is final-
state opaque.

Given Hy = Decomp(H), Def. 28 ensures that if any transaction T; releases early in
H, then it is decomposed in Hg, so all of its write operation executions are reassigned in
H, to a product transaction T}, s.t. T; € T¢ and each write is directly followed in Hy by
a successful commit operation executed by 7). Consequently, if any transaction T} writes
value v to variable z, and any transaction T}, reads v from z, then T} always commits in
H, before T}, reads v from z.

Let P be any finite prefix of Hy. The prefix potentially contains some transactions
which are not completed, and therefore are aborted in the completion P, = Compl(P).
Note, from the above, that if any transaction Tj is aborted in P, then there is no trans-
action that reads from 7}, because either any read operation reading from 7} execution
would follow T}’s commit operation due to T]’s decomposition, or T; would not release
early.

Hence, there can exist a sequential history S. = P, wherein any T} in S, is legal in
S.. Since Hy is final state opaque and P preserves the real time order of Hy, then S, also
preserves the real time order of P,.. If any a completion of any P. is final-state opaque,
then Hy is opaque. Thus, H; is opaque. O

Observational Refinement of Decomposed Histories

Observational refinement [42, 5], intuitively, is a notion that given two programs and an
observer who only sees the results of executing these two programs, if both programs
always produce the same results, then, effectively, the programs are indistinguishable,
and, therefore, interchangeable. The definition depends on what is considered observable
behavior, which we assume to be the state of all variables during the execution of a
program.

Given the set Var of all variables Var = {1, 29, ...,z }, let state S be a set of
variables paired with their values, i.e. S = {(z1, v1), (22, v2), ..., (Tw, Vw) }. Let the initial
state Sy be a state s.t., for any z; € Var and (z;,v;) € So, v; = . Let P(S) be a
powerset of S and E be the set of all possible invocation and response events. Then let
eval : P(S) x E — P(S) be a function representing the semantics of a TM system. It
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is out of scope of this dissertation to define the complete semantics of TM, so we limit
ourselves to presenting the following assumptions about eval.

Intuitively, we expect operations to behave deterministically based on the initial state,
regardless of transaction. We also expect successful initialization and execution of com-
mitment operations not to modify the state. More formally, given some states S and S,
processes p and p, variable z, value v, transactions T; and T}, we assume the following:

Assumption 1. If (ej,e3) = 7F(z) = v and (e}, eh) = ri(z) — v then eval(S,e1) =
eval(S,e}) and eval(S', ex) = eval(S', e}).

Assumption 2. If (e1,e2) = wf(x)v— ok; and (e}, eh) = wi(z)v— ok; then eval(S,e1) =

eval(S,€}) and eval(S', es) = eval(S', €h).
Assumption 3. If (e1,e3) = start’ — ok; then eval(S,e1) = S and eval(S',e3) = S'.
Assumption 4. If (e1,e5) = tryC¥ — C; then eval(S,e1) = S and eval(S',es) = S'.

We say that history H = [ey, e, ..., €] is observed-state equivalent to history H' =
(€], €5, ..., el ], which we denote H  H’, when there exists such an injection f : H — H’,
that for each e¢; € H there exists e, € H' s.t., if eval(S;—1,€;) = S and eval(S,_1,e,) =
Sy, then §;_1 = S,—1 and §; = §,. Furthermore, it is necessary that if f(e;) = e, and
f(ei—1) = ey, then ¢ < r. The intuition behind this definition is that if the events in both
histories were evaluated side-by-side, they would cause the same changes to the state of
the system, although one of the histories would contain some operations that were not
present in the other history. However, these operations would not modify the state.

We say that transactional memory system M observationally refines transactional
memory system M’ if for any history H allowed by M there exists some history H’
allowed by M’ s.t., H  H'.

Finally, we can say that the decomposition is indistinguishable from the original
history, and can be used in its place for the purpose of establishing opacity, because the
decomposed history reflects exactly the operations, their order, and the effect they have
on the state of the system. As such, observing the execution of the original history does
not differ from observing the execution of the decomposed history.

Theorem 6. Given any complete final-state opaque history H with unique writes and
its decomposed counterpart Hy = Decomp(H), H 5 Hy.

Proof. From Def. 28, for every event e; in H (for any transaction T; in H), history Hy
contains either the same event e;, or (for some T}, s.t. H|T; = @) either the sequence
open;(reassign;(e;)) = [start; — ok;|-[reassign;(e;)], or the sequence close;(reassign;(e;)) =
[reassign(e;)] - [tryC; — Cj]. Note that from Assumption 3 and Assumption 4, evalu-
ation of any event € in [start; — ok;] or in [tryC; — C;] does not impact state, i.e.,
eval(S, e}) = S. Note also that Assumption 1 and Assumption 2 imply that eval(S,e;) =
eval(S, reassign;;(e;)). Hence we can derive from Decomp(H ) a function f : H — Hg that
for any event e; returns Teassign ; (e;) if Decomp(H ) transforms e; to either open; (reassignj (e:))
or closej(reassign;(e;)), or e; otherwise.

Note that this function is an injection from H to Hy, and that if some event e; is not
in the range of f, it is part of a transaction initialization or transaction commitment,
so eval(S,e;) = S. Furthermore, note that for any event e; in H|T; function f returns
ecither the same event e; or some other event e; that represents the invocation of or
response to the same operation, just executed by a different transaction 7; which is a
product transaction of the decomposition of T;. In that case, from Assumption 1 and
Assumption 2 given some state S, for any e; it is true that eval(S,e;) = eval(S, f(e;)).

Finally, since function Decomp preserves the order of events from H in Hg, then for
two events ey and ey in H, s.t. ey precedes es in H, f(e1) precedes f(es) in Hy. Thus,
since f exists, then by definition of observed-state equivalency, H < Hg. O
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Corollary 19. Given a TM system M and a (hypothetical) TM system M, that for
every history H allowed by M produces a history Hg = Decomp(H), since H  Hg, then
M observationally refines M.

7.1.2 SVA Opacity Through Decomposition
Lemma 37. A determined finite SVA history is final-state opaque through decomposition.

Proof. Since all SVA transactions T; € T access any variable z € Var only when it is
in the appropriate version (denoted pv, (7)), and since the versions of variables increase
monotonically, then they have exclusive access to x. That is, an SVA transaction T; can
access z in history H only after a preceding transaction 7T; releases z after last use or
commits. Then, for each x € Var, given set T, that contains all transactions which access
z, there exists a total order <, on T, s.t., given transactions 13,15 € Ty, T} <t, T; iff
pvj(a:) < pv,(z). By extension, given any SVA history H, there exists a partial order <y
on H that agrees with <, for each z € Var (i.e. <1,C=py, for each z € Var).

Let H be any finite SVA history that is determined (i.e. one for which Compl(H) =
H). Let S be a sequential history equivalent to H s.t. transactions in S are ordered in
accordance to <p. Then, trivially, S follows the real-time order of H.

Note that given a determined SVA history H, no transaction aborts in H. Note also
that given two transactions 13,7; € H, s.t. T;,T; € Ty, if T; accesses z after T, then T;
accesses z after Tj releases  or commits. Since SVA transactions release objects after last
use, then any transaction always views a consistent state of the system and is the only
transaction that executes operations on a given variable between its first and last access
of that variable. Hence, each transaction in H behaves as if it were executed sequentially.
So each transaction in any sequential history S s.t. H = S conforms to a sequential
specification of each variable. Therefore, every transaction 7; in S is legal in S.

Since we can construct a sequential history S equivalent to H that preserves the real
time order of H and every transaction 7T; in S is legal in S, therefore H is final-state
opaque. O]

Theorem 7. Every SVA history is opaque through decomposition.

Proof. Let H be any finite determined SVA history. Let Hy; = Decomp(H). Since H
is final-state opaque (Lemma 37), then, by Theorem 5, Hy is opaque. Then, since Hy
observationally refines H (Theorem 6), H is indistinguishable from an opaque history
Hy.

Let H' be any SVA history that is not determined. Trivially, there exists such a
determined SVA history H, that H' is a prefix for H. Since every determined history is
final state opaque (Lemma 37), there exists a decomposed history Hy = Decomp(H) that
is opaque (Theorem 5). Then, there must exist a H, = Decomp(H') that is a prefix of
H,. Since all prefixes of Hy are final-state opaque, then H, is final-state opaque (Def. 13).
Also, since all prefixes of Hy are final-state opaque, then all prefixes of H}; are final-state
opaque, and in consequence H), is opaque. Then, since H), observationally refines H’
(Theorem 6), H' is indistinguishable from an opaque history. O

7.2 Last-use Opacity of SVA+R

As we mention in Section 4.1.2, since SVA and SVA+R allow transactions to access
objects that could have been modified by still-live transactions, it becomes impossible to
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demonstrate opacity directly. As we discuss in Section 7.1 in detail, However, it can be
shown that since SVA does not abort, any history produced by SVA is equivalent in its
effects to an opaque history. We discuss this in detail in Section 7.1. This means that in
SVA, the theoretical inconsistent views do not have practical consequences.

However, once we lift the algorithm into the arbitrary abort model, it becomes possible
for transactions to view inconsistent state not only from live transactions, but also from
ones that will eventually abort, which may lead to cascading aborts. Then, not only is
opacity impossible to demonstrate directly, but some histories produced by SVA+R will
diverse from what is expected by opacity.

Nevertheless, even though cascading aborts are admitted in some histories, SVA+R
carefully limits the inconsistent views that can occur. In particular, it specifically pro-
hibits overwriting and orders commits and aborts to reflect the order in which transaction
access objects. Hence SVA+R is still able to provide strong guarantees, and thus satisfies
the properties of last-use opacity

In the following sections we present a proof sketch showing that SVA+R is last-use
opaque. A complete proof (including demonstrations of the observations we make about
the algorithm) is in Appendix A.

7.2.1 Observations
First, we make the following straightforward observations about SVA+R.

Observation 1 (Version Order). Given the set T, of all transactions that access © in H
there is a total order called a version order <, on T% s.t. for any T;,T; € T%, T; <. T

if pv;(z) < PVj<33)-

Observation 2 (Access Order). If T; <, T} and T; performs operation op; on z, and
T performs operation op; on x, then op; is completed in H before op;.

Observation 3 (No Bufferring). Since transactions operate on variables rather than
buffers, any read operation op = r;(x) — v in any transaction T; is preceded in H by
some write operation wj(x)v— ok; in some T (possibly i =j).

Observation 4 (Read from Released). If transaction T; executes a read operation or a
write operation op on x in H, then any transaction that previously executed a read or
write operation on x is either committed, aborted, or decided on x before op.

Observation 5 (Do Not Read Aborted). Assuming unique writes, if transaction T;
executes w;(x)v — u and aborts in H, then x will be reverted to a previous value. In
consequence, no other transaction can read v from x.

Observation 6 (Commit Order). If transaction T; accesses © in H and commits or
aborts in H, any transaction that previously executed a read or write operation on x is
either committed or aborted before T; commits or aborts.

Observation 7 (Forced Abort). If transaction T; reads x from T; and T; subsequently
aborts, then T; also aborts.

7.2.2 Last-use Opacity

Then, the main lemma follows, showing that SVA+R produces final-state opaque his-
tories. For convenience, we assume that the SVA4R program always writes values to
variables that are unique and in the domain of the variable.

Lemma 38. Any SVA+R history H is final-state last-use opaque.
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Proof sketch. Let Ho = Compl(H) be a completion of H if for every T; € H, if T; is live
or commit-pending in H, then T; is aborted in He. Given He we can construct S’H, a
sequential history s.t. Sy = H¢, where for any two transactions 13, T; € Hc:

a) if T; <p. Tj, then T; <5y i
b) if T; <, T} for any variable z, then T; =g, 1j-

Note that if some transaction T; commits in H, then it commits in Sg (and wvice versa).
Otherwise T} aborts in Sg.

Let T; be any transaction committed in H. Thus, T; also commits in Sy. From
Observation 3, any read operation execution op; = r;(z) — v in H|T; is preceded in H by
op; = w;(x)v— ok;. If op, is local, then i = j, so op; is in a committed transaction. If
op; is not local, then ¢ # j. In that case, from Observation 5, T; cannot be aborted before
op; in H. Consequently, T is either committed before op; in H, live in H, or committed
or aborted after op,. In the former case T; reads from a committed transaction. In the
latter case, since T; is committed, then from Observation 4 and Observation 6 we know
that T; commits or aborts in H before T; commits. In addition, from Observation 7 we
know that T); cannot abort in H, because it would have caused T; to also abort. Thus,
any committed T; reads only from committed transactions.

From Observation 2, if T; reads from the value written by an operation in T} then the
write in T); completes before the read in 7;, which implies T; <, T;. Hence, T} <4 T;.
Thus, if T; is committed in S r and reads from some T}, then any such T} is committed
and precedes T}, so S u|T; C st(g 1, T;). Since all reads in committed transactions read
from preceding committed transactions, then for each read in Vis(S 1, T;) reading v from
x there will be a write operation execution writing v to z in Vis(gH,Ti). Since, from
Observation 2, all accesses on x operations follow <, then Vis(S’ 1, T;) is legal for any
committed T;. Thus, any T; that is committed in §H is legal in S’H.

Let T; be a transaction that is live or aborts in H, so it aborts in Sy. From Ob-
servation 3 any read operation execution op, = r;(z) — v in H|T; is preceded in H by
op; = wj(z)v— ok;. If op; is local, then i = j, so op; is always in Vz’s(S’H,Ti) where op;
precedes op;. If op; is not local, then ¢ # j. In that case, from Observation 5, T; cannot
be aborted before op; in H. Consequently, T} is either committed before op; in H, live
in H, or committed or aborted after op,. In the former case T; reads from a committed
transaction. In the latter case, from Observation 4 we know that either 7; commits in
H or T} is decided on « in H. Thus, any committed T; reads z only from committed
transactions or transactions that are decided on z.

From Observation 2, if T; reads from the value written by an operation in T} then the
write in T); completes before the read in 7;, which implies T; <, T;. Hence, T} <g_ T;.
Thus, if T; is aborted in Sy and reads from some T}, then any such Tj is either committed
and precedes T;, so §H|Tj C LVZ’S(SH, T;), or Tj is decided on any x if T; reads from z,
so S HTT]' C LVis(g 1, T;). Since all reads in aborted transactions read x from preceding
committed transactions or transactions decided on z, then for each read in LVis(S‘ w,T;)
reading v from z there will be a write operation execution writing v to x. Since, from
Observation 2 all accesses on z operations follow <, then LVis(g 1w, T;) is legal for any
aborted T;. Thus, any T; that is aborted in S 7 is last-use legal in S H-

Since any committed 7T; in Sy is legal in S 1, and any aborted T; in Sy is last-use
legal in Sy, and since Sy trivially follows the real time order of H, then from Def. 23 H
is final-state last-use opaque. O

Full proof for Lemma 38 is given in Appendix A.

Theorem 8. Any SVA+R history H is last-use opaque.
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Proof. Since by Lemma 38 any SVA+R history H is final-state last-use opaque, and any
prefix P of H is also an SVA+4R history, then every prefix of H is also final-state last-use
opaque. Thus, by Def. 24, H is last-use opaque. O

7.3 Last-use Opacity of OptSVA+R

In this section, we demonstrate that OptSVA+R meets the same correctness guarantees
as SVA+R, by presenting a proof for last-use opacity. In addition to OptSVA+R’s cor-
rectness this shows that the optimizations used by OptSVA+R to increase parallelism
do not sacrifice or otherwise relax correctness.

Given that OptSVA+R divorces the operations performed on shared variables within
the code of the transaction from the actual accesses to memory that are executed, and
since last-use opacity is defined on operations on shared variables, showing correctness
is not straightforward. This is further exacerbated by the fact that last-use opacity is
defined explicitly as prefix closed, meaning that it must be demonstrated for all prefixes
of a given transactional schedule, not just the schedule itself. Hence, proving it for a
complex system is troublesome, just as it is troublesome for opacity, from which the
definition was obtained. In fact, markability [52] and graph representation of opacity
[33], are both techniques trying to work around the basic definition of opacity. Hence,
apart from the proof itself, we contribute trace harmony, a proof technique that shows
last-use opacity based on interrelationships among memory accesses (and can be easily
extended to show related properties like opacity).

Thus, in this section, we first present the preliminary material that defines how op-
erations on memory are represented within traces. Then, we use this abstraction to give
the definitions making up trace harmony. Each definition is relatively simple and evalu-
ates a particular single aspect of the relationships between transactions, operations, and
memory accesses within a trace. If some trace satisfies all of them in aggregate, it is
harmonious. We then claim that any harmonious trace implies a last-use opaque history
in general (we provide a demonstration of this proposition in Appendix A). This means
that given some trace, it is enough to prove that it satisfies each of the individual defi-
nitions making up trace harmony to show that the trace is last-use opaque. Given this,
we demonstrate that OptSVA+R traces are harmonious in Section 7.3.4, and so, that
OptSVA+R is last-use opaque.

7.3.1 Events

Events are the results of transactions directly interacting with the memory representing
shared variables. When during the execution of some program, some transaction accesses
a variable’s state (either viewing it or updating it), it issues an update event that is
logged in the trace resulting from the execution.

A view event g;(z)v is any event that represents some transaction T; viewing the state
of variable z (i.e. reading the memory location where the value of z is stored) and getting
the value of v. An update event s;(z)v is any event that represents a modification of the
state of variable x by transaction Tj;, setting it to the value of v.

Some operations can abort the transaction, rather than doing what they are intended
to do. For instance, a write operation may fail with an abort rather than setting a new
value of some variable. In such cases the transaction will execute specific code that is
meant to clean up after the transaction and revert any variables the transaction modified
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to a previous (consistent) state. We will refer to this code as the recovery procedure. Any
update events executed as part of a recovery procedure are called recovery (update)
events. In contrast, all update events that are not recovery events are called routine
(update) events. For distinction, we denote a routine update os;(z)v and a recovery
update s;(x)v.

Given a view event g;(z)v (for some T;), v is specified by the most recent preceding
update event on z in a given trace. L.e., if the most recent preceding update event on z
is some s;(z)v’ (for some T}), then v = ¢'. Note, that this distinction does not depend
on how the events appear in the trace, but is intrinsic to the code that executes them.

Event e = s;(z)v is the ultimate update event on z in 7 iff there is no ¢’ = s;(z)v’
s.t. e <z €. Event e = s;(z)v is the ultimate routine update event on z in 7 iff e is
routine and there is no €’ = s;(z)v' s.t. e <z €’ and €’ is routine.

Given a view event e, = g;(z)0 in some T; and an update event e = sj(a:)D in some
T;, e prefaces e, in trace 7, denoted e <7 e, iff e <7 e, and there is no update event
e = sp(z)0 in any Ty s.t. ¢ <o €’ <z e,. Given a read operation execution op, € J
s.t., op, = m;(x) — v and op, that consists of an invocation event e; and a response event
er, and a view event e, = g;(z)v’, op, depends on e, (denoted op, «~ e,) iff v = v
and e, <z e,. Given a write operation execution op,, € 7 s.t., op,, = w;(x)v — ok;
and op,, consists of an invocation event e; and a response event e,, and an update event
ey = gi(x)v', op,, instigates e, (denoted op,, ~ e,) iff v = v and ¢; <7 e,.

Transaction T; views transaction T}, denoted T;<T}, if Je,, e, € T s.t. ey, = gi(z)v
and e, = osj(;c)v and e, <z e,. Transaction T; virtually views transaction T}, denoted
T;<°T;, if ey, e, € T s.t. e, = gi(z)v and e, = 0s;(z)v and e, <7 e,.

FEvent access set ESet; for some transaction T; € .7 is such a set of variables such
that z € ESet; <= Je € T|T; s.t. e = os;(z)v or e = g;(x)v.

Given T; € 7, s.t. e, = gi(z)v € Z|T; and e, is initial in J|T;, let Y7 (T;, x) be
such longest sequence of transactions that: a) if 37; € 7 s.t. e, = *sj(z)v € J|T; and
eq <z e, then Yo (T;, ) = Yo (T}, x) - T;, otherwise b) Yo (T;,z) =@ - T;.

Let a view chain (7, T;, T;) be a sequence of transactions s.t. T; is the first element,
and Tj is the last element, and for each pair of consecutive transactions T}, T;, it is true
that T;<~T}. Let H|E(T,T;,T;) be the longest subsequence of .7 s.t. e € H|{(T,T;,T})
iff e e J|T; and T; € £&(7,T;,T5).

7.3.2 Trace Harmony

Since OptSVA+R limits events within a transaction to at most a single routine update
event, at most a single recovery update event, and at most a single view event per variable,
we limit the method presented below to such a case. This is represented by the definition
of minimalism below. (However, the method can be extended to allow multiple routine
update events and multiple view events per transaction.)

Definition 29 (Minimalism). Given transaction T; € 7, for each xz, T|T; contains:
a) either none or one view event g;(z)0J,
b) either none or one routine update event os;(x)d,
¢c) either none or one recovery update event xs;(x)0.

Trace isolation stipulates, that once a transaction starts accessing the memory of
some variable, it has exclusive access to it until it is done performing routine updates
and view events on it. Hence a transaction is not interfered with by other transaction
when it is performing memory accesses, unless an abort is required. Furthermore, if one
transaction accesses the memory of one variable before another transaction, then that
other transaction cannot access any other variable before the first transaction does.
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Definition 30 (Trace Isolation). Trace  is isolated, iff given any two transactions
T; and T; in T for every x € ESet; N ESet;, it is true that given any event e; s.t.
e; = gi(z)v € T|T; or e; = osi(z)v € T|Tj, and any event e; s.t. e; = g;(z)v' € T|T;
or a routine update event e; = os;(x)v' € T|T}, e; <7 ;.

Isolation order imposes an order on transactions in a trace that respects the order of
executing update and view events on variables. Given an isolated trace, there exist the
following orders:

Definition 31 (Variable Isolation Order). Two transactions T; and T; are isolation-
ordered in trace T with respect to x, which we denote T;<5T;, if given any event e; s.t.
ei = gi(z)v € T|T; or e; = os;(z)v € T|T};, and any event e; s.t. e; = g;(z)v € T|T}
or a routine update event e; = os;(z)v' € T|T};, and e; <7 e;.

Definition 32 (Direct Isolation Order). Two transactions T; and T are directly isolation-
ordered T;< 7T} if for every x € ESet; N ESet;, T;<5T;.

Definition 33 (Isolation Order). Two transactions T; and T; are isolation-ordered
T;<7Tj;, if there exists a sequence of transactions € = T; - ... - T;, where for every pair of
consecutive transactions Ty, Ty, € €, Tp<gT,.

Note that if T; <7 T and = € ESet; N ESet;, then T;< 7T}, so the isolation order
preserves real-time order.

Consonance describes when a particular event or operation involves a value that can
be considered correct, which is determined by other events or operations that either
precede or follow the one in question. Specifically, a view event is consonant if it retrieves
the value that was written there by a preceding event, or the initial value, if no events
preceded. A consonant read operation must then return a value that was retrieved by a
view event beforehand. On the other hand, a routine update event must be caused by
some write operation. Whereas a consonant recovery update event is one that cleans up
after a routine update and reverts the state of a variable to a value that was retrieved
by a view event that view the unmodified state of the variable in question.

Definition 34 (View Consonance). Given some T; € 7, a view event e, = g;(x)v is
consonant in 7 iff either:

a) v=0 and Pe, € T, s.t. e, = sj(x)v for any T, and e, <7 e,

b) v#0 and e, € T, s.t. e, = osj(x)v for some T, i # j, ey <z er, and e, is the
ultimate routine update on x in I |T;, or

c) e, € T, s.t. e, = 1sj(z)v for some T, i # j, ey <7 €.
Definition 35 (Routine Update Consonance). Given some T; € 7, a routine update

event e, = os;(x)v is consonant in T iff e, is instigated in T by a consonant write
operation execution.

Definition 36 (Recovery Update Consonance). Given someT; € F, event e, = 1s;(x)v
is consonant in 7 iff:

a) e, is conservative in 7, i.e. there exists a consonant non-local view event e, in
TN\T; that is initial in T|T;,

b) eq is needed in 7, i.e. Je, = os;(x)v' € T|T;, s.t. ey <71, €a,
c) eq is dooming in T, i.e. fr € T, s.t. r = resi[Ci], €qa <71, T»
d) eq is ending in 7, i.e. pe € T, s.t. e = gi(2)v" or e = s;(2)V, €4 <71, €

e) e, is clean in 7, i.e. given view e, that justifies that e, is conservative, there is
no event e, = Xs;j(z)v' in any T; s.t. T;<5T; and e, <7 €, <7 €.
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Definition 37 (Non-local Read Consonance). A non-local read operation execution is
consonant in trace 7 iff it depends in T on a consonant non-local view event.

Definition 38 (Local Read Consonance). Given some T; € 7, a local read operation
execution op, = r;(x)— v is consonant in trace J iff there exists op,, = w;(x)v— ok; €
T|T;, s.t. op,, <z|1, 0p,., and op,, is consonant.

Definition 39 (Write Consonance). A write operation execution w;(z)v— ok; in some
T; is consonant in trace T iff v# 0 and v is within the domain of x.

Definition 40 (Trace Consonance). Trace J is consonant iff all operation executions,
update events, and view events in trace J are consonant.

Obbligato ensures that update events required by write operations happen on time, so
that the values written to variables by operation executions are actually set in memory by
the time the transaction relinquishes control of each variable. This means that a routine
update event is required after a write operation by the time a transaction commits
(committed write obbligato), one is required after a closing write operation, before any
other transaction attempts to access that variable (closing write obbligato), and one is
required if a non-aborted transaction executed write operations and another transaction
accesses the variables in question (view write obbligato).

Definition 41 (Committed Write Obbligato). Given T; € 7, if Jop,, € T|T; s.t.
op,, = w;(x)v— ok;, op,, is non-local, and Ir € T|T; s.t. r = res, [Cl] € J|T;, then op,,
is in obbligato iff Je; € T |T;, s.t. es = osi(x)v and op,, ~ es and es <71, T

Definition 42 (Closing Write Obbligato). GivenT; € 7, if 3op,, € T|T;, and IT; € T
s.t. T;< 7T}, and there is closing write op; = w;(x)0— ok; € T|T;, and there is an event
ey, = gj(z)0 € T|Tj, then op; is in closing obbligato iff e, € T|T;, s.t. e, = 0s;(z)v
and op; ~ €y, and €, <z €.

Definition 43 (View Write Obbligato). Given T; € 7, if IT; € T, s.t. T;<7T;, if
there is op; = w;(x)0d— ok; € T|T;, and e, = g;(z)0 € T|T}, then op, is in view write
obbligato iff there is e, = s;(z)0 € T|T;, s.t. e, <z €, or Ir = res; [AJ e J1T;, s.t.
r<g €y.

Definition 44 (Obbligato). Trace 7 is obbligato iff

a) all non-local writes in all transactions committed in 7 are in committed obbligato,
b) all closing writes whose effects are potentially viewed are in closing write obbligato,

¢) all writes whose effects are potentially viewed are in view write obbligato.

Decisiveness is achieved, when transactions do not let other transactions to view the
values they set to the variables they modify until they commit or perform their closing
writes.

Definition 45 (Decisiveness). Trace 7 is decisive iff given any pair of transactions
T, T; € 7, s.t. T;<T; for any e, = os;(z)v € T|T; and e, = gi(z)v € T|T;, then

either T} is decided on x, Ir = res; [Cj] € T|Tj, st. ey =g 1 <7 ey.

Abort accord is a relation between two transactions, where if one of them views the
update events performed by the other, and the other transaction aborts, then the first
transaction is not permitted to abort.

Definition 46 (Abort Accord). Trace 7 is in abort accord iff for any two transactions
T; and T; in T s.t.:
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a) T;<T;, if T; s aborted in 7,

b) e, = os;(2)0 € T|T; and Je = os;(z)0 € FT|T; or e = g;()0 € T|T; and
Jde, = us;(x)0 € TT;, and ey, <7 € <7 €q,

then T is either live or aborted in .

Commit accord is a similar relation, where given two transactions such that one of
them views the update events performed by the other, and the latter transaction commits,
then the former transaction must have also committed.

Definition 47 (Commit Accord). trace 7 is in commit accord iff for any two trans-
actions Ty and T; in T s.t. T;<T;, if T; is committed in T, then T; is committed in

7.

Coherence specifies, that if a transaction commits, all preceding transactions accord-
ing to the isolation order either committed or aborted beforehand.

Definition 48 (Coherence). Trace 7 is coherent iff for any two transactions T; and
T in 7, s.t. for some z, T,<%5T;, if Ir; = 'resj[C’j] € |1y, then Ir; = res;[C;] or
r; = Tes; [AZ] and r; <g r;.

Abort Coda specifies when a recovery event can be expected to be issued. If a trans-
action updates the state of some variable and eventually aborts, either it or another
transaction will issue a recovery event to clean up that update before the transaction in
question completes aborting. On the other hand, if the transaction commits, neither it
or any other transaction will issue a recovery event to revert the state of that variable to
another value.

Definition 49 (Abort Coda). Trace J has coda iff for any transaction T;:

a) if T; aborts in T (sor = res;[A;] € T|T;), then if Je, = osi(x)v € T|T;, then for
some Tj s.t. i =7 or T;<%5T; Jeq = 1sj(x)v' € T s.t. ey <7 €q,

b) if T; commits in T (so Ir = res;[C;] € T|T;), then if Je = osi(z)v € T|T; or
e = gi(z)v € T|T;, then for any T; s.t. i = j or ;<5 T; Pe, = "s;(x)v' € T s.t.
€ <7 €q.

Chain consistency describes what events are allowed and barred from a chain of
transactions. Specifically, chain isolation stipulates that, a chain of transactions executing
view and update events is not broken by a recovery event, so a transaction cannot view
an inconsistent state where the value of one variable is retrieved before an abort was
performed, and another one after. Chain self-containment is the situation where the
values viewed by a transaction in some chain always come from within that chain.

Definition 50 (Chain Isolation). Given trace ., transactions T;,T; € T, (T, T;,T;) is
isolated if VT, € £(T,T;,Ty), s.t. ¥ = osy(z)v, there is no Ty (possibly T) & £(T,T;,T;))
s.t. et = xs;(x)v' where v = v and €' is between €* and any other event in any
transaction in (7, T;, Tj).

Definition 51 (Chain Self-containment). Given trace 7, transactions T;,T; € 7,
&(T,T;,T;) is self-contained iff given any transactions Ty, T; € §(7,T;,T;), s.t. k # 1
and Jek = osp(z)v € T|T e\, = gi(x)v' € T|T and ek <5 €., then either v = v' or
el = o8, () € T |y, for some T, € (T, T;,T;) s.t. Ty, precedes Ty and follows Ty,
in &(7,T;,Ty) and ek <7 e™ <7 €.

Definition 52 (Chain Consistency). An isolated trace 7 is chain-consistent if given
any (7, T;,T;), trace T is chain-isolated and self-contained (for some T;,T; € T ).
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Finally, a trace is harmonious if it satisfies all the preceding definitions.

Definition 53 (Harmony). Trace 7 is harmonious iff it satisfies all of the following:
a) minimalism, b) consonance, c) obbligato, d) coherence, commit accord, abort accord,
and abort coda, e) isolation, f) decisiveness, g) chain consistency, and h) unique writes.

7.3.3 Last-use Opacity through Trace Harmony

Theorem 9 (Harmonious Trace Last-use Opacity). Given history H, s.t. H = Hist(.7),
if 7 is harmonious, H is last-use opaque.

The proof for Theorem 9 is given in Appendix A.

7.3.4 OptSVA+R Trace Harmony

Let 7 be any trace produced by OptSVA+R.

First, we make the assumption that when write operations are executed, the values
written to shared variables comply with their type. It can be assumed that the necessary
type checking would be performed by the compiler, and an operation writing a value
outside of the variable’s domain would never be executed.

Assumption 5 (Writes Within Domain). Given any operation execution w,(v)0— €7,
if D is the domain of Sp,|, then v € D.

Observation 8 (Memory Access Pattern). OptSVA+R generates view and update events
for variable x precisely as a result of executing the following lines:

— in procedure :checkpoint at line 123—view event,

— in procedure :read_buffer at line 49—view event,

— in procedure :write_buffer at line 65—routine update event,

— in procedure commit at line 85—routine update event,

— in procedure abort at line 127—recovery update event.
Observation 9 (Closing Write Identification). If after executing a write operation on x

by T; it is true that wub;(z) = wc;(z), then that is the closing write operation execution
on x in T;.

Lemma 39 (Version Order). Any two transactions T;,T; € T s.t. ASet; N ASet; # @
are isolation ordered: if 3z € ASet; N ASet;, s.t. pv,(z) < pv;(z), then Vy € ASet; N

ASet;,pv;(y) < pv;(y).

Proof. During start every transaction acquires a value of pv,(z). Since the acquisition
is guarded by locks, it is performed atomically, so that if transaction T;, starts acquiring
Vz € ASet;, pv;(), then no other T acquires Vz € ASet;NASet;, pv,(z) until transaction
T; completes acquiring and releases the locks. Hence, if for any two T3, T}, if 3z € ASet; N
ASet; pv,(z) < pv,(z), then Vy € ASet; N ASet;, pv,(y) < pv,(y). O

Corollary 20 (Version Order from Isolation Order). Given transactions T;, T; s.t. T;< 5T,
then Yz € ASet; N ASet;,pv,;(z) < pv,(z).

Lemma 40 (Minimalism). .7 is minimalistic.

Proof. If z is read-only in Tj, then there is exactly one view event on z in T; (line 49).
If z is not read-only, then there is exactly one view event on z in T; executed as part
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of procedure :checkpoint (line 123), either during the first read, the closing write (in
:write_buffer), or, if not previously invoked, during commit.

Routine update events are executed only after the closing write (in :write_buffer—
line 65), so at most once, or during commit (line 85), if there were writes, but the upper
bound on writes was not reached. Hence, routine update events occur at most once per
variable.

A recovery update event can occur only during abort (line 127), at most once per
variable. O

Lemma 41 (Obligatory Checkpoints). If T; issues an update event or a view update
event, T; invoked :checkpoint.

Proof. View events are only executed as part of :checkpoint.

A routine update event is only executed as part of :write_buffer at line 65, which is
dominated by lines 61-62, which executes checkpoint if it was not previously executed.

A recovery update event occurs as a result of executing line 127, which is guarded
by a condition that wc;(z) > 0, so a write must have been executed. Furthermore,
pv;(z) —1 > 1v(z) must be true, which implies that T; released z, which means the
closing write executed, so :write_buffer was started asynchronously. That procedure
executes a :checkpoint if it was not executed beforehand at lines 61-62. O

Lemma 42 (Always View Before Update). If transaction T; issues an update event
ew = si(z)0 in trace T, then there is e, = g;(2)0 € T|T; s.t. ey <5 €qy.

Proof. From Lemma 41, if T; executes an update event, then it executes :checkpoint
before the event is issued. Since :checkpoint issues a view event, then a view event is
issued before an update event. O

Lemma 43 (Wait at Access). Given transactions T;,T; s.t. pv;(z) < pv,(z), T; does not
issue a view or update event on x until T; erecutes :release on x, abort, or commit.

Proof. Let Ty, be such that pv,(z) = pv,(z) — 1. Every invocation of :checkpoint is
dominated by an instruction that waits until the condition pv,(z) — 1 = lv(z): line 23
by line 22, line 81 by line 79, and line 62 by line 43. Since, from Lemma 41, every view
or update event is preceded by the invocation of :checkpoint, then each view or update
event is dominated by an instruction that waits until pv,(z) — 1 = 1v(z). Hence in order
for T; to issue a event it must be true that pv,(z) — 1 = 1v(z).

In order for that condition to be met, some transaction must set 1v(z) to pv,(z) —1
(or pv;(z) = 1, but then there could not be such T; as assumed). Some transaction T},
modifies a new value of 1v(z) during :release, abort, or commit and the value is there
set to pv,(z). Hence T; cannot issue any view or update event until some T} such that
pv,(z) = pv,(z) — 1 executes :release, abort, or commit.

Every invocation of :release (by T}) is dominated by an instruction that waits until
the condition pv,(z) — 1 = 1v(z) is met: the invocation at line 50 by line 13, and the
one at line 66 by line 43. Furthermore, modifying 1v(z) within commit (line 117) or
abort (line 117) also requires that pv,(z) — 1 = 1v(xz) be first satisfied (at line 116 and
line 116, respectively). Hence T}, cannot set 1v(z) to pv,(z) view or update event unless
pv,(z) =1 or until some T such that pv,(z) = pv,(z) — 1 executes :release, abort, or
commit.

Assuming that pv,(z) > 1, and that some T} s.t. pv,(z) = pv,(z) — 1 exists, then,
since T; cannot issue any view or update event until T}, sets 1v(z) in :release, abort,
or commit and since T} cannot set 1v(z) until 7} executes :release, abort, or commit,
then T; cannot issue any view or update events until 7; executes :release, abort, or
commit. Since pv,(z) — 1 = pv,(z) and pv,(z) — 1 = pv,(z) then pv,(z) < pv,(z).
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It follows by induction then that given any Tj, s.t. pv,(z) < pv,(z), T; does not issue
a view or update event on z until T} executes :release, abort, or commit. O

Lemma 44 (Recovery Versions from Version Order). Given transactions T;,T; s.t.
pv;(z) < pv,(x), if T; evecutes abort before T; evecutes :checkpoint, rv;(z) < rv(z).
otherwise rv;(z) < rv;(z).

Proof. Transaction T; sets rv;(z) to cv(z) only during :checkpoint (line 124). Every
invocation of :checkpoint is dominated by an instruction that waits until the condition
pv;(z) — 1 = 1v(z): line 23 by line 22, line 81 by line 79, and line 62 by line 43.

In order for that condition to be met, some transaction must set 1v(z) to pv,(z)—1 (or
pv;(z) = 1, but then there could not be such T} as assumed, so necessarily pv,(z) > 1).
Some transaction T can set a new value of 1v(z) during :release, abort, or commit.
Hence T; sets the value of rv;(z) only after Ty such that pv,(z) = pv;(z) — 1 executes
‘release, abort, or commit. Thus, since value of cv(z) is there set by T} to pv,(z) in
case of :release (line 131) and commit (line 120), or rvy(z) in case of abort (line 128),
rv;(z) = rvi(z) if Ty aborts before T; executes :checkpoint and rv;(z) = pvy(z) other-
wise.

Since rvi(z) either trivially equals 0 if pv,(z) = 1, or is acquired by analogy from
some T; s.t. pv;(z) = pv,(z) — 1, then rvi(z) < rv;(z).

Furthermore, under the assumption that T} does not execute abort prior to T; exe-
cuting :checkpoint, then value of cv(z) is there set by T} only either within :release
or commit, and thus cv(z) = pv,(z) during T;’s :checkpoint, so rv;(z) = pv,(z). Since
pv(z) < pv,(z), then rvg(z) < rv,(z).

By extension, given T} s.t. pv;(z) < pv,(z), either k = j, or pv;(z) < pv, ().

In the former case, necessarily rvy(z) < rv;(z) if T; executes abort before T; executes
:checkpoint, or rvg(z) < rv;(z).

In the latter case, there must be some 7}, s.t. pv;(z) = pv,(z). Then, if 7} executes
abort before Ty executes :checkpoint, rvi(z) < rvg(z), otherwise rv)(z) < rvg(z).
Furthermore, either [ = j, or pv,(z) < pv,(z). It then follows by induction that given
any T s.t. pv,(z) < pv,(z), if T} executes abort before T} executes :checkpoint, rvi(z) <
rvi(z), otherwise rv;(z) < rvi(z). O

Lemma 45 (Tsolation). Trace 7 is isolated.

Proof. Every routine update event, view event, and recovery event is dominated by an
access condition (pv,(z) — 1 = 1v(z)). This condition is satisfied for T; if 1v(z) = 0 and
pv;(z) = 0, or if some transaction Tj s.t. pv;(z) = pv,(z) — 1 releases z by setting 1v(z)
to pv,(z) during commit or after closing write or after the first non-local read (and thus
after any os;(z)0 or g;(z)0).

Since events are guarded by access conditions, and variables are released after all
view or routine update events are issued by a transaction, and since all transactions
are version-ordered, then for any T;,T}, 3z € ASet; N ASet; if Je; = os;(2)0 € j|Ti
or ¢; = gi(z)0 € F|T; and Je; = os;(2)0 € T|T; or e; = g;(z)0 € T|T;, and
e; <7 e; then Yy € ASet; N ASet;, if Je] = os;(y)0 € 9_|Ti or e, =g (y)0 e y_|TZ and
Je); = os;(y)0 € T|T; or e; =g;(y)0 € T|T;, and ¢}, <7 el O

Corollary 21 (Isolation Order). Trace 7 is isolation-ordered.
Lemma 46 (Write Consonance). Any (complete) write operation in 7 is consonant.
Proof. From Assumption 5, each write is consonant. O

Lemma 47 (Routine Update Consonance). Any routine update event in T is consonant.
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Proof. A routine update event os;(z)v occurs either as a result of executing a closing
write operation on z (line 65) or 7; committing (line 85), if the transaction executed
writes, but the upper bound for writes was not reached for z. Clearly, then, if there was
a routine update event, then T; executed a write operation on z. In both cases above
v = buf;(z) and buf;(z) can be set by any write operation, the first non-local read
operation, or during start for read-only variables. If there was a write, then z is not
read-only, and the first non-local read cannot follow a write, so buf;(z) is set within (the
most recent) write operation executed by T; and corresponds to the value written by that
operation. Thus, VT},Ve!, = os;(z)v € T|T;, Jop; = w;(z)v— ok; € T|T; s.t. op; ~ €.
Therefore, €, is consonant. O

Lemma 48 (View Consonance). Any view event in J is consonant.

Proof. If a view event occurs, it views the current state of a variable. So given transaction
T;, if there is a view event e, = g;(z)v € §|Ti, v corresponds to the current state of z.
The only way to change the state of x is via an update event on z. Thus, trivially, for
some Tj, if there is e, = os;(z)v' € F|T; or e, = Hsj(z)v’ € T[T}, if either e, or e,
precede e, so that no other update event on z occurs between either e, or e, and e,,
then v = v'. Furthermore, from unique routine updates, there is no e, s.t. v = 0, and
since z is initially 0, then fe, st. v =0 and e, < ey. O]

Lemma 49 (Local Read Consonance). Any local read operation execution in 7 is con-
sonant.

Proof. If transaction executes a local read on z, then it previously executed a write
operation on z, so wc;(z) > 0. Thus, the read procedure returns at line 31, returning
buf;(z). The value of buf;(z) can be set by any write operation, the first non-local
read operation, or during transaction start for read-only variables. If there was a write,
then z is not read-only, and the first non-local read cannot follow a write, so buf;(z)
is set within (the most recent) write operation executed by T; and corresponds to the
value written by that operation. Thus, VT},Vop' = r;i(z) — v € §|E if op; is local,
Jop, = w;(z)v' — ok; € T|T; s.t. v' = v. Therefore, op, is consonant. O

Lemma 50 (Non-local Read Consonance). Any non-local read operation execution in
T is consonant.

Proof. If x is read-only in T}, then during start, a view event occurs within :read_buffer
(line 49), and the state of z is saved in buf;(z). Then, subsequent writes return the value
of buf,;(z) (line 31) (waiting if necessary). Thus, they depend on that view event.

Otherwise, a non-local read operation on z is one that is not preceded by a write
on z, so wc;(z) = 0. The first such read executes :checkpoint which initiates a view
event (line 123). The value obtained by that event is saved in st;(z) and later buf;(z)
is set to the same value. Finally, that value is returned at line 31. Subsequent non-local
reads use the same value stored in buf;(z). The value remains unchanged, since it only
be overwritten by a write, but the occurrence of a preceding write would mean the read
is local (and since z is not read-only, and there was a preceding non-local read). Thus,
all non-local reads depend on the view event issued during :checkpoint.

Thus, YT}, Yop! = r;(z) — v € T|T; if op, is non-local, 3e! = g;(z)v € T|T; s.t.
v = . O

Lemma 51 (Conservative Recovery Update Events). Any recovery update event in T
18 conservative.



154

7 Safety

Proof. The recovery update event in T; occurs as a result of executing line 127, which
updates the state of z to st;(z). This is done only if rv;(z) # cv(z) and wc;(z) > 0.
Since rv;(x) is set to the value of cv(z) only during :checkpoint and :read_buffer, and
since the requirement that wc;(z) > 0 excludes the latter, this condition checks whether
the current transaction previously made a checkpoint. Executing :checkpoint entails a
view event that sets st;(z) to the current value of z. Hence, if e, = 1s;(z)v € J|T; then
there exists e, = g;(z)v € T|T; s.t. e, < ey. O

Lemma 52 (Clean Recovery Update Events). Any recovery update event in 7 is clean.

Proof. Assume by contradiction that there exists e, = s;(z)v in .7 |T; and e, = g;(z)v
that justifies that e, is conservative, and e/, = xs;(z)v’ in F|T; s.t. T;<%T; and e, <o
e, <5 €q. This implies that T; executes abort (and satisfies the condition rv;(z) =
cv(z)) between the point at which T; executes :checkpoint and abort If that is the
case, as a result of executing abort, Tj sets cv(z) to rv;(z).

Given that T;<T;, then pv;(z) < pv,(z). Since any execution of :checkpoint for
some T}, is guarded by the condition pv,(z) — 1 = 1v(z), then T} executes :checkpoint
before T;. Hence, T; acquires rv;(z) from cv(z) before T; acquires rv;(z) from cv(z).

The value of rv;(z) is equal to the value of cv(z) at the point when T; executed
:checkpoint (i.e. when pv,(z) — 1 = 1v(z)). The value of cv(z) is set to pv,(z) when
T}, executes :release or commit, or to rvg(z) when T} aborts. Thus, when T} executes
:checkpoint, since pv,(z) — 1 = 1v(z), then either:

a) cv(z) = pvy(z) = pv,(z) — 1 (if Tj released z or committed),
b) cv(z) =rvy(z) and rvi(z) < pv,(z) (if Ty aborted), or
¢) cv(z) = 0 (if there is no such Tj).

In any case, rv;(z) < pv,(z).

T; is capable of executing :checkpoint after T commits, aborts, or releases z. Since 7
executes abort between T;’s :checkpoint and abort, then only the third option remains.
If T executes :release for z, then it sets cv(z) to pv;(z). Following the logic from the
previous paragraph, this means that when 7; assigns cv(z) to rc;(z), pv;(z) < cv(z), so
pv,(z) < rvi(z), and thus rv;(z) < rv(z).

Hence, after cv(z) to rv;(z) during abort, it is not true that cv(z) = rv;(z). Thus,
eq cannot occur once el occurs, which is a contradiction. O

Lemma 53 (Needed Recovery Update Events). Any recovery update event in 7 is
needed.

Proof. The recovery update event occurs as a result of executing line 127, which is
guarded by a condition that wc;(z) > 0, so a write must have been executed. Further-
more, pv,(z) —1 > 1v(z) must be true, which implies that T; released z, which means the
closing write executed, so :write_buffer was started asynchronously. If that is the case,
the recovery update event cannot execute until :write_buffer, which means a routine
update event on z will have executed before the recovery update event on z. O

Lemma 54 (Dooming Recovery Update Events). Any recovery update event in T is
dooming.

Proof. Trivially, since any recovery update event occurs only within abort. O

Lemma 55 (Ending Recovery Update Events). Any recovery update event in 7 is
ending.

Proof. Trivially, since any recovery update event occurs only within abort, and there
are no other update or view events on the same variable in abort. O
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Lemma 56 (Recovery Update Consonance). Any recovery update event in T is conso-
nant.

Proof. Since each recovery update is conservative (from Lemma 51), needed (from Lemma 53),
dooming (from Lemma 54), ending (from Lemma 55), and clean (from Lemma 52), then
each recovery update is consonant. O

Lemma 57 (Trace Consonance). Trace .7 is consonant.
Proof. From Lemmas 46-50 and 56. O

Lemma 58 (Comitted Write Obbligato). Given T; that is committed in .7, every non-
local write operation execution op; = w;(x)v—ok; € T|T; is in committed obbligato.

Proof. If T; executes a write corresponding to op;, then, if at the end of the execution it
is true that wc;(x) = wub,(z), :write_buffer is executed, which causes a routine update
event to execute, writing the value of buf;(z) to z.

Since wc;(z) = wub;(z) no other writes follow, and since z is not read-only in T}, then
the value written to z in :write_buffer is the value passed to the write operation. In
that case there is e, = os;(z)v € 7 |T;. Since commit will not return until :write_buffer
finishes executing, then trivially inv, [w;(z)v] =1, €u <F|T; TES; [G].

If it is true that wc;(z) = wub;(z), then :write_buffer is not executed, but during
commit, the same condition is checked again, and if it is not satisfied, T; writes the value
from buf;(z) to z. Thus, by analogy to the paragraph above, there is e, = os;(z)v € F|T;.
Since this is executed within commit, then inv, [wi(x)v] <F|1, Cu =F|T, TES; [C’z] O

Lemma 59 (Closing Write Obbligato). Given T; that is decided on x in T, every non-
local write operation execution op; = w;(x)v—ok; € T|T; is in closing write obbligato.

Proof. If T; executes a write corresponding to op,, then, at the end of the execution, if op,
is a closing write it is necessarily true that wc;(z) = wub;(z). This causes :write_buffer
to be executed (line 43), which causes a routine update event to execute, writing the
value of buf,(z) to .

Since wc;(z) = wub; () no other writes follow, and since z is not read-only in T}, then
the value written to z in :write_buffer is the value passed to the write operation. In
that case there is e, = os;(z)v € 7 |T;. Since commit will not return until :write_buffer
finishes executing, then trivially inv;, [wz(x)v] <1, €u <1, TES; [C’Z} Hence op; ~ ey
T; executes :release only following issuing e, at line 66.

If T;< 57T}, then pv,;(z) < pv,;(z) (Corollary 20). From Lemma 43, to issue any e, =
g;(2)0, since pv,(z) < pv,(z), T; must have executed abort, commit, or :release. Hence
T} does not issue e, before T; executes :release, which requires that 7} issues e, so that
ey <5 €y. O

Lemma 60 (View Write Obbligato). Given T; € .7, if Ty € 7, s.t. T;< 5Tj, if there
is op; = wi(z)0 — ok; € J|T;, and e, = g;(z)0 € |1}, then op; is in view write
obbligato.

Proof. 1 T;< 5Tj, then pv,(z) < pv,(z) (Corollary 20). From Lemma 43, e, occurs only
after T; releases x, commits, or aborts. Since according to the assumption, 7; cannot
abort prior to Tj issuing e,,, T; either releases x or commits prior to 7} issuing e,,.

If T; releases z it executes :release. This can occur as a result of executing line 50
or line 66. Since T; executes op,, then line 50 cannot be executed, since it can only be
reached if T; only ever reads z (condition at line 11). Hence T; must execute line 66,
which is dominated by line 65, which issues a write event e, = s;(z)v, where v is the
value of buf,(z).
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Since :release was executed at line 66, :write_buffer must have been executed at
line 43. Then the value written to z in :write_buffer is the value passed to the write
operation. In that case there is e, = os;(z)v € g |T;. Since commit will not return until
write_buffer finishes executing, then trivially inv; [w;(z)v] <71 €u <F|1; res; [ C;].
Hence op,; ~ e,. T; executes :release only following issuing e, at line 66. O

Lemma 61 (Obbligato). Trace 7 is obbligato.
Proof. From Lemmas 58, 59, and 60. [

Lemma 62 (Decisiveness). Trace 7 is decisive.

Proof. If T;<T;, then for any z € ASet; N ASet;, pv,(z) < pv;(z) (Lemma 45). Before
any view event occurs, T; must pass the condition pv,(z) —1 = 1v(z) in :read_buffer or
:checkpoint. Hence, before any e, = g;(z)v can occur, some T}, s.t. pv,(z) — 1 = pv,(z)
must set pv,(z) to 1v(z). Transaction T} issues a routine update event e, = os;(z)v/,
whenever it commits or releases z. If it releases, it means that wc;(z) = wub;(z), which
implies that op; is closing. Otherwise, T; will update on commit, meaning that it will issue
res; [Cj} once it returns from the commit procedure. Before returning from the closing
write or commit, 7; sets 1v(z) to pv,(z). In either case, this happens only afterward e, is
issued. Since there is no waiting between e,, and either a commit or a last write returning,
no other transaction may execute anything on z in the meantime. Thus, any transaction
Ty s.t. pvy(z) that waits until pv,(z) — 1 = 1v(z) and pvy(z) — 1 = pv,(z) will wait
until 7T} returns from the closing write or commit procedure, and so will any subsequent
transactions according to version order. Thus, if pv,(z) < pv;(z) and 7; commits, then
either op; is closing or e, < 5 res; [Cj] < ey. O
Lemma 63 (Abort Accord). Trace 7 is in abort accord.
Proof. Let T;,T; be two transactions in T, s.t.:
a) T;<T;, T; is aborted in 7.
Assume by contradiction that 7} commits in 7, meaning it executes commit suc-
cessfully. Thus it passes Vz, cv(z) > rv;(z).
Since T;<~T;, Je, = g;(z)v € T|T; and e, = osi(z)v € T|T;.
If T; aborted before e, was issued, then from abort coda, e, = Xsg(2)0 in some
T}, that precedes the abort, which contradicts that T;<~T;. Hence T; aborts only
after e, is issued.
Since T;<T;, then T; <% T}, so from Corollary 20, pv,(z) < pv;(z). From Lemma 43,
e, cannot occur until 7; aborts, commits, or releases x. Since T; aborts after e,,
then it must therefore release = prior to e,.
Since pv,;(z) < pv;(z), then from Lemma 44, rv;(z) < rv;(z). When T; aborts,
it sets cv(z) to rv;(z). From coherence, T; commits after T; aborts. Thus, when
T; commits, cv(z) = rv;(z), so since rv;(z) < rv;(z), then cv(z) < rv;(z), which
contradicts the condition that cv(z) > rv;(z).
Thus T; cannot commit.
b) Je, = osi(z)d € J|T; and e = osj(x)0 € TTj or e = g;(x)0 € F|T; and
eq = Xs;(x)0 € j|Ti, and e, <5 € <5 eq.
Assume by contradiction that 7} commits in 7, meaning it executes commit suc-
cessfully. Thus it passes Vz, cv(z) > rv;(z).

Since e, < e, then from isolation it follows that T;<%T};. Hence, from Corol-
lary 20, pv,(z) < pv;(z). Since e, must be issued during abort, then from coher-
ence, T; cannot commit prior to e, occurring. Furthermore, T; cannot commit until
T; returns from abort.
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If T; returned from abort, then it executed line 128, so cv(z) = rv,(z) prior to Tj
committing.

From Lemma 44, since pv,(z) < pv;(z), then rv;(z) < rv;(z). When T} aborts,
it sets cv(z) to rv;(z). From coherence, T; commits after 7; aborts. Thus, when
T; commits, cv(z) = rv,;(z), so since rv;(z) < rv;(z), then cv(z) < rv;(z), which
contradicts the condition that cv(z) > rv;(z).

Thus T; cannot commit.

Lemma 64 (Commit Accord). Trace 7 is in commit accord.

Proof. Let T;,T; be transaction in .7 s.t. T;<~T; and T} is committed in 7.

Let us assume by contradiction that 7T; is not committed in 7. So T; is either aborted
or live in 7. From coherence, if T; cannot commit until 7; commits or aborts. Thus T;
is not live in .7, so it is aborted in .7.

Since T;<~T;, Je, = gj(z)v € T|T; and Je,, = os;(z)v € T|T;.

If T; aborted before e, was issued, then from abort coda, Je, = Xs(z)O in some Ty,
that precedes the abort, which contradicts that 7);<>~T;. Hence T; aborts only after e, is
issued.

Since T;<~T;, then T; <’ Ty, so from Corollary 20, pv,(z) < pv;(z). From Lemma 43,
e, cannot occur until 7T; aborts, commits, or releases z. Since T; aborts after e,, then it
must therefore release z prior to e,.

Since pv,(z) < pv;(z), then from Lemma 44, rv;(z) < rv;(z). When T; aborts, it sets
cv(z) to rv;(z). From coherence, T; commits after T; aborts. Thus, when T commits,
cv(z) = rv;(z), so since rv;(z) < rv;(z), then cv(z) < rv;(z), which contradicts the
condition that cv(z) > rv;(z).

Thus T; cannot abort.

Lemma 65 (Abort Coda). Trace .7 has coda.

Proof. Let T; be a transaction in .7.

a) If T; aborts in 7 (so r = res;[4;] € Z|T;) then if Je, = o0s,(v)€Z|T; then
for some T (possibly ¢ = j) s.t. j = ¢ or T;<5T;, Je, = 1s;(z)0 € T|T; s.t.
€y <G €q X5 T.

If there is such e, then T; executes :checkpoint (Lemma 41). Since there is such
e, there is also a write operation execution on z in .7 |T; (Lemma 47), so wc;(z) > 0
(line 39).

If there is such e,, then T; executes :release for z or commit. Since T; aborts, then
commit is not possible, so T; executes :release for x. Therefore T; sets 1v(z) to

i) If no other transaction modified cv(z) between the point at which T; executed
:checkpoint and abort, then cv(z) = rv;(z), thus during abort T; satisfies
the condition on line 105 and executes line 127, issuing the recovery event e, .
Since e, is issued during abort, then e, <5 €4 <5 .

i) If there is Tj s.t. T; modifies cv(z) between the points at which T; executed
:checkpoint and abort, s.t. T;<% T}, then T; executes :release, commit, or
abort between the points at which 7; executed :checkpoint and abort. For
the sake of simplicity we assume that there is no other T} that modifies cv(z)
between those two points s.t. Tk—kgTi.
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Since T; executes :checkpoint, it issues a view event e,, = g;(z)0. In addition,
since Tj <5 T, then from Corollary 20, pv,(z) < pv;(z). From Lemma 43, e,
cannot occur until 7} aborts, commits, or releases z. Since T} is supposed to
execute :release, abort, or commit after T; executes :checkpoint, hence after
€y, then T; must therefore release z prior to e,. Hence T} executes commit, or
abort between the points at which T; executed :checkpoint and abort.

If T; executes commit, then in order to set cv(z) to pv,(z), it must be true that
rvi(z) = cv(z). But if T; executed :release, then cv(z) is set to pv,(z). Since
rv;(z) # pv;(z), then rv;(z) # cv(z), so T; cannot set cv(z) as a result of a
commit. Hence, T; executes abort between the points at which 7T; executed
:checkpoint and abort.

If T} executes abort, then this implies that T} executes line 128, and therefore
also line 127, thus 7} issues recovery event e, during abort. Thus, e, <5
g =5 T.

b) If T; commits in .7 (so r = res;[C;] € T|T;) then if Je = os,(v)€TZ|T; or e =
9z (v)€T|T; then for no T} s.t. j =i or T;<5T;, there exists e, = Xs;(z)0 € J|T;
S.t. ey <5 €q <5 T
If there is such e, then T; executes :checkpoint (Lemma 41). If T; successfully
commits, then this means that T; satisfies the condition cv(z) > rv;(z).

Assume by contradiction that there is such e, in some T}. Since e, € J|T}, then
T; must execute line 127, which also means that it executes line 128 and therefore
sets cv(z) to rv;(z).

Since T;=<%T;, then from Corollary 20 pv;(z) < pv,(z) and from Lemma 44,
rv;(z) < rv;(z). Thus, cv(z) < rv;(z) which contradicts that cv(z) > rv,(z).
Thus there is no such T}.

O
Lemma 66 (Coherence). Trace 7 is coherent.

Proof. 1f T;<'5Tj, then pv,(z) < pv;(z). In order to commit or abort, any T}, must pass
the condition pv,(z) —1 = 1tv(z). In addition, each T} sets 1tv(z) to pv,(z) only at the
end of either committing or aborting. Hence, if T}, cannot commit or abort until some 7;
s.t. pvy(z) — 1 = pv;(z) finishes committing or aborting. Hence if T} committed, it must
have passed the condition pvy(z) —1 = 1tv(z), and since pv,(z) < pv;(z), T; must have
committed or aborted before T; committed. Thus, given r; = resj[C’j] € JIT;, then
there is r; = resi[Ci] € ?|TZ or r; = res; [AZ] € j|Tl and r; <z 1j. O
Lemma 67 (Chain Isolation). Given trace J and transactions T;,T; € T s.t. there
is &(T,T;,Ty), V1), € &(T,T;,T;) s.t. ek = osg(x)v, there is no Ty s.t. Jel, = ms;(z)v'
where v = v and €' is between e* and any other event in any transaction in £(.7, T, T;).

Proof. Assume by contradiction that there exists 7} such that Je! = s;(z)v’ and ¢!, is
between eF and any other event e € 7|¢(7,T;, T;). This means that either e € J|T;
and ef <5 €\, <5 e, or AT, s.t. e € T|T,,.

a) Assume e € Z|Tj and ek <5 €\, < e.
From Lemma 42 there is a view event e¥ = gx(z)0 € Ty, and from minimalism
there is only one such event in .7|T}, so e must be a recovery event e = Hsy,(z)v. If
Ty executes €', then from Lemma 53, 3e!, = os;(z)0 in T |T} s.t. ek <4 €. Hence
either e/, <5 eF or ef < €!,. So either ;<% T}, or T, <5 T,.
If 1<% Ty, then el, <z e¥ | so from Lemma 43, e¥ cannot occur until €/, executes
:release, commit, or abort, and since X <5 el,, then only :release is viable.
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If T;<% T, then from version order pv,(z) < pv,(z), so from Lemma 44, rv;(z) <
rvi(z). In order for 7} to issue e,, it must execute abort and satisfy the condition
at line 105. This means that line 128 is executed, so cv(z) = rv;(z).

If subsequently T} issues e,, then it must also satisfy the condition at line 105, so
rvi(z) = cv(z). But since rvi(z) < rvg(z), then cv(z) < rvg(z), which contradicts
that cv(z) = rvi(z).

The execution of a recovery event on x by T} is dominated by line 102, which cannot
be passed until pv,(z) — 1 = 1tv(z). Any transaction T), sets 1tv(z) to pv,(z) as
a last action during commit (line 96) or abort (line 111). Hence T} cannot proceed
to abort until 73, finishes committing or aborting. Since T}, cannot execute line 96
or line 111 if line 88 or line 102 was passed, then T,, cannot proceed to commit or
abort until some other T, s.t pv,,(z) — 1 = pv,,(z) committed or aborted. Hence
T; cannot execute a recovery event until any 7T}, s.t. pv,, (z) < pv,(z) committed
or aborted.

If ;<% Ty, then from version order pv, (z) < pv,(z). Hence, T} executes any events
resulting from abort only after T} returns from abort or commit. Hence if T}
executes e¥ | then e¥ <5 el which contradicts that €', < 5 ek.

Thus, regardless of whether Tl—kng or Tk—%ng there is a contradiction. Therefore,
Ty cannot issue such e!, between e® and another event in .7|Tj.

Assume 3T, s.t. e € j|Tn.

We assume without loss of generality that 7;,<~T}). Thus, there is a view event e
and possibly a routine update event el in .7 |T;,. From minimalism and Lemma 42:
<5 er. Also, since T,,<~Ty, then Ty<5T,, so from Corollary 20, pv,(z) <

n
v

PV, (2)-

If Tj executes €', then from Lemma 53, Je!, = os;(z)0 in F|T; s.t. ef < el Hence
either e, <5 e or ef <5 €. So either T, <%5T,<% T, or T,<%T,<%1T;. Thus,
from Corollary 20, either pv,(z) < pv,(z) < pv,(z) or pv,(z) < pv,,(z) < pv,(z).

(&

If pv, (z) < pv,(z) < pv,,(z), then either ¢!, <5 e or e <5 €.

If e}, < 5 e, then since €}, sets z to v/ s.t. v/ # v for any v s.t. Jos;(z)v” € T|T,
prior to the occurrence of e}. Thus when T}, subsequently executes :checkpoint it
issues e’ = g, (z)v', and since v’ # v, this contradicts that T, <~T.

If e <5 €., then since 7}<%T,m then from version order pv,(z) < pv, (), so
from Lemma 44, rvi(z) < rvy(z). In order for T, to issue e,, it must execute
abort and satisfy the condition line 105. This means that line 128 is executed, so
cv(z) = rvi(z).

If subsequently T; issues e]! then it either executes :write_buffer or commit. Is-
suing an update event at line 65 or line 85 is dominated by checking whether
cv(z) = rvy(z) (for all variables) at line 63 or line 82, respectively. If the condition
is failed, the transaction aborts instead. From Lemma 44, rv;(z) < rv,(z), so if
cv(z) = rvi(z), then cv(z) # rv,(z). Hence, T; will abort rather than issue an
update event. Since during abort only a recovery event may be issued, and only if
rvy,(z) = cv(z), then, similarly, no recovery event is issued. Hence T;, cannot issue
events on x following €!,.

Since each occurrence of a routine update event or a view event checks Vy, cv(y) =
v, (y), then no other such event in 7}, can follow e.. This is a contradiction.

The execution of a recovery event on x by 7} is dominated by line 102, which cannot
be passed until pv,(z) — 1 = 1tv(z). Any transaction T}, sets 1tv(z) to pv,(z) as
a last action during commit (line 96) or abort (line 111). Hence T; cannot proceed
to abort until T, finishes committing or aborting. Since T, cannot execute line 96
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or line 111 if line 88 or line 102 was passed, then 7T, cannot proceed to commit or
abort until some other T,,, s.t pv,(z) — 1 = pv,,(¢) committed or aborted. Hence
T, cannot execute a recovery event until any 7, s.t. pv,,(z) < pv,(z) committed
or aborted.

If pv(z) < pv,(z) < pv,(z), then pv,(z) < pv,(z), so T} executes abort only
after T}, returns from abort or commit. Hence, since €l} <5 res, [Ay] or €} <5
res,, [C’n}, either res,, [An] e J|T, or resn[Cn] € J|T,, and since resn[C’n] <zel
or res, [An} <4 €l then e < 5 el. This contradicts that e}, < 5 e”.

Thus, regardless of whether there is a contradiction. Therefore, T; cannot issue such

el between ef and another event in .7|T},. By extension, it cannot issue €/, between
ek and another event in 7|T,, for any T, € (7, T;,Tj).

O

Lemma 68 (Chain Self-containment). Given , and any transactions T;,T; € T, s.t.
there exists (7, T;,T;), £(7,T;,Tj) is self-contained.

Proof. Given transaction T, s.t. Jed = g,(z)v? € J|T,, assuming that there are any
update events on z in .7 prior to eZ, then Je, = os,.(z)v? € J|T, where e < el
or Jei = ns,(z)v? € T|T, where e < el for some T,. In addition, from Lemma 42,
Jel = gr(2)v" € T|T, s.t. €] <5 el, and €] <5 e, (as applicable).

Then, similarly, assuming that there are any update events on z in 7 prior to e,
then 3ef = os,(z)v" € F|Ts where € < el or Jei = Hs,(z)v” € T|Ts where €5 < el.
And by analogy to T, from Lemma 42, Je], = g,(z)v" s.t. e}, <5 e}, and e, <5 e}, (as
applicable).

It is then clear that as long as there are update events on z preceding a view event in
some transaction, another transaction exists that both views and updates x before that
view event.

Thus, given Ty, and T; € &(7,T;,T;) such that k # [ and 3k = osy(z)v € F|T
Jel, = gi(z)v' € Z|T and ek <7 €l there is a sequence of transactions .7 s.t.:

1. the first transaction is T},
2. the last transaction is 7;, and

3. given some transaction T;, € ., where m # k, T, is preceded in . by some
transaction T, s.t. for €' = g (z)v™ € T |T),, Jel} = osy(z)v™ € T|T,, where
el < el or Jel! = "s,(x)v™ € T|T,, where e} <el.

Given such ., given some T,,,, m # k, there is some T;, that precedes T}, in .%.

If for e = g (z)v™ € T T, Je = osp, (z)v™ € T |T,, where el <el, then T,, < T,.

If, on the other hand, for e = g,,(2)v™ € T|T},, Jel = Hs,(z)v™ € T|T, where
e < e™, then from chain isolation there cannot be a recovery event e = sy (z)0 s.t.
ek <5 el so it follows that k # n. Since e? is conservative, 3™ = g,,(z)v™ € T |T,.

Since k # n and T,, € ., then there is some T, preceding T,in .. Then:

a) If o = k, then T, <~T,.

b) If 0 # k and Je? = os,(2)v™ € T|T, where €2 < el then T, <T,.

¢) If 0 # k and Fe* = xs,(z)v™ € T|T, where €2 <e” then by analogy, either case a),
b) or ¢) applies to T, as it does to T),. So, by analogy, either a) T,, <~ Tk, b) T,, <,
or ¢) there is another preceding transaction in ., etc.
Note, however, that since .7 is finite, and e cannot precede €, in 7, then even-

tually for some such preceding T, € % case a) or b) and not c) will apply. Thus,
there will be some Tj, € .77 s.t. T;,, &1, (where either g = k or g # k).
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Therefore, VT,,, € .7, s.t. m # k, AT,, € 7 s.t. T, T,

In addition, for each such pair T,,, T}, , there is therefore £ (j , Ty Ti). Furthermore,
if T,,<~T,, and for some other T,, T,<~T,, then there is f(ﬁ,To,Tm). Thus, there is
also &(7,Ty,T}), such that if T;<~T,, and T, € .7, then T, € &(7,T,T}). Since
Ty, Ty € (T, T, Ty), then if Ty, € (T, Ty, Th), T € £(T, T, Tj).

If ¥ =T}, - T then trivially v = v/,

Otherwise, since T} € . and | # k, then 3T, € % s.t. T}, so el = os,,(z)v' €
T Ty, for some T, € (T, T;,Tj), s.t. Tp, precedes T; and follows T}, in £(.7,T;,T;) and
ek <gem<gel. O

Lemma 69 (Tree Chain Consistency). Trace 7 is chain consistent.
Proof. From Lemma 67 and Lemma 68. O
Lemma 70 (Trace Harmony). Trace 7 is harmonious.

Proof. Trace .7 satisfies all of the following: a) minimalism from Lemma 40 b) conso-
nance from Lemma 57, ¢) obbligato from Lemma 61, d) coherence, commit accord, abort
accord, and abort coda from Lemmas 66, 64, 63, and 65, e) isolation from Lemma 45,
f) decisiveness from Lemma 62, g) chain consistency from Lemma 69, and h) unique
writes (assumed). O

Corollary 22. History H = Hist(j) is last-use opaque. In consequence OptSVA+R is
last-use opaque.

7.4 Last-use Opacity of OptSVA-CF+R

Given that OptSVA-CF+R is a more restricted variant of OptSVA+R, it follows that it
guarantees safety properties that are at least as strong as OptSVA+R’s.

Theorem 10. Every OptSVA-CF+R history is last-use opaque.

Proof sketch. For the purpose of the proof assume that Obj = Var, Then the require-
ments in synchronizing complex objects in OptSVA-CF+R transactions mean that OptSVA-
CF+R allows a subset of histories allowed by OptSVA+R. Since any history allowed by
OptSVA+R is last-use opaque, then any history allowed by OpSVA-CF+R is also last-use
opaque. O






Implementation and Evaluation

This chapter discusses two distributed TM implementations of versioning algorithms. We
explain the architecture, API, and specific mechanisms these systems employ to comply
with particular versioning algorithms. Each implementation is also comprehensively eval-
uated against other distributed concurrency control mechanisms.

In the first section we present Atomic RMI, an implementation of SVA+R/RSVA+R
that aims to introduce an easy-to-use interface that allows the execution of atomic trans-
actions on top of Java RMI. The idea of Atomic RMI builds on previous work on the
calculus of distributed atomic tasks [96, 98] and was first presented in its current form
in [75, 78].

In the second section we discuss Atomic RMI 2, an implementation of OptSVA-
CF+R/ROptSVA-CF+R that builds on Atomic RMI but exhibits much improved per-
formance thanks to the high degree of parallelism of the underlying concurrency control
algorithm. This implementation was first presented in [82].

8.1 Atomic RMI

In this section, we present Atomic RMI, a programming framework that extends Java
RMI with support for distributed transactions in the control flow model. Atomic RMI is
a fully-pessimistic CF distributed TM with support for programmatic abort (rollback)
whose goal is to provide a simple-to-use and powerful interface for executing atomic code
in distributed systems. It implements SVA+R as the underlying concurrency control
algorithm. We first present an overview of our system architecture, followed by an in-
depth look into specific features of the system, including a discussion of its strengths and
limitations of the implementation. We then evaluate the system and show its efficiency
compared to 2PL-based locking schemes and an optimistic distributed TM.

8.1.1 Overview

The Atomic RMI architecture builds on the architecture of Java RMI, as shown in
Fig. 8.1. Java Virtual Machines (JVMs) running on network nodes can host a num-
ber of discrete shared remote objects, each of which is uniquely identifiable within the
system and registered in an RMI registry located on the same node. Each remote object
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Figure 8.1: Atomic RMI architecture.

specifies an interface of methods that can be called remotely, hence adhering to the het-
erogeneous object model. A client application running on any JVM can ask any registry
for a reference to a specific object. Then, the client can use the reference to call the
object’s methods. Each shared object is located at exactly one specific node (as opposed
to the object being copied or moved to other nodes, or being replicated on several nodes)
and all operations invoked on that object cause the appropriate method’s code to exe-
cutes on the object’s host node and return the result to the client in accordance with
the control flow model. The semantics of the methods are defined by the programmer
and can be anything from simple gets and sets, to complex methods executing arbitrary
server-side code, accessing a database, or even invoking other remote objects.

Atomic RMI introduces transaction-based concurrency control to this model. Clients
calling multiple remote objects in parallel can resort to atomic transactions to enforce
consistent accesses to fields of the objects, and the system makes sure that concur-
rent transactions are executed correctly and efficiently. For this, Atomic RMI employs
SVA+R, a TM concurrency control algorithm described in Section 6.2.2. SVA+R is our
main focus in the following discussion, but Atomic RMI can also switch to RSVA+R, a
variant of SVA+R.

In order to give SVA+R the means to guide execution, so that correctness is guar-
anteed, Atomic RMI introduces remote object proxies into the RMI architecture. For
each shared remote object there is an automatically-generated proxy on the host node
that has a wrapper method for each of the original object’s methods (those available
remotely). Clients are required to access remote objects via proxies, so all calls of the
original object’s methods first pass through wrapper methods. The wrapper methods are
then used to enforce SVA+R: establish whether a given operation can be executed at a
given time, or whether it must be deferred or canceled. Once the algorithm establishes
that a call may proceed, the proxy calls the original method of the remote object. In the-
ory, proxy objects could be located either on the server side or the client side, but since
the communication between the proxy and the shared object is much more frequent than
that between the transaction and the proxy, placing them on the server-side incurs lower
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1 interface Transaction {

2 Transaction();

3 Transaction(boolean reluctant);
A

5 <T> T accesses(T obj);
6 <T> T accesses(T obj, int supr);

s void start();
9  void commit();
10 void retry();
11 void abort();

13 void start(Transactional runnable);
14}

15

16 interface Transactional {

17 void run(Transaction t);

18 }

(a) Atomic RMI transaction interface.

1 Registry r = LocateRegistry.getRegistry(...);
2

s Transaction t = new Transaction();

4 Account a = t.accesses(r.lookup("A"), 2);

5 Account b = t.accesses(r.lookup("B"), 1);

6

7t.start(new Transactional{

s void run(Transaction t) {

9 a.withdraw(100) ;

0 b.deposit(100) ;

12 if (a.balance() < 0)
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1 interface Account extends Remote {

2 int balance();

3 void deposit(int amount);

4 void withdraw(int amount);

5  void reset();

6 F

7

s class AccountImpl

9 extends TransactionalUnicastRemoteObject
10 implements Account {

12 private int balance = 0;

14 public int balance() {
15 return balance;

6}

17 public void deposit(int amount) {
18 balance += amount;

19}

20 public void withdraw(int amount) {
21 balance -= amount;

2

23 public void reset() {

24 balance = 0;

25}

26 }

(b) Shared object definition.

1 Registry r = LocateRegistry.getRegistry(...);
2

3 Transaction t = new Transaction();

4 Account a = t.accesses(r.lookup("A"), 2);
s Account b = t.accesses(r.lookup("B"), 1);
6

7t.start();

8

9 a.withdraw(100);

10 b.deposit (100) ;

11

12if (a.balance() < 0)

13 t.abort(); 13 t.abort();
4} 14 else
51 15 t.commit();

(c) Transaction definition (Transactional object). (d) Transaction definition (in-line).

Figure 8.2: Atomic RMI API and examples.

overheads. In addition, if the proxy is placed on the server, it can easily manage copy
and log buffers, which must be placed on the server to preserve the CF model-—methods
executed using buffers should have side effects on the same node as the original object.

Shared Remote Objects

Shared remote objects used with Atomic RMI are plain unicast (stateful) RMI objects,
except that instead of UnicastRemoteObject (which handles the Java Remote Method
Protocol) they subclass the TransactionalUnicastRemoteObject class. We show an ex-
ample of a bank account object defined in this way in Fig. 8.2b. This class creates proxy
objects when necessary, in effect injecting SVA+R support code into remote method in-
vocations. The methods of remote objects are not limited: as well as simple operations
like reading and writing to a field, they can contain blocks of code which include side
effects, system calls, I/O operations, network communication, etc. that execute on the
server. This freedom is possible in large part due to the pessimistic approach to concur-
rency control used by SVA+R—since these operations often produce visible effects on
the system, they cannot be repeated in case of conflicts, as in the optimistic approach.
The pessimistic approach will only let them execute (up to) once in the course of nor-
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mal operation, although allowances must be made when the user triggers an abort by
manually rolling back some transaction.

In particular, remote methods can also contain method calls to other remote objects,
further distributing the execution of the transaction. Note, however, that if these are
to be accessed transactionally (i.e., with the same correctness guarantees), references to
the objects have to be made known to the transaction a priori for SVA+R to operate
correctly.

Note that Atomic RMI uses the control flow model of execution, since it allows trans-
actions to execute code on the server where the remote object is located, rather than
limiting them to executing code always on their own node, just using remote data, as in
the data flow model. Our intention is to orientate Atomic RMI towards this model, since
it provides greater freedom and expressiveness to the programmer, who can balance the
load between servers and clients by defining the level of processing that is done on remote
objects. Additionally, the control flow model is more versatile, because it can emulate the
data flow model if remote objects only provide methods which simply write or retrieve
data from the host.

Transaction Objects

The programmer declares a transaction using the API provided by Atomic RMI (Fig. 8.2a),
by creating a Transaction object, which is responsible for starting and stopping trans-
actional execution. We show example transaction definitions in Fig. 8.2c and 8.2d. A
transaction can be defined as reluctant at this point, meaning it will never be forced
to abort, because it will not access objects that are released early, instead waiting for
the preceding transaction to commit or abort. Specifically, if transactions are defined as
reluctant, Atomic RMI switches to RSVA+R to execute them.

Once a transaction object is created, it is used to declare the transaction’s preamble,
where the programmer specifies which objects will be used by the transaction and how,
by passing the reference retrieved from the RMI registry to method accesses. The
programmer can use a variant of this method to also provide suprema for any object used
by the transaction. The suprema indicate the maximum number of times the transaction
will execute methods on each shared object throughout the execution of the code. In
the examples in Fig. 8.2c and 8.2d, the preamble declares the transaction will invoke a
method on object A at most twice (line 4), and at most once on B (line 5).

In practice, suprema do not have to be inferred manually, but instead static analysis
(see Chapter 9) or the type system [96] can be used to do it automatically. If suprema
are not given, infinity is assumed (and the system maintains correctness guarantees). If
suprema are provided though, the underlying concurrency control algorithm uses them
to effect early release, and in this way increase the level of parallelism between concurrent
transactions, which has a positive effect on performance.

Instrumentation

When accesses are declared within the preamble, an object stub is created. This stub is
then used within the code of the transaction to invoke methods on a shared object, as with
ordinary RMI stubs. The difference between an ordinary RMI stub and an Atomic RMI
stub is that the latter does not forward method calls to the shared object directly, but
instead uses a proxy object. Proxy objects are created dynamically on the node hosting
the shared object in question at the same time as the stub is created by the transaction.
Each proxy object links one specific shared object on the server side with one specific
transaction (object) on the client side. Proxy objects implement the interfaces of the
shared objects they are linking, and their role is to inject concurrency control code before
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and after the invocation of specific methods of the shared object. The injection is done
via reflection, which supplies the necessary flexibility, allowing arbitrary methods easily
to be supplemented with concurrency control code. Proxy objects can be decommissioned
once a transaction that created them finishes executing.

Transactional Code

Once the preamble of the transaction is in place, the transaction’s code can be specified.
This is done in one of two ways: by implementing the Transactional interface, or in-
line. An example of the former is given in Fig. 8.2c. Here, transactional code is specified
by creating an object implementing the Transactional interface (line 7), whose run
method then defines the logic of the transaction (lines 9-15). In general, a transaction can
contain virtually any code between its start and either commit or abort. This specifically
means that apart from operations on shared objects, any local operations, e.g., irrevocable
operations, can be present within.

As an example of a simple transaction, that transfers an amount of 100 currency from
one bank account to another. Thus, an anonymous Transactional object is created (line
7) and within the run method, the withdraw method is called on object a (the stub for
shared object A), after which the deposit method is called on b (the stub for B). The
programmer can rest assured the concurrency control algorithm will synchronize the
execution of this code so that no other transaction in the system interferes with the
execution in a way that would violate its consistency. If the transaction reaches the end
of its code it attempts to commit. The programmer is also given the option to abort or
retry the entire transaction manually by using the transaction object and invoking either
the abort or retry method. Here, the transaction is rolled back (line 13) if it turns out
that the balance on account A fell below 0 as a result of executing withdraw (line 12).

We define the same transaction in-line in Fig. 8.2d. Here, instead of defining an object
to run transactional code, the transaction is delimited by the invocation of methods
start, commit and abort. Thus the transaction begins at line 7 and finishes at line 13 or
15, depending on whether the condition at line 12 evaluates to true or false. Note that in-
line transactions must explicitly call commit. In addition, Transactional objects handle
the retry operation automatically, by aborting and restarting the transaction, while in-
line transactions require that this be handled programmatically (an exception must be
caught). Thus, Transactional objects are easier to use, while in-line transactions are
more flexible. Otherwise, both methods of defining transactions are equivalent.

Suprema

The main requirement that Atomic RMI poses for its users is the need to provide the
set of objects used by transactions a priori and a strong suggestion to also provide
upper bounds (suprema) on the number of accesses of remote objects accessed by each
transaction. The former is required to acquire versions on each object. The latter allows
SVA+R to decide when objects can be released early—if this information is inexact or
omitted (equivalent to setting the upper bound to infinity) SVA+R will only release
objects when transactions commit or abort. In such cases, although the execution will
nevertheless be correct, Atomic RMI will be less efficient since transactions will wait
more on one another.

However, while it is acceptable for upper bounds to be too high, it is essential that
they are never lower than the actual number of calls a transaction does to a given object.
If the specification is lower then the actual number of accesses, the guarantees provided
by SVA+R cannot be upheld, because a transaction could release an object and then
attempt to access it again. In order to alleviate such situations, transactions throw an
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1t = new Transaction();
2a = t.accesses(a);

3b = t.accesses(b);
at.start();

sfor (i = 0; i < n; i++) {
6 a.foo();

7 b.foo();

8}

9t.release(a);

10 t.release(b);

11 // local operations
12t.commit();

(a) Early release at end of block.

8 Implementation and Evaluation

1t = new Transaction();
2a = t.accesses(a);

3b = t.accesses(b);
st.start();

sfor (1 = 0; 1 < n; i++) {
6 a.foo();

7 if (1 == n)

8 t.release(a);

9 b.foo()

10 ¥

11t.release(b);

12 // local operations
13t.commit();

(b) Conditional early release.

t = new Transaction(); 1t = new Transaction();

2a = t.accesses(a, n); >for (h : hotels)

3b = t.accesses(b, n); 3 trHotels.add(t.accesses(h, 2));
st.start(); 2t.start();

sfor (i = 0; 1 < n; i++) { s for (h : trHotels) {

6 a.foo(); // nth call: release 6 if (h.hasVacancies())

7 b.foo(; // nth call: release 7 h.bookRoom() ;

8} s else

9 // local operations 9 t.release(h);

10 t.commit () ; 10 }

11t.commit();

(c) Early release by supremum. (d) Complementary manual release.

Figure 8.3: Early release examples.

exception when the number of accesses for some object exceeds its supremum. It is then
left to the programmer to resolve the issue by handling the exception. A typical solution
would be to roll back the offending transaction. A more sophisticated technique would
be to roll back the transaction, then modify the suprema and retry.

The upper bounds can be collected manually by the programmer by inspecting the
code and creating the preamble. They can also be inferred automatically by various
means, including a type system (see e.g., [96]) or static analysis. In particular, Atomic
RMI comes with a precompiler tool which statically analyzes transactions to discover
which objects they use, and to derive the upper bounds on accesses to them. With
this information, the precompiler generates the appropriate code and inserts it into the
program. The idea behind the static analysis is described in detail in Chapter 9. The tool
itself is a command-line utility implemented on top of the Soot framework [87].

Manual Early Release

The early release mechanism in Atomic RMI can be triggered automatically (via the
supremum early release mechanism) or manually.

Manual early release is an extension of SVA4R that we introduce in Atomic RMI,
where, if the programmer has good knowledge of when an object stops being used in a
transaction from the semantics of the program, she can allow that remote object to be
released by invoking the release operation. The release operation simply waits for the
access condition on a given remote object to become true, and then releases it as if its
upper bound was reached. This mechanism must be used carefully, so that a released
object is not accessed again later on (causing an exception). On the other hand, the
mechanism can be used to complement the early release mechanism supplied by SVA+R,
as we explain below.

Note the simple example in Fig. 8.3a, where a transaction calls methods on shared
objects a and b in a loop. If manual release was to be used, the simplest way to use it is
to insert release instructions at the end of the loop at lines 9-10. However, it will mean



8.1 Atomic RMI

169

that before a is released, the transaction unnecessarily waits until b executes as well. If
a and b are remote objects, each such call can take a long time, so this simple technique
impairs efficiency.

Instead, the programmer should strive to write transactions like in Fig. 8.3b. Here, a is
released at lines 7-8, in the last iteration of the loop before the method call on b is started.
An earlier release improves parallelism, but the solution requires that the programmer
spend time on optimizing concurrency (which the TM approach should avoid) and to
clutter up the code with instructions irrelevant to the application logic. In addition, the
release in both examples sends an additional network message to a and b (because the
release method requires it), which can be relatively expensive.

However, if the SVA+R algorithm is given the maximum number of times each object
is accessed by the transaction, i.e., that a and b will be accessed at most n times each,
then Atomic RMI can determine which access is the last one as it is happening. Then,
the transaction’s code looks like in Fig. 8.3c, where suprema are specified in lines 2-3,
but the instructions to release objects are hidden from the programmer, so there is no
need for supplementary code. Additionally, since release is done as part of the nth call on
each object, there is no additional network traffic. Furthermore, object a does not wait
for the method b.foo() to execute.

However, releasing by suprema alone is not always the best solution, since there
are scenarios when deriving precise suprema is impossible. In those cases the manual
early release complements the suprema-based mechanism in increasing the parallelism
of transactional executions. One such case is shown in Fig. 8.3d, where a transaction
searches through objects representing hotels, and books a room if there are vacancies.
Each interaction with a hotel can take up to two method calls: vacancy check (line 6)
and booking (line 7). However the supremum will only be precise for one hotel, the first
one with vacancies. Other hotels that do not have vacancies, will not be asked to book
a room, so there is only one access. This means that the supremum will not be met for
those cases until the end of the transaction, so those hotel objects will only be released on
commit. This is particularly paradoxical, since the transaction will retain exclusive access
longer to objects it does not intend to use. Hence, they are manually released on line 9,
so the objects are not needlessly retained and can be accessed by other transactions as
soon as possible.

Irrevocable Operations

The greatest advantage of Atomic RMI is its pessimistic algorithm, which allows any
operation to be used within transactions. In particular, irrevocable operations pose no
problem. These are operations that have visible effects on the system and cannot be easily
reverted, e.g., system calls, sending network messages. This is not true for optimistic
transactions, because conflicts cause aborts, which then cause irrevocable transactions
to be repeated.

For the same reason, Atomic RMI allows transactions to include locking or to start
new threads within transactions. This is also often not possible in optimistic transactions,
where aborts can cause threads to be restarted or locks to be acquired and not released
(especially, if conflicts are detected eagerly). However, not only does allowing these sorts
of operations improve expressiveness, but it also makes working with legacy code easier.

While it is true that Atomic RMI transactions operating according to SVA+R do not
typically forcibly abort (as we remark in Section 8.1.2, even if programmatic aborts occur,
cascading aborts do not happen in benchmarks), it is possible for transactions to abort
in potentia. In order to make forced aborts impossible for specific transactions, Atomic
RMI provides an interface to make transactions reluctant as per RSVA+R, meaning that
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they are never forced abort by the TM, and therefore are completely safe for irrevocable
operations.

Buffering

In order to buffer remote objects, Atomic RMI introduces a universal mechanism that
deep-copies shared remote objects. The copy is created and kept on the same JVM as
the original object, to avoid the cost of moving it across the network. The copy is created
by reflection: a new object of the same type is created, and all of its fields (barring
concurrency-control-related data) are set to the same values as the original object. This
method of copying is used to implement both the st and the buf buffers used by SVA+R.

Nesting and Recurrency

Atomic RMI supports transaction nesting, albeit with limitations. The programmer can
create a transaction within another transaction, but in such cases it is vital to ensure
that they do not share objects. Otherwise, the inner transaction will wait for the outer
to release the objects, while the outer will not release them until the inner finishes. In
effect, a deadlock occurs.

Atomic RMI also supports transaction recursion. That is, a transaction may call itself
within itself (for instance, if a transaction is defined within a method). The recursion will
be treated as a single transaction. The execution will proceed until the commit and abort
methods are called, in which case the transactional method is exited and the transaction
finishes as normal. Keep in mind, however, that the suprema for object accesses must
still be defined for the entire execution of the transaction.

Fault Tolerance Mechanisms

In distributed environments partial failures are a fact of life, so any DTM system must
have mechanisms to deal with them. Atomic RMI handles two basic types of failures:
remote object failures and transaction failures.

Remote object failures are straightforward and the responsibility for detecting them
and alarming Atomic RMI falls onto the mechanisms built into Java RMI. Whenever
a remote object is called from a transaction and it cannot be reached, it is assumed
that this object has suffered a failure and an exception is thrown. The programmer
may then choose to handle the exception by, for example, rerunning the transaction, or
compensating for the failure. Remote object failures follow a crash-stop model of failure:
any object that crashed is removed from the system.

On the other hand, a client performing some transaction can crash causing a trans-
action failure. Such failures can occur before a transaction releases all its objects and
thus make them inaccessible to all other transactions. The objects can also end up in
an inconsistent state. For these reasons transaction failures need also to be detected and
mitigated. Atomic RMI does this by having remote objects check whether a transaction
is responding. If a transaction fails to respond to a particular remote object (i.e., if it
times out), it is considered to have crashed, and the object performs a rollback on itself:
it reverts its state and releases itself. If the transaction actually crashed, all of its objects
will eventually do this and the state will become consistent. On the other hand, if the
crash was illusory and the transaction tries to resume operation after some of its objects
rolled themselves back, the transaction will be forced to abort when it communicates
with one of these objects.
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8.1.2 Evaluation

In this section we present the results of a practical evaluation of Atomic RMI. First, we
compare the performance of Atomic RMI to other distributed concurrency control mech-
anisms, including another distributed TM. In the second test, we check the performance
of Atomic RMI under different Java Runtime Environments (JRES).

Benchmarks

For our comprehensive evaluation we used a micro-benchmark and three complex bench-
marks. We based our implementation of the benchmarks on the one included in HyFlow
[68].

The distributed hash table benchmark (DHT) is a micro-benchmark containing a num-
ber of server nodes acting as a distributed key-value store. Each node is responsible for
storing values for a slice of the key range. There are two types of transactions. A write
transaction selects 2 nodes and atomically performs a write on each. A read transaction
selects 4 nodes and performs an atomic read on them. The benchmark is characterized
by small transactions (2-4 remote operations, few local operations) and low contention
(few transactions try to access the same resource simultaneously).

The bank benchmark simulates a straightforward distributed application using the
bank metaphor. Each node hosts a number of bank accounts that can be accessed re-
motely by clients. Bank accounts allow write operations (withdraw and deposit) and a
read operation (get balance). Clients perform either write or read transactions. In the
former type, a transfer transaction, two random accounts are selected and some sum is
withdrawn from one account and deposited on the other. In the latter type, an audit
transaction, all the accounts in the bank are atomically read by the transaction and a
total is produced. The benchmark has both short and long transactions and medium to
high contention, depending on the number of read-only transactions.

The loan benchmark presents a more complex distributed application where the ex-
ecution of the transaction is also distributed. Each server hosts a number of remote
objects that allow write and read operations. Each client transaction atomically executes
two reads or two writes on two objects. When a read or write method is invoked on a re-
mote object, then it also executes two reads or writes (respectively) on two other remote
objects. This recursion continues until it reaches a depth of five. Thus, each client trans-
action “propagates” through the network and performs 30 operations on various objects.
Hence, the benchmark is characterized by long transactions and high contention, as well
as relatively high network congestion.

Finally, the vacation benchmark is a complex benchmark (originally a part of STAMP
[58]), representing a distributed application with the theme of a travel agency. Each server
node supplies three types of objects: cars, rooms, and flights. Each of these represents
a pool of resources that can be checked, reserved, or released by a client. When some
resource is reserved, associated reservation and customer objects are also created on
the server. Clients perform one of three types of transactions. Update tables selects a
number of random objects and changes their price to a new value. Delete customer
removes a random customer object along with any associated reservations. Note that
the delete customer operation requires some transactions to execute speculatively and
(programmatically) abort when the list of objects reserved for deletion becomes out of
date. Make reservation is a read-dominated transaction that searches through a number
of objects, chooses one of each type (car, room, flight) that meet some price criterion.
Once the objects are chosen, the transaction may create a reservation. The benchmark
has medium to large transactions with a lot of variety, and medium to high contention.
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Frameworks

We evaluate Atomic RMI with specified precise suprema (where possible). All versions
of Atomic RMI use manual early release in the vacation benchmark to improve efficiency
while making reservations (while searching through remote objects). In all other cases,
transactions release objects when they reach their supremum.

We compare Atomic RMI with standard Java RMI with mutual exclusion locks (or
mutexes, denoted Exclusion Locks) and Java RMI with read/write locks (denoted R/W
Locks). They feature fine grained locking: there is one lock per remote object. The locks
are used like a CR2PL transaction: all locks are acquired at the start (although we
simplify the lock acquisition procedure by using a predefined locking order, which is
sufficient to avoid deadlocks), and they are all released on commit. We use this locking
scheme with mutual exclusion locks as a baseline algorithm, which is very simple to use
and can be expected to be seen in applications written by conventionally trained software
engineers. On the other hand, read/write locks present one of the most popular types of
performance optimizations in concurrent systems: parallelizing reads.

We also compare Atomic RMI with HyFlow [68], another Java RMI-based implemen-
tation of distributed transactional memory, implementing the Distributed Transactional
Locking (DTL) algorithm, a variant of TL2, a well-known optimistic TM. Since the tech-
nology used in both Atomic RMI and HyFlow is the same, the comparison should show
the performance difference between the pessimistic and optimistic approaches to TM.

Testing Environment

In each of the benchmarks every node performs the réle of a server hosting a number of
publicly accessible remote objects, as well as a client running various randomly chosen
types of transactions using remote objects from any server.

We perform our tests on a 10-node cluster connected by a private 1 Gb network. Each
node is equipped with two quad-core Intel Xeon 1L.3260 processors at 2.83 GHz with 4
GB of RAM each and runs a OpenSUSE 13.1 (kernel 3.11.10, x86_ 64 architecture). We
use the 64-bit IcedTea 2.4.4 OpenJDK 1.7.0_51 Java runtime (suse-24.13.5-x86_64) for
tests involving comparison between multiple frameworks. We also use this JRE (denoted
OpenJDK 1.7.0_51 on the graphs) alongside Oracle’s 64-bit 1.7.0_55-b13 Java Runtime
Environment with Java HotSpot build 24.55-b03 (denoted Oracle 1.7.0_55), and Ora-
cle’s 64-bit 1.8.0_05-b13 Java Runtime Environment with Java HotSpot build 25.5-b02
(denoted Oracle 1.8.0_05) for evaluating behavior when running on different JREs. We
also attempted to run the benchmarks on the last version of Oracle JRockit (1.6.0_45-
b06), but were unsuccessful due to compatibility issues with the libraries used for the
implementation of the benchmarks.

Each of the benchmarks is run on 2-10 nodes. Every node hosts one server with as
many objects as specified by the benchmark. In addition, every node hosts one client with
24 threads each. So, for example, on 10 nodes there are 240 simultaneous transactions
accessing objects on 10 nodes. Threads execute transactions selected at random. In one
batch of tests there are 20% of read transactions and 80% of write transactions in each
benchmark. In the other batch the ratio is reversed.

Results

The results of the comparison between concurrency control mechanisms are presented
in Fig. 8.4. Each benchmark is presented on two graphs: one for a 20% read-to-write
operation ratio, and the other for an 80% read-to-write operation ratio. Points on the
graph represent the mean throughput (on the y-axis) from the given benchmark run on
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a particular number of nodes (on the x-axis). The results are shown as a percentage
improvement in relation to the execution of Exclusion Locks.

The results of the DHT benchmark show that in a low-contention environment with
short transactions Atomic RMI is comparable to performance obtained by using both fine
grained R/W Locks and HyFlow, and all three are much better than fine grained Exclu-
sion Locks. Atomic RMI’s advantage over Exclusion Locks comes from early release and
allowing some transactions to execute in part in parallel. Thus, there are more transac-
tions executing at once, so more of them can go through the system per unit of time. R/W
Locks and HyFlow attain a very similar result, by allowing reads to execute in parallel
with other reads, therefore also allowing some transactions to execute in part in parallel.
The gain from treating reads specially is very similar to what is gained from early release,
so the shapes of the graphs are very similar. However, the overhead of maintaining all
of the distributed TM mechanisms in Atomic RMI and HyFlow—including rollback sup-
port (so making copies of objects) and fault tolerance (extra network communication)—is
greater than the overhead of R/W Locks. Hence, Atomic RMI and HyFlow perform con-
sistently worse in DHT than R/W Locks. Note also that the advantage that the more
subtle frameworks have over Exclusion Locks increases in proportion to the number of
nodes in the network, hinting at better scalability.

The results for Bank show a case with a higher contention, where the higher cost
of setting up HyFlow’s and Atomic RMI’s more complex concurrency control pays off,
so both frameworks tend to outdo R/W Locks (and Exclusion Locks) on average. The
benchmark also shows the impact of the two approaches to parallelizing transactions.
Since R/W Locks and HyFlow allow executing reads in parallel, they both gain a signif-
icant boost in the 80% read case, since any number of transactions can simultaneously
read from the same object. To the contrary, Atomic RMI parallelizes transactions on the
basis of early release rather than reads, so it is forced to wait for a preceding transac-
tion to release the right object for two transactions to be able to execute simultaneously.
Since transactions here contain operations in random order, Atomic RMI’'s SVA+R al-
gorithm is often forced to wait for a preceding transaction to release the right object.
This still gives performance similar to that of R/W Locks, but it means Atomic RMI
is outperformed by HyFlow. On the other hand, in the 20% read case, R/W Locks and
HyFlow have fewer reads to parallelize, so they execute on a par with Exclusion Locks,
HyFlow performs particularly poorly in this scenario because of the high number of
aborts caused by speculative execution of write operations. Here, HyFlow transactions
abort in between 15.5% and 51% cases (as opposed to between 4.25% and 8.9% in the
80% read case), while other frameworks do not perform aborts in this scenario at all. In
contrast, Atomic RMI performs significantly better than the other frameworks, since its
early release mechanism does not depend on a large read-to-write ratio. In fact, Atomic
RMI performs similarly in both the 20% and the 80% read case, reliably achieving a
throughput of around 200% in both scenarios. Nevertheless, it is clear that Atomic RMI
could benefit from introducing support for read/write differentiation in addition to the
existing mechanisms.

The Loan benchmark shows that Atomic RMI is also much better at handling long
transactions and high contention than all other types of the concurrency control mech-
anisms. Again, since Atomic RMI does not distinguish between reads and writes, both
scenarios are effectively the same in terms of performance and an increase in throughput
comes from releasing objects as early as possible. However, as opposed to Bank, in the
Loan benchmark, Atomic RMI can effect an early release while about half of the trans-
action still remains to be executed. Hence, Atomic RMI transactions run in parallel in
part to the transaction preceding it, and in part to the one following it. This creates a
significant performance gain compared to R/W Locks and HyFlow. These, again, differ
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in performance between the 20% read case and the 80% read case, but in this high a
contention their advantage over Exclusion Locks is not as great as Atomic RMTI’s.

Finally, Vacation shows the behavior of more complex transactions in a high con-
tention environment. In this scenario, there is an actual advantage to being able to roll
back and this is a component in the performance gain. Atomic RMI makes copies for
abort on the server-side, so there is no network overhead associated with either making
a checkpoint or reverting objects to an earlier copy. On the other hand, the rollback
mechanism in the locking schemes requires that clients copy objects and store them on
the client side, which makes them costly operations. Atomic RMI, therefore, has a big
advantage over both locking mechanism, from rollback support alone. In particular, the
transaction that requires rollback is delete customer, which makes up for 10% and 40% of
transactions in Vacation (in the 80% and 20% read case, respectively). Furthermore, the
complexity of this real-world—like benchmark makes transactions increasingly difficult to
parallelize using locks, since often it is necessary to lock a superset of a transaction’s read
set and write set, and since read-only transactions are less likely to occur. Hence, R/W
Locks struggle with performance, even falling behind Exclusion Locks at times.

The comparison of HyFlow and Atomic RMI in Vacation is much more involved. Since
read transactions do not imply read-only transactions here, there is much less to be gained
by parallelizing reads. Here, even a read transaction can write, so cause conflicts and
therefore effect aborts in HyFlow. It is the order of operations and the implementation
of the read transaction that explains why Atomic RMI does better than HyFlow in
the 80% read case and not in the 20% read case. First of all, the make reservation
transaction initially performs a sequence of reads to a large set of remote objects, until
one is found that fits some specified criterion. Since the object can be released instantly
if the criterion is not met, then Atomic RMI allows many parallel transactions to work
on the same objects. And since reads in Vacation are done in the same order in each
transactions, any two Atomic RMI transactions can execute almost entirely in parallel.
On the other hand, since there are writes at the end of make reservation, if HyFlow
executes these in parallel, a conflict can occur and cause an abort. This is why there is
the advantage of Atomic RMI over HyFlow in an 80% read scenario, where the make
reservation transaction is prevalent. On the other hand, the necessary rollback in delete
customer is more problematic in Atomic RMI, since it may cause a cascade of aborts.
Furthermore, update tables performs reads in random order, so Atomic RMI encounters
the same problems as in the 80% read case in Bank. HyFlow avoids both these problems
through speculation and avoiding cascading aborts. Hence HyFlow outperforms Atomic
RMI in the 20% read case where these particular transactions are a bigger part of the
workload. However, both Atomic RMI and HyFlow perform quite well, achieving a typical
speedup of at least 200% in comparison to Exclusion Locks.

On the whole, Atomic RMI is able to perform just as well as fine grained locks
in all environments, with only small penalty for additional features in environments
particularly hostile to versioning algorithms (low contention, short transactions). On
the other hand, in environments for which versioning algorithms were intended (high
contention, long transactions, mixed reads and writes) Atomic RMI gains a significant
performance advantage over fine grained locking. In comparison to HyFlow, both TM
systems perform variously in different environments. On average, Atomic RMI tends to
perform better than HyFlow in high contention, while it tends to be outperformed by
HyFlow in cases where read-only transactions can be treated specially. Hence Atomic
RMI is preferable to R/W Locks and Exclusion Locks in all cases, while the decision to
use Atomic RMI in place of an optimistic TM like HyFlow should be made depending
on the workload.

The results under different Java Runtime Environments are presented in Fig. 8.5.
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Points on the graph represent the mean throughput in transactions per second (on the
y-axis) from the given benchmark run on a particular number of nodes (on the x-axis).
The benchmarks indicate that Atomic RMI performs in a relatively similar manner. The
most significant difference can be seen when relatively few nodes are involved. This is best
visible in Vacation for tests with 4 nodes or fewer, where Oracle 1.8.0_85 significantly
outperforms either of the Java 7 implementations. The results also show a decline in
throughput as more nodes are added. This is because each added node increases the rate
of conflicts between transactions, as well as network congestion.

8.1.3 Discussion

The transaction abstraction is easy for programmers to use, while hiding complex syn-
chronization mechanisms under the hood. We use that to full effect by employing SVA+R,
an algorithm based on solid theory that allows high parallelism. Additionally, the pes-
simistic approach that is used in the underlying algorithm allows our system to present
fewer restrictions to the programmer with regard to what operations can be included
within transactions. Apart from limited transaction nesting, very little is forbidden within
transactions.

Supremum-based early release makes our programming model efficient and relatively
burden-free (especially, when static analysis is employed). Upper bounds on object calls
are hard to estimate but the effort pays off since they allow to release objects as early as
possible in certain cases. Our evaluation shows that due to the early release mechanism,
Atomic RMI has a significant performance advantage over fine grained locks.

However, given the results of our evaluation, it is necessary to implement a different
versioning algorithm that will distinguish between reads and writes, while retaining the
early release mechanism. Combining the two optimizations should improve the efficiency
of the system even further. We proceed to test this prediction by introducing Atomic
RMI 2 an improved version of Atomic RMI that implements exactly that kind of a
concurrency control algorithm.

8.2 Atomic RMI 2

In this section we present Atomic RMI 2, an implementation of OptSVA-CF+R (de-
scribed in Section 6.4) that builds on Atomic RMI. The creatively named Atomic RMI 2
provides a simple-to-use API that allows programmers to implement consistent trans-
actions as straightforwardly as if using much simpler mechanisms, such as distributed
coarse-grained locking. However, instead of employing an operation-type agnostic con-
currency control algorithm like its predecessor, Atomic RMI 2 uses one which recognizes
three classes of operation types: reads, writes, and updates, and applies optimizations
with respect to the execution of these operations. Atomic RMI 2 uses the same API as
Atomic RMI, only extended to allow the identification of these operation types in the
objects’ interfaces, as well as to allow transactions to specify separate suprema for each
operation type.

As a result of distinguishing operation types, the algorithm allows for the execution of
transactional code to be highly parallelized, which leads to the improved performance of
the DTM system. We demonstrate this in a comprehensive evaluation of Atomic RMI 2,
showing that it produces a significant performance increase over its predecessor as well as
various lock-based distributed concurrency control solutions. In addition, we show that
Atomic RMI 2 performs better than, or comparably to HyFlow2 (depending on contention
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1 interface Transaction { 1 interface Account extends Remote {
> Transaction(); 2 @Access(Mode.READ) int balance();
3 Transaction(boolean reluctant); 3 OAccess(Mode.UPDATE) void deposit(int amount) ;
4 4 QAccess(Mode.UPDATE) void withdraw(int amount);
5 <T> T reads(T obj); 5 QAccess(Mode.WRITE) void reset();
6 <T> T writes(T obj); 6}
7 <T> T updates(T obj); 7
s <T> T accesses(T obj); s class AccountImpl
9 9 extends TransactionalUnicastRemoteObject
10 <T> T reads(Tobj, int rub); 10 implements Account {
11 <T> T writes(T obj, int wub); 11
12 <T> T updates(T obj, int uub); 12 private int balance = 0;
13 <T> T accesses(T obj, int rub, 13
14 int wub, 14 public int balance() {
15 int uub); 15 return balance;
16 6}
17 void start(); 17 public void deposit(int amount) {
15 void commit(); 18 balance += amount;
19 void retry(Q); 19 F
20 void abort(); 20 public void withdraw(int amount) {
21 21 balance -= amount;
22 void start(Transactional runnable); 2}
23 } 23 public void reset() {
24 24 balance = 0;
25 interface Transactional { 2% X
26 void run(Transaction t); 26 }
27 }
(a) Atomic RMI 2 transaction interface. (b) Shared object definition.

1 Registry r = LocateRegistry.getRegistry(...); 1 Registry r = LocateRegistry.getRegistry(...);
2 2
3 Transaction t = new Transaction(); 3 Transaction t = new Transaction();
4 4
5 Account a = t.accesses(r.lookup("A"), 1, 0, 1); 5 Account a = t.accesses(r.lookup("A"), 1, 0, 1);
6 Account b = t.updates(r.lookup("B"), 1); 6 Account b = t.updates(r.lookup("B"), 1);
7 7
8 t.start(new Transactional() { s t.start()
9 void run(Transaction t) { 9
10 a.withdraw(100) ; 10 a.withdraw(100);
11 b.deposit (100) ; 11 b.deposit(100);
12 12
13 if (a.balance() < 0) 13 if (a.balance() < 0)
14 t.abort(); 14 t.abort();
15 } 15 else
6 }); 16 t.commit();

(¢) Transaction definition (Transactional object). (d) Transaction definition (in-line).

Figure 8.6: Atomic RMI 2 API and examples.

and operation length), but does so while avoiding aborting transactions altogether, thus
allowing the use of irrevocable operations. Given this, we show that a pessimistic system
can be as well-performing as an optimistic one. In this way we also introduce a CF DTM
with competitive performance that was lacking.

8.2.1 Overview

Atomic RMI 2 is a re-implementation of the Atomic RMI framework. Because of this, the
two systems share the same architecture and most of the same API. The differences stem
from the requirements of the improved concurrency control algorithm, as follows. Since
OptSVA-CF+R requires that read, write, and update methods be handled differently,
interfaces of shared objects are declared differently in Atomic RMI 2. Furthermore, since
OptSVA-CF+R uses separate upper bound values for the three types of operations, the
definition of transaction preambles changes in Atomic RMI 2 to allow for separate defi-
nition of suprema for each operation type. Finally, Atomic RMI 2 introduces new buffer
types and new modules for controlling threads, to meet the requirements of OptSVA-
CF+R for buffering remote objects without synchronization and for transaction-local
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asynchronous execution. We discuss each of these features below.

Shared Remote Objects

Atomic RMI 2 shared remote objects are unicast RMI objects, that implement an ar-
bitrary interface and subclass the TransactionalUnicastRemoteObject, just like in
Atomic RMI. However, since OptSVA-CF+R requires that operations be categorized as
either reads, writes, or updates, the programmer should provide annotations in the inter-
face to indicate each method’s category. This is done via the @Access annotation which
takes either the Mode.READ, Mode.WRITE, or Mode.UPDATE argument to indicate specific
operation categories. These categories accord with the categories defined by OptSVA-
CF+R: a read operation cannot modify the state of the object and may return a value,
a write operation cannot view the state of the object and cannot return a value, and an
update operation may both modify and view the state of the object, and may return a
value. We show an example of the bank account objects’ interface with annotations in
Fig. 8.6b. If a method is not otherwise annotated, it is conservatively assumed to be an
update method.

Transaction Objects

Clients execute operations on shared objects as part of transactions using the transaction
interface provided by Atomic RMI 2 (see Fig. 8.6a). The API is analogous to that used
in Atomic RMI (see Section 8.1.1): transactions can be either defined in-line or via
Transactional interface (see Fig. 8.6¢ and 8.6d), and they can also be prevented from
aborting by being defined as reluctant (which makes Atomic RMI 2 switch its concurrency
control algorithm from OptSVA-CF+R to ROptSVA-CF+R).

The one significant difference introduced into Atomic RMI 2 transactions’ API is that
in the preamble the programmer specifies which objects will be used by the transaction
and how, by passing the reference retrieved from the RMI registry to method reads,
writes, updates, or accesses. The read method is used to specify that only read op-
erations will be executed on that object by this transaction. Similarly, the writes and
updates methods are used to specify that only writes or updates, respectively, will be
executed on the object by this transaction. Finally, accesses is used to declare that
methods of any kind may be executed on this object within this transaction.

The programmer can use variants of these methods to also provide suprema for any
object used by the transaction. There are three types of suprema that indicate the max-
imum number of times the transaction will execute read, write, and update methods, on
each shared object throughout the execution of the code. In the example in Fig. 8.6¢ the
preamble declares the transaction will invoke at most one read method, no write meth-
ods, and at most one update method on shared object A (line 5). It also declares that
the transaction will execute at most one update method, and no read or write methods
on B (line 6).

Buffering

Atomic RMI 2 implements copy buffers just like Atomic RMI, but also introduces an im-
plementation of the log buffer 1og used by OptSVA-CF+R. A log buffer for some object
implements the same interface as the original object, but when an operation is supposed
to be executed on the log buffer, the code of the method is not executed right away.
Instead, a method object is created, and this object as well as the invocation’s argu-
ments are appended to a linked list associated with the buffer. This does not require any
synchronization with the actual object that the log buffer represents. However, the log
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buffer in our implementation does not execute any methods until it is applied explicitly
to an actual object, by the concurrency control algorithm (which does require synchro-
nization). When the log buffer is applied, each of the methods on its list is executed on
the actual object in sequence.

Executor Thread

OptSVA-CF+R calls for asynchronous execution of certain procedures using separate
threads. Given the overhead that starting a thread creates, Atomic RMI 2 uses one
executor thread per JVM. The executor thread is always running and transactions assign
it tasks. Each task consists of a condition and code. The code of the task is meant to be
executed only when the condition is satisfied. Once the thread receives a task, it checks
whether it can be immediately executed. If not, it queues up the task and waits until
any of the two counters that can impact the condition change value (1v and 1tv). When
any of the counters change, the thread re-evaluates the relevant conditions and executes
the task, if the condition so allows.

8.2.2 Evaluation

In this section we present the results of a practical evaluation of Atomic RMI 2 in the
context of other distributed TM concurrency control mechanisms operating in a similar
system model.

Benchmark

We perform our evaluation using a 16-node cluster connected by a 1Gb network. Each
node had two quad-core Intel Xeon L3260 processors at 2.83 GHz with 4 GB of RAM
each and runs OpenSUSE 13.1 (kernel 3.11.10, x86_ 64 architecture). We use Groovy
version 2.3.8 with the 64-bit Java HotSpot(TM) JVM version 1.8 (build 1.8.0_25-b17).

The evaluation is performed using our own distributed implementation of Eigenbench
[47]. Eigenbench is a flexible, powerful, and lightweight benchmark that can be used for
comprehensive evaluation of multicore TM systems by simulating a variety of transac-
tional application characteristics.

Eigenbench uses three arrays of shared objects, each of which is accessed with a
different level of contention. The hot array contains some number n of objects that can be
accesses by transaction in any thread. The access to objects in the hot array is controlled
by the TM. The mild array contains n objects per thread. The access to these objects
is also controlled by the TM, but the objects are partitioned in such a way, that no two
transactions ever conflict on them. The third, cold array is populated and partitioned
like the mild array, but it is only accessed non-transactionally. Each object within any of
the three arrays is a reference cell, i.e., an object that holds a single value, that can be
either read or written to—an object-oriented equivalent of a variable. These arrays are
accessed by client transactions. Each transaction accesses semi-randomly selected objects
in all three arrays in random order, with the exception that the number of accesses to
each type of array is specified, and the ratio of read operations to write operations on
each type of array is also specified. The benchmark has a specified locality, which is a
probability with which transactions will access the same object several times. When an
object is being selected by a transaction, a random number is generated, and if it is below
the locality probability, the object is selected at random from the transaction’s history of
objects accessed thus far. Otherwise, the object is selected randomly from the pool of all
shared objects. Locality and the length of the history are parameters of the benchmark.
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Frameworks

The first framework we use for evaluation is Atomic RMI. Since Atomic RMI and Atomic
RMI 2 use the same basic technology and provide the same guarantees, the compari-
son between them shows off the optimizations introduced in OptSVA-CF+R over pure
SVA+R. The second framework we compare Atomic RMI 2 against is HyFlow2 [86], a
state-of-the-art distributed TM system implemented in Scala. HyFlow2 implements the
optimistic Transactional Forwarding Algorithm (TFA) (see Section 4.2.2) and operates
in the data flow model. TFA is opaque but does not have provisions for irrevocable
operations.

We also compare all three TM systems against distributed concurrency control so-
lutions based on locks and C2PL algorithms. Specifically, we use distributed mutual
exclusion locks (marked Mutex) and read-write locks (marked R/W Locks), both custom-
tailored and implemented on top of Java RMI. In both solutions a lock is created for
every shared object in the system. Each locking solution has two variants. The first vari-
ant is a straightforward usage where every transaction locks every object from its access
set when it commences, and releases each of object on commit. This is equivalent to
a conservative rigorous two-phase locking solution and satisfies opacity. We denote this
variant as CR2PL. The second variant represents conservative two-phase locking (C2PL),
and is a more advanced implementation from the programmer’s point of view. Here, each
transaction also initially locks each of the objects in its access set, but the programmer
determines the last access on each object in the transaction’s access set and manually
releases the lock early (prior to commit). C2PL locking satisfies last-use opacity under
the assumption that the last access is always determined correctly. Finally, we also use a
solution with a single global mutual exclusion lock (GLock) that is acquired by each trans-
action for the duration of the transaction’s entire execution. This produces a completely
sequential execution and acts as a baseline for the purpose of the comparison.

Results

Fig. 8.7 illustrates the change of throughput (measured as the number of executed opera-
tions on shared data per second) as the number of clients increases from 64 (4 per node)
to 1024 (64 per node). We show three scenarios, each executed on 16 nodes, with 10
arrays of each type per node. Each client executes 10 consecutive transactions, each with
10 operations on the hot array per transaction, with a 9+1, 5+5, or 1+9 read-to-write
operation ratio. Each operation takes around 3ms to execute, not counting the overhead
from synchronization, network communication, or serialization overhead. This means
operations are fairly long, which represents the complex computations. The locality of
operations is set to 50% with a history of 5 operations.

The graphs show that all frameworks’ throughput falls as the number of clients, and
therefore contention, increases. The decline is steep until 256 clients, and it levels out
by 1024 clients. All systems significantly outperform the serial execution forced through
GLock. In the 90% read scenario HyFlow2 and Atomic RMI 2 outperform other frame-
works by a significant margin of between 9 and 267% (not counting GLock), with the
exception of R/W C2PL outperforming HyFlow2 at 64 clients. Atomic RMI 2 outper-
forms HyFlow?2 initially (by 9-25%), but after 512 clients are introduced, HyFlow2 takes
the lead (by 2-23%), and both frameworks throughputs eventually converge at the 1024
client mark.

In the other two scenarios, all frameworks suffer a decrease in throughput, but
Atomic RMI 2 remains relatively efficient, outperforming all other frameworks, includ-
ing HyFlow2, by 9-359%. The difference stems from the write-oriented optimizations
in Atomic RMI 2 that allow the framework to tighten the executions in the presence
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Clients
64 128 256 512 768 1024
9+1ratio 66 74 79 86 84 89
5+5 ratio 60 70 75 83 87 87
1+-9 ratio 66 74 79 86 84 89
Table 8.1: HyFlow2 abort rates for Fig. 8.7 [%)].

Scenario

of larger contingents of write operations, just as much as is possible in read-dominated
schedules: objects are acquired for writing as late as possible and released prior to com-
mit. Meanwhile other frameworks typically do not optimize write operations to the same
extent. Specifically, HyFlow2 does not release early on writes, and R/W C2PL cannot
perform any optimizations on writes, apart from early release on last write. In addition
a degradation in Atomic RMI 2’s performance is also partly explained by the need to
introduce new threads to handle asynchrony, which can become a bottleneck and offset
the gain from Atomic RMI 2’s optimizations if other threads are also running on the
same node (like client threads here).

Among the remaining frameworks, any C2PL always performs better than the appo-
site CR2PL variant, and R/W performs better than Mutex. Atomic RMI performs on
par with Mutex C2PL and significantly below Atomic RMI 2.

Fig. 8.9 shows a change in throughput with constant contention as new nodes are
introduced. In this scenario, we vary the number of nodes from 4 to 16 with 5 or 10 arrays
of each type hosted on each node (yielding lower and higher contention respectively), and
16 clients running per node. Transactions only perform operations on the hot array. The
remainder of parameters is as above. As more processors are introduced into the system,
the number of transactions running in parallel increases, causing the throughput of all
frameworks to increase as well.

In the 5-array scenarios in Fig. 8.9a—c the comparison shows that Atomic RMI 2
significantly and consistently outperforms Atomic RMI and all remaining frameworks,
with the exception of HyFlow2. Specifically, Atomic RMI 2 achieves at least a 47% better
throughput over Atomic RMI due to the introduced optimizations. The impact of read-
only optimizations is visible in the 90% read scenario, where Atomic RMI 2 achieves up
to a 201% advantage in throughput. Furthermore, the write optimizations give Atomic
RMI 2 a performance boost of up to 167% over Atomic RMI in the 90% write scenario.
In a more balanced scenario optimizations can be applied less often, leading to a slightly
lower performance improvement of up to 72%. Note, that Atomic RMI’s performance does
not change with respect to the differences in workloads among scenarios, since Atomic
RMI is agnostic of operation types. HyFlow2 and Atomic RMI 2 perform similarly in read
dominated and balanced scenarios, with HyFlow2 outperforming Atomic RMI 2 by up
to 10% in a 16-node system, and Atomic RMI 2 outperforming HyFlow2 by as much in a
4 node system. The similarities in performance stem from special handling of read-only
variables in both systems. However, in a write dominated scenario, Atomic RMI 2 has a
77% percent throughput advantage, which we again attribute to extensive write-oriented
optimizations employed in OptSVA-CF.

The 10-array scenarios in Fig. 8.9a—c yield similar results, but here, Atomic RMI 2
manages to consistently outperform HyFlow2, as well as other evaluated frameworks. This
is because transactions have more objects from which to randomly select, so transactions
tend to contain shorter subsequences of operations on the same objects, which allows
Atomic RMI 2 to release more objects earlier.

Fig. 8.8 shows changes in throughput as above, but with longer transactions, that
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Scenario —Nodes

4 8 12 16
9--1 ratio, 5 arrays, hot 73 69 73 T4
5-+5 ratio, 5 arrays, hot 81 83 80 82
1-+-9 ratio, 5 arrays, hot 77 81 85 81
9--1 ratio, 10 arrays, hot 65 68 67 63
5-+5 ratio, 10 arrays, hot 8 TTT9 17
149 ratio, 10 arrays, hot 75 76 80 79

9--1 ratio, 10 arrays, hot & mild 66 67 67 66

5-+5 ratio, 10 arrays, hot & mild 78 79 82 81

1+-9 ratio, 10 arrays, hot & mild 74 81 81 81
Table 8.2: HyFlow2 abort rates for Fig. 8.8 and 8.9 [%)].

perform mild array accesses in addition to hot array accesses. Hence each transaction
performs 10 operations on the hot array and 10 operations on the mild array, in the same
read-to-write ratios. Since accesses on mild arrays never lead to conflicts, the average
contention is much lower in this scenario than the previous. Because of this, through-
put increases for each framework. Atomic RMI 2 performs similarly to HyFlow2 in the
balanced scenario (up to 2% reduction or 8% improvement), slightly better in the read
dominated (8-19% improvement), and significantly better in the write dominated sce-
nario (64-76%). Both HyFlow2 and Atomic RMI 2 perform significantly better than all
other frameworks, including Atomic RMI. The results are similar to those in the previous
scenario, but show that Atomic RMI 2’s advantage decreases in lower contention, which
we attribute to the overhead introduced by the instrumentation and asynchronous execu-
tions. Instrumentation requires that new objects are created on-the-fly, which takes time
and uses processing power. Asynchronous execution requires that new threads are created
and maintained by each JVM to handle various computations imposed by OptSVA-CF+R,
(usually buffering) which puts strain on the processor, especially since these threads com-
pete with client threads and server threads running on the same JVM.

The abort rates of Atomic RMI 2 and Atomic RMI remain at 0% throughout the
evaluation (despite none of the transactions being reluctant), while 60-89% of HyFlow?2
transactions abort and retry at least once due to conflicts, depending on the scenario
(see Tables 8.1 and 8.2). This means, that irrevocable operations are likely to be aborted
and re-executed. On the other hand, Atomic RMI 2 manages to rival the efficiency of an
optimistic TM system while bypassing problems with irrevocable operations completely.

8.2.3 Discussion

Throughout we see that Atomic RMI 2 significantly outperforms Atomic RMI and other
lock-based distributed concurrency control mechanisms, and performs similarly to or bet-
ter than a state-of-the-art optimistic distributed TM, all without the need to use aborts
and, thus, without complicating irrevocable operation executions, and while employing
the reflection-based mechanisms that allow to use CF model. We also see that Atomic
RMI 2 performs best in read-dominated scenarios, but becomes really competitive in
write-dominated scenarios, where the buffering- and asynchrony-related write-oriented
optimizations make a real difference to throughput. Given this, we successfully demon-
strate that a pessimistic system can be as well-performing as an optimistic one.






Precompiler

In this chapter we present a precompiler for Atomic RMI which can be used to statically
derive the a priori information required by Atomic RMI’s underlying concurrency con-
trol algorithm: the access set of each transaction, and suprema—upper bounds on the
number of times each transaction will access each object in its access set throughout the
transaction’s execution. This extends our research in [72, 73].

First, we describe the static analysis algorithm used by the precompiler. The precom-
piler uses a static analysis algorithm based on data flow analysis to establish information
about values and paths and region analysis to tally method calls. We expand regions
with additional properties so that the final, vital part of the analysis becomes straight-
forward. We also describe a use of a natural positive set extended by an absorbing value to
count uncertain executions. In effect, we infer upper bounds (either concrete or infinite)
conservatively but safely.

In the following sections we discuss the implementation of the precompiler itself, and
discuss the effectiveness as well as other applications of the static analysis. In the final
section we briefly survey related work.

9.1 Static Analysis

To derive the suprema the algorithm performs multiple passes over the input code in
the form of an intermediate language. Three passes correspond to the three phases that
form our algorithm: value analysis, region analysis, and call count analysis. In addition,
another pass is performed before value analysis to identify loops. Value analysis predicts
possible values of variables in the code. It also identifies unfeasible or dead code, and
unfolds loops. Region analysis uses the results of value analysis to convert the input code
into regions. Finally, call count analysis examines these regions to produce the upper
bounds on method call counts. We describe our use of Jimple and each of the phases of
the algorithm in detail below.

9.1.1 Translation to Jimple

In order to analyze a program in Java we first translate it into an intermediate represen-
tation called Jimple [88] using the Soot framework [87]. We use Jimple as an intermediate
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Identifiers j € Ident

Constants c € Const

Labels l € Lab

Types t € Type

Fields f e Field ==j:t

Immediates i € Imed =3 | c

Right-hand values r € Rval =1 | i[4] ’ i.[f] ‘ [f]

Methods m € Meth = invoke 4.[j(J1, .. Jn)](i1s ..y tn){b1y ..., bn, }
Conditions peCond i=i==i|izi|i>i|i<i|i<i|i#i
Expressions e € Eapr u=i+i|i/i|ixi|i%i| —i|i—ilili|li&i

i xor i | 1> | 1< | (t)i ’2 instanceof t
new t | new t[i1]...[in] | length i |p

Statements s € Stmt ::= switch(i){case c1: l1;...;case ¢n: lp;default: lo}
if p goto 1 else l2|l’j:m|j:r|m

goto [ ‘ return 1
Blocks b€ Bloc :=1:b1;...;bpn; | b1;...;0n; ‘ s

Figure 9.1: Jimple syntax (altered from [88]).

language because it is much better suited for analysis than either Java source code or
bytecode. The reason for this is that Jimple is a 3-address code representation with a very
limited instruction set consisting of 17 statements. In our earlier attempts to perform
similar analyses using Java source code [72] we learned that such analyses become con-
voluted and the implementation costly in effort due to the number of constructs needing
handling and the complexity of their semantics.

The part of Jimple syntax that is pertinent to our further discussion is presented in
Fig. 9.1. The semantics are mostly straightforward, the reader is referred to [88] for details
and the complete language. The constructs most important to us are the conditional
statements, switch statements, method invocations, assignments, and labeled blocks. We
introduce superficial alterations to the syntax to suit further description of the algorithm.
We treat labels as statements and place them at the beginning of labeled blocks. We
modify the conditional statement to define target labels for both outcomes instead of
having a succeeding block of code called if the condition is false. We do not distinguish
among different sorts of method invocations—interface, special, virtual, and static—and
we remove type information from invocations while adding a direct definition of the
methods’ arguments and a set of possible bodies. We also fix method invocations nested
in other statements by defining a separate assignment statement instead where the results
of the invocation are assigned to an identifier. We show an example Java program using
Atomic RMI distributed transactions in Fig. 9.2a translated to the altered form of Jimple
in Fig. 9.2b (lines 2, 3 are omitted because they are generated from Jimple later—see
Section 9.2.2 for details).

For the purposes of analysis the input program is represented as Control Flow Graphs
(CFGs) and each method’s body is a separate graph. Most statements in Jimple will have
one incoming and outgoing edge. The conditional statement will have 2 outgoing edges,
and the switch statement will have one more outgoing edge than it has conditions. Loop
headers and labeled blocks will have more incoming edges. Invoke statements point to
CFGs of other method bodies.

9.1.2 Value Analysis

As a preliminary to the value analysis we find loops in code. A loop consists of a head and
a body. A loop head is a statement s that dominates any other statement s’ (all paths
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1 Transaction t = new Transaction(); k = new soa.atomicrmi.Transaction;

1

2a = t.accesses(a, 2); // generated, upper bound: 2 2 invoke k.[<init>()](){$b0};
ab = t.accesses(b, 1); // generated, upper bound: 1 3 invoke k. [start()] (O{$b1};
4t.start(); 4 balance = invoke a.[balance()] (){$b4d};
5 int balance = a.balance(); 5 if balance < sum goto labell else labelO;
6 if (balance >= sum) { 6 labelO:
7 a.withdraw(sum); 7 invoke a.[withdraw(@parameter0)] (sum){$b5};
8 b.deposit(sum); & invoke b.[deposit(@parameter0)] (sum){$b6};
9 k.commit(); 9 invoke k.[commit()] O){$b2}; return null;
10} else 10 labell:
11 k.abort(); 11 invoke k. [abort ()] (){$b3};

(a) Java. (b) (Altered) Jimple.

Figure 9.2: Example Atomic RMI code.

G(s) =S £ (Sv,Sp,Sp,Sr)
G(s) = (JO'n({G( ) | s succ p}),s)
eval( 7‘) (Sv[] = {val(r Sv)}],gp,Sp,S[)
eval(S, ) S = evaI(S m) (Sv & S/V[] — {Va|(m,§v)}],Sp,Sp,S[)

eval(S, 1nvoke 3051y ey G0)] (81, ey i) {01, oy b ) 2
case depth(i. ]) — Sv|k— wk € defs(bl) U..U defs(bm)], Sp,Sp,Sr)
otherwise — §' = (Sv[j1 ~ val(i1,Sv), .. ,]n — val(in,Sv)],Sp,Sp, Sr),
join(eval(S’,b1), ..., eval(S', b))
eval(S,1) £ (Sv EBSP( ),Sp,Sp,Sr)
eval(S, s : return i) £ (SV,SP,SD U{(s,s") | s pdom s',s" € Stmts)},Sr)
eval(S,s : if p goto 1 else l2) =
case pred(p,S) = true — (Sv,Sp [ll — Sp[p — true]] ,Sp U{(s,12)},Sr)
case pred(p,S) = false — (Sv,Sp [lg — Splp — false]},SD U{(s,l1)},S1)
case pred(p,S) = w — (Sv,Sp[li > Splp — true],lo > Sp[p > false]|,Sp,Sr)
eval(S, s : switch(i){case c1: l1;...;case ¢, : ln;default: lo}) = (Sv,
Sp [l — Sp(l)[j = val(c1)], ..., ln — Sp(ln)[j = val(c,)]],Sp
U{(s,lx) | pred(ck = j,S) = falseV pred(c, = 4,S) = true,k=1,..,n,r =1,.. .k}
U{lo | pred(3k,cr = 3,S) = true,k =1,...,n},Ss)
eval(S, s € H) £ evalloop(s, G, L(id(s)), 1, L)
eval(S,s € BAs ¢ H) £
join(S",...,8™) & ({k = Sy (k) U...US (k) | k € (dom S, Udom SP)}, {I —
{k—Sp)(k)U...uSBE( )(k)} | I €dom SpU...USE, k€ dom Sp(l)U...USE()},
ShU...USH, {k— max (St(k)) | k € (dom S; Udom S})})

Sy @Sy £ {k+ Si, (k) UST(k) | k€ (dom S}, (k) Udom S (k))}
Figure 9.3: Value analysis.

from the start to s’ lead through s [2], denoted s dom s’) while simultaneously being
the successor of s’ (there is a path from s’ to s). A loop body is a sequence of statements
all of which are dominated by a loop head and have that loop head as their successor.
We gather the heads in set H and create map L which contains a unique identifier of
each statement h from H as a key mapped to a set of statements whose elements are all
dominated by h.

The first phase of the analysis is a forward data flow analysis performed on the CFG.
Its main purpose is threefold: to establish the possible values of variables at each node
of the CFG representing the program, to count the maximum number of loop iterations
through loop unfolding, and to establish which nodes of the CFG are dead or unfeasible
(will not be executed). There are two principal functions in value analysis, eval and join.
These functions are used to compute members of global state G, a data structure that
results from the analysis. We present all of those elements in Fig. 9.3 and describe them
below.
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Global state G maps Jimple statements to states which apply to them. Global state
is constructed during value analysis by constructing a state for each statement using a
transfer function eval and an aggregation of states for the predecessors of a given state-
ment using join. We designate individual states S, such that S is a quadruple consisting of
a value map Sy, an inferred value map Sp, a dead edge set Sp, and a loop iteration map
S;. Sy is a map of locals (identifiers and constants) to sets of values—it indicates what
values a given variable or constant may take at this point in the program. Sp maps labels
(names of blocks) to value maps and indicates assumptions about values of variables and
constants inferred from conditions that will apply at a particular succeeding statement.
Sp contains pairs of statements indicating edges that will definitely not be used in the
execution of the program. S; is a map of loop heads to numbers indicating the maximum
estimated iteration count of the loop, or an unknown value. All components of the state
are initially empty.

Transfer function eval is the key function of the analysis. It analyzes each Jimple
statement and establishes the state of the program that holds after the statement is
evaluated. The resulting state depends on the type of statement and the state before
that statement.

When encountering an assignment of a right-hand side expression r to an identifier j,
a new mapping is added to Sy that maps j to the set of possible values of expression 7.
When eval encounters an assignment of the results of method invocation m to identifier j,
first m is evaluated separately and state after its evaluation S’ is extended by the mapping
of j to the result of m. A method invocation itself is analyzed by first extending the value
map by parameter identifiers mapped to the values of arguments. Then all possible bodies
are evaluated and the results are joined (the particular bodies are identified from the type
hierarchy and arguments but we leave the details to Soot). But if recursion exceeds a
depth L all the values defined within possible method bodies are set to unknown (this
degrades precision but maintains safety). L must be tuned to a given application. A label
| extends the value map with predictions from the inferred map. A return statement
adds all other statements it dominates to Sp.

When analyzing an if statement the expression that is the condition is checked. If
the condition yields true then the edge in the CFG from the current statement to label 5
is added to dead edges, and predictions about variables are made under the assumption
that the condition will be true at label I;. Conversely, if the condition yields false the
edge from the statement to [; will be dead and predictions will be made for [, under the
assumption that the condition is false. If the condition yields an unknown, no edges will
be added to the dead edge set, but predictions for both /; and I3 will be made. A switch
statement is analyzed by creating a prediction for each constant cy, ..., ¢, that the local
1 is equal to it at an appropriate label Iy, ...,[,. Furthermore, if any of the constants c
is definitely equal to ¢, edges from this statement to labels subsequent to that constant
lk+1, -+, ln and the default label [y are added to the dead edge set Sp.

Function join (Fig. 9.3) is responsible for joining states and is used when a statement
has two or more incoming edges. Each component of the state is joined with its counter-
part in the second state. Sets Sp are added together. The keys and values are copied to
a new map, and if a key is present in both maps, the values are added (Sy, Sp) or the
higher one is selected (Sy).

We use the following helper functions within eval. Function val substitutes values
from a value map for identifiers and constants (where possible) in a given expression and
evaluates it to establish a set of values that the expression may yield. The returned set
may consist of a single value, any number of elements or contain the unknown value w.
We use the function pred in a similar manner, except that only conditional expressions
are evaluated and a single ternary value is returned—true, false, or w. We use depth
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evalloop(s,G’,U,i, L) 2
G" =G, G"(u)=-eval(join({G"(u) | usuccpAueU})),
E={e | ssucceAsgUAeecU},
E' =E\{d | G"(d) =S, unpredecessed(S,d) Ad € E},
5° = join({G"(e) | e € E'}),
Z ={(b,h) | hdom bA h succbAPscU,h succ s succ b}
§* =join({G"(b) | (b,h) € Z}),
case Z C SH V (V(b, h) € Z, unpredecessed(S5,b)) — (S, S%,Sp, S¢[h — 1])
case i > L — (Sy [k — w, k € defs(U)], S%,SH, S¢[h — w])
case i < L — evalloop(h,G"”,U,i+ 1, L)
unpredecessed(Sp, s) £ Vs succ p, (p,s) € Sp V unpredecessed(p)
defs(U)é{j | se{j:m,j:r}AseU}

Figure 9.4: Loop unfolding.

Unit regions U € Units
Statement regions S € Statements ::
Invocation regions I € Invocations ::

unit
statement s
invoke j, Ri,..., Rm,s

Block regions B € Blocks = block [Ri,..., Rx]
Condition regions C € Conditions ::= condition p, Ri, R2
Loop regions L € Loops = loop h,R

Regions R € Regions w=U ’ S ’ I ’ B ‘ C ’ L

Figure 9.5: Region-based intermediate representation.

to find out the depth of a method’s recursion. Function id produces a unique identifier
of a statement. Operators succ, dom and pdom denote the succession, domination and
post-domination relation of two statements in the CFG.

When encountering a statement that was identified as a head of a loop, function
evalloop is used where the statements that form the body of the loop are taken from L
and evaluated. During evaluation a collection of states G’ is created and used to find
those exit statements E’ and back edges Z that may be executed during this iteration. If
no back edge could be used during this iteration we know the loop exits, so we aggregate
the states after all exit statements and finish evaluating the loop. It can also be deduced
at this point that the loop will be executed at most as many times as we performed
iterations. Otherwise, if we have not reached an arbitrary limit of iterations we conduct
another iteration using evalloop. If the limit was reached we do not proceed but assume
that this loop will continue indefinitely and set all the values that are defined within its
body to unknown w. Upon evaluation exit statements from the loop body are derived
from the dead edge set of the resulting state. If there is only one exit from the loop
then the loop exits in the current iteration and both the state of the variables and the
number of iterations are added to S. Otherwise another iteration is required and the
evaluation is repeated. In order to manage infinite loops or those where the conditions
of exiting are uncertain, an iteration limit L is given which, when reached, will cause
the evaluation to cease and set all effects of the loop to unknown value w. Setting values
to w preserves safety. We use two additional helper functions within evalloop. We define
predicate unpredecessed which checks whether a statement’s predecessors are all dead
or the edge from them to it are unused. We also define function defs which returns the
names of variables defined in a given statement.

9.1.3 Regions

The second phase of our analysis is concerned with preparing the input structure required
by the third phase which is conducted using region-like structures. Thus we introduce a
function to convert the CFG into a region graph. Regions [2, 51] are areas of code with
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D=2 {s | S=G(s),unpredecessed(Sp,s)}
block(H, [s1, ..., 5n]) = block [R; | 1 <i<n,R; =regf(H,s;)A (i =1V -s; € Ri—1)]
regf(H, 1 : by;...;bn;) 2 block(H, [1, b1, ..., by])
regf(H, by;...; bn; ) 2 block(H, [by, ..., bn])
regf(H, s € H) £ loop s,block(H \ {s}, [s'|s’ € L(s)])
regf(H,s € |J L(h)V s € D)= unit
VheH
regf(H,s : if p goto l; else lp) £
case fle € Stmt,e pdom s —
condition p,block(H,[s' | l1 dom s']),block(H,[s" | l> dom s'])
case de € Stmt, e’ € Stmt,e pdom s A e’ pdom s A e psdom e —
condition p,block(H,[s' | /1 dom s’ A e pdom s']),
block(H, [s' | l> dom s’ A e pdom s'])
regf(H, s : switch(i){case c1: l1;...;case ¢p: ln;default: lo})
case fe € Stmt,e pdom s —
condition (i = c1),block(H,[s" | 11 dom s']), (, vy
(condition (i = cy),block(H,[s' | I, dom s']),block(H, [s' | lo dom s'])))
case de € Stmt,Pe’ € Stmt, e pdom s A e’ pdom s A e psdom e —
condition (i = c1),block(H,[s" | 11 dom s’ A e pdom s']), (, s
(condition (i = cn),block(H, [s" | I, dom s’ A e pdom s']),
block(H, [s' | lo dom s’ A e pdom s'])))
regf(H, s : invoke 4.[5(j1, .., 5n) : t](i1, oy 1) {01, o, B }) =
invoke i, regf(H, b1), ..., regf(H, bm ), s
regf(H, s) £ statement s

AL

Figure 9.6: Region-finding analysis.

a single entry point, like code blocks. We extend each region with information about its
role in the code. We distinguish unit regions, statement regions, invocation regions, block
regions, condition regions, and loop regions. We show their definitions in Fig. 9.5.

Regions are converted from Jimple CFG by the analysis defined in Fig. 9.6. The
analysis is performed on the root of the CFG using regf. The function then handles each
node of the CFG by recursion and returns a tree of regions. It uses the loop header set H
and a map of loop headers to their bodies I from the previous analysis, and a set of dead
statements D) whose all incoming edges or predecessors are dead (according to Sp). For
convenience, we also define function block which creates a block region from a sequence
of statements by applying regf to each of them in succession and aggregating them into
a single region.

9.1.4 Call Count Analysis

Call count analysis is performed on the region tree in order to establish the number of
times each object’s methods are called. It is depicted in Fig. 9.7. The analysis begins with
the application of function ccount at the root of the region tree and proceeds depth-first
through the subregions. In general, method calls on objects in the tree’s leafs are counted
and the counts are aggregated upwards, either by adding the call counts (with addjoin) in
cases of sequences or by taking the highest count (using maxjoin) in cases of alternative
program paths.

Function ccount takes three arguments—the global state G, the maximum number
of executions of the parent region n, and the region of appropriate type. The function
returns a map of object identifiers to the number of times that particular object’s method
were called. Thus, when the function comes across statement or unit regions it returns
empty sets. When it reaches an invoke region it notes the object owning the method
and creates a mapping of that object to the number of times the parent region is to be
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ccount(G,n,unit ) = @
ccount(G, n, statement s) £ @
ccount(G, n, invoke j, Ri,..., Rm,s) =S = G(s),

addjoin({Sv (j) — n}, maxjoin(ccount(G, n, R1), ..., ccount(G, n, Rp)))
ccount(G, n,block [Ry, ..., Ry]) £ maxjoin(ccount(Sy,n, R1), ..., ccount(G, n, Ry,))
ccount(G, n, condition p, Ri, Ra,s) £ S = G(s),

case pred(p,S) = true — ccount(G, n, R1)

case pred(p,S) = false — ccount(G, n, Rz)

case pred(p,S) = w — maxjoin(ccount(G, n, R1), ccount(G, n, R2))
ccount(G, n,loop h, R) £ S = G(h), ccount(G, n * S(h), R)
maxjoin(My, ..., M) £ {k — max(Mj (k), ..., M,(k)) | k € dom Mj U... Udom M,}
addjoin(My, ..., M,,) & {k + My (k) +... + M, (k) | k € dom M; U...Udom M,}
w+ec=w, w*c=w, max(w,c) = w

Figure 9.7: Call count analysis.

executed; this mapping is then aggregated using function addjoin to the results of the
evaluation of the joined bodies of the invoked method using ccount. If a block region
is encountered its subregions are evaluated first and the results of these evaluations are
aggregated using addjoin. When ccount encounters a conditional region the condition is
checked and one of the subregions is evaluated, if the condition is true or false or both
conditions are evaluated and their results are aggregated using maxjoin if the condition
is unknown. Finally, with loop regions the subregion that is the loop’s body is processed
using ccount, but the number of executions of the parent region is multiplied by the
number of loop iterations (obtained from Sy).

Function maxjoin is used for joining the results of evaluations of two or more subregions
where it is unknown which ones will execute. It takes n maps of some keys to numerical
values as arguments and returns a similar map. Out of all values that share a key across
the maps the maximum one is inserted into the resulting map. Function addjoin is used
for aggregating the results of evaluations of a sequence of subregions that will execute
one after another. It takes n maps of some keys to numerical values as arguments and
returns a similar map. All values that share a key across the maps will be added together
and the sum will be inserted into the resulting map under that key.

Functions at this stage of the analysis may need numerical values to be added or
multiplied with the unknown value w. If this happens, we treat it as an absorbing element,
and the result of such an operation is always unknown. In a similar vein, the maximum
of any set of numbers including w is also unknown.

9.2 Implementation

We implemented our precompiler as a tool for Atomic RMI using the Soot framework.
The precompiler implementation consists of three elements: Jimple creation, upper bound
analysis, and code generation (as shown in Fig. 9.8). The Jimple creator converts Java
source code into the Jimple intermediate language—this is provided by Soot. The upper
bound analysis deduces the information about remote object calls within Jimple. It is
divided into four analyses, each responsible for one pass over the code. The code generator
instruments the input source code with instructions based on the information obtained
by the analysis. The two components are described in more detail below.
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Figure 9.8: Components and information flow in the precompiler.

9.2.1 Upper Bound Analysis

The upper bound analysis consists of value analysis (VA), region finding (RF'), trans-
action finding (TF), and object call analysis (OCA). These are forward flow analyses
implemented in Soot. Each of them makes one pass over the input code in the form of a
CFG from a particular starting point (the main method, for instance). The implementa-
tion of each analysis defines a transfer function applied to each node of the CFG, a join
operator for joining result sets, and initial result sets (see Fig. 9.3, Fig. 9.6, and Fig. 9.7).

Value analysis is the most complex of the analyses. It is the implementation of the
algorithm in Section 9.1.2 such that the transfer function and join implement eval and
join. The transfer function performs whatever action is needed for a given statement
type (these are recognized via the type system). The result sets represent Sy and Sp, Sy,
and Sp are passed via separate fields (for convenience). The implementation finds loops
headers and bodies using Soot’s built-in loop finder. Loops are processed by running
the analysis repeatedly on a pruned copy of the CFG that contains only the statements
from the loop and integrating the results into the original analysis. Recurrent calls are
handled by finding all applicable method bodies, starting an analysis on each, and joining
the results. A stack of calls keeps track of the depth of recursion and when to bound it.

The implementation of value analysis needs to take care of additional significant mech-
anisms that are obvious in the formalization and therefore glossed over. These include
mechanisms for evaluating expressions. Expressions’ arguments’ types are recognized and
the semantics appropriate to them is applied (i.e. a + b is addition if a and b are integers
or concatenation if they are strings). All combinations of basic types (at least primitives
and Object) and operators need to be implemented. We take the approach that operators
are defined by classes and perform argument-dependent operations.

Region finder converts the CFG into a region graph in accordance with the algorithm
in Section 9.1.3. The algorithm performs numerous graph searches like finding domina-
tion and post-domination relations within the graph (provided by Soot) and finding if
particular paths exist within the CFG (e.g. whether all paths from a conditional expres-
sion leads to the end of the body or to a common post-dominator). RF creates a region
hierarchy, were each region is characterized by its type and type-specific fields.

Transaction finder is a component that tracks Atomic RMI transactions and their
components: it identifies the start and possible ends of transactions, remote objects used
within, and transactions’ preambles. These information are collected for use by OCA and
marked in Jimple using the Soot tag system.

OCA is responsible for tallying remote objects calls as in Section 9.1.4. The implemen-
tation is straightforward: it accepts the data from the preceding analyses and uses them
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to traverse regions and identify those that make calls to remote objects. The number of
executions of these regions is predicted and the counts are summed up with reference to
particular remote objects.

The implementation must take into account the unknown values that may appear
in the course of this analysis. These are implemented as a new type that allows any
positive natural number or a value representing w. The type also defines the maximum
function and arithmetical operations using the unknown value (specifically addition and
multiplication from Fig. 9.7).

9.2.2 Code Generation

The code generator for Atomic RMI modifies code on the lexical level using the suprema
obtained from the execution of the upper bound analysis. Necessarily, in order for the
code generator to modify the existing source code that source code must be available for
analysis. The source is converted into tokens by the SableCC lexer [31] and then divided
into lines.

The generator performs three passes over the collection of lines of tokens. In the first
pass the generator locates transactions in the source code using the information provided
by the transaction finding (TF) phase of code analysis. When found, all definitions in
a transaction’s preamble are marked for removal, with the exception of those which are
followed by a comment string specifying them as manual overrides. The second pass
inserts a line of code into each transaction’s preamble for each identified remote object
pertaining to that transaction (lines 2, 3 in Fig. 9.2a). The insert contains a variable
representing the remote object and a supremum on the number of method calls to that
object, and it is built using on a simple template. All the inserts are marked for prepending
to the beginning of the transaction. The final pass applies all the changes marked by the
previous two passes to the tokens and they can then be written to the output stream.

9.3 Discussion

Our work illustrates a static analysis for extracting the maximum number of times objects
will be called in a fragment of code. Such information has a number of applications, but
we concentrate on using the upper bounds as input data for Atomic RMI. We have so
far found that the analysis we implemented solves this problem satisfactorily for our
purposes. The tree-like region-based intermediate representation allows to find all of the
method calls within the code and the use of the absorbing unknown value produces
conservative results when uncertain values are involved. Both of these guarantee that
the statically derived upper bounds are correct, i.e. not lower than any actual number
of method calls on a particular object. Apart from being conservative, the estimated
upper bounds should also be as accurate as possible—as close to the actual number of
executions as possible. For typical Atomic RMI transaction code, the analysis is able to
handle most scenarios adequately.

The formalization of our algorithm and adherence to it simplified the implementation
of the tool. The formalization was a blueprint for the join operators and transfer function
of the individual data flow analyses which it defined their modi operandi and allowed us to
concentrate on the details of the interfaces, data structures, etc. during implementation.
Another advantage is that the correctness of the created tool is verifiable, extensible,
and amendable by inspection and modification of the underlying algorithm, without an
initial need to delve into the actual source code.
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Apart from our application of the algorithm, there are other possible applications for
it. The analysis can be used to find relationships between concurrent threads: a thread
accessing a shared object once, several times, or not at all may impact safety guarantees
like isolation or performance in different ways. With this information prior to execution
it can be treated differently, i.e., applied proper synchronization, delayed, or executed
as-is without breaking guarantees. Upper bounds can also be applied in compile-time
resource optimization. For instance, the amount of memory used by a given program or
its influence on network traffic may be estimated from calls to particular objects if the
interface is known and used to configure the environment appropriately or to optimize
the analyzed program. Other uses may be found in code rewriting, automatic refactoring,
etc. Apart from the work of [59] these applications seem largely unexplored.

9.4 Related Work

There is a large body of research related to analysis of programs that aims at deriving
information about execution patterns statically (we sketch out some of these below).
However, we do not know examples of using this information for optimizing the execution
of distributed transactions in the way we do. The largest body of work to which our static
analysis bears resemblance has been done with regard to the Worst Case Execution
Time (WCET) problem [93]—establishing upper bounds on the time code takes to run.
However, most of this work is aimed at real-time systems, not transactional concurrency
control which is the main concern of our work. A number of frameworks are available
for WCET analysis, like aiT [29], Bound-T [46], SWEET [35], and SymTA/P [84]. A
comprehensive survey of these tools and methods was done in [94]. Whereas our approach
is based on region analysis, some work in WCET use symbolic analysis [54], path analysis
[37], and abstract interpretation [46, 30]. We also use the latter type of analysis for our
value analysis algorithm. In WCET emphasis is placed on the problem of evaluating loops
in general and bounding loop iterations in particular. This is done, among others, by the
use of Presburger arithmetic [64], path analysis (using integer linear programming) [85],
or a combination of methods involving abstract interpretation [27]. Our work touches
on those concerns: we use loop unfolding to establish their bounds roughly similar to
that of SWEET [35] but simpler. WCET tools additionally often use the Implicit Path
Enumeration technique [53] or single feasible paths [103] to establish worst-case paths
and perform final timing analyses. While our application presents no need for the latter,
we use region-based analysis to conservatively deduce worst-case paths. WCET tools also
allow for manual declaration or correction of difficult-to-deduce information (e.g., loop
bounds).

Our work has significant similarities to work on lock inference. Lock inference aims
to determine which memory locations or shared objects in a program must be protected
by locks and where these locks should be located. Thus, our work and lock inference
share the same ultimate goal of providing concurrency control via static analysis albeit
by different mechanisms. The authors of [19] employ backward data flow analysis to
transform a program’s control flow graph into a path graph which is then used to derive
locks. In [45] the authors present a method for identifying shared memory locations using
type-based analysis, points-to analysis, and label flow analysis [63]. In Autolocker [57]
pessimistic atomic sections are converted into lock-guarded critical sections by analyzing
dependencies among annotated locks based on a computation history derived from a
transformation of the code using a type system.

In [59] the authors propose a tool for the automatic inference of upper bounds on the
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usage of user-specified resources. Rather than memory or execution time, these may be
the number of open files, accesses to database, sent text messages, etc. This work and
ours share the set of tools they use (Soot and Jimple [87]) and they both try to solve
a similar problem. The tool presented by the authors performs a data flow analysis to
derive data dependencies, then creates a set of equations from input-output parameter
size relationships. Finally the equations are solved using a recurrence solver. Our approach
differs most in that we perform region analysis to determine maximum paths and resource
use where they construct and solve equations.






Conclusions

In order to prove the main thesis of the dissertation we surveyed the existing TM safety
properties, and examined their applicability to TM with early release in Chapter 3. We
then developed safety properties suitable for such TM: last-use opacity and strong last-
use opacity in Chapter 5.

Then, we examined the existing pessimistic TM concurrency control algorithms, both
distributed and non-distributed ones, as well as optimistic D'TM and optimistic TM with
early release (Chapter 4). On the basis of our analysis we selected the family of versioning
algorithms as a promising basis for further research. We then extended BVA and SVA to
eliminate their single point of failure by removing the dependence on a global lock, and
lifted them from the commit-only model to the more general arbitrary abort model in
Chapter 6 (Sections 6.1 and 6.2, respectively).

Next, we introduced OptSVA+R and OptSVA-CF+R and their variants in Chapter 6
(Sections 6.3-6.4). These are novel pessimistic TM concurrency control algorithms based
on the extended versioning algorithms, but employing a number of optimizations that
allow them to execute conflicting transactions with a high degree of parallelism. We then
implemented these algorithms as a DTM system and showed in Chapter 8 that such
DTM systems manage to outperform a state-of-the-art optimistic DTM system while
maintaining a zero percent abort rate. We also showed in Chapter 7 that despite their
improved generality and efficiency, the new algorithms retain strong safety guarantees.
We showed this by conducting formal opacity and last-use opacity proofs which required
us to introduce new proof techniques.

Finally, in Chapter 9 we introduced a precompiler to gather a priori knowledge about
transaction executions which improves the ease with which our implementations can be
used in practice.

Proof for Thesis

Below we conclude by providing a demonstration that the results presented in the dis-
sertation bear out the thesis introduced in Chapter 1.

We introduce Atomic RMI 2, a CF DTM system implementing pessimistic DTM algo-
rithms: OptSVA-CF+R and ROptSVA-CF+R.

a) In Section 8.2.2 we show that Atomic RMI 2 outperforms a state-of-the-art opti-
mistic DTM system, so Atomic RMI 2 is capable of high performance.
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b) We show in Theorem 10 that OptSVA-CF+R is last-use opaque, in Theorem 4 we
show it is strongly progressive, and in Theorem 3 we show it is deadlock-free. Hence
OptSVA-CF+R satisfies strong safety, progress, and liveness guarantees.

¢) In Section 8.2.2 we show that OptSVA-CF+R does not abort in practice, so ir-
revocable operations execute correctly in practice. In addition, ROptSVA-CF+R
completely removes the possibility of aborting from the class of reluctant transac-
tions, so irrevocable operations always execute correctly in general, assuming all
irrevocable transactions are reluctant.

d) OptSVA-CF+R supports arbitrary aborts and operates within the heterogeneous
object model. In addition, it has no single point of failure to detract from scalability.
Finally, the information required a priori can be derived via precompilation. Thus,
we consider OptSVA-CF+R to apply practically.

Thus, our thesis is satisfied. O

Future Work

Even though the research presented in this dissertation achieves its aims, we see avenues
for improvement that can be undertaken in future research.

Eventual Consistency

Given the limitations imposed on distributed systems that are necessary to maintain
strong consistency guarantees there is a growing interest in relaxed consistency models.
Such models are often sufficient for particular applications, but allow more freedom to
improve scalability and availability. Eventual consistency [89] is a particularly useful ap-
proach, where the correct state spreads throughout the system over time, so that at any
point any element of the system may be inconsistent, but all elements will eventually
converge upon a consistent state. On the other hand relaxing properties may be unac-
ceptable in the general case: a slightly stale shopping cart is one thing, but inconsistent
bank transfer processing is quite another.

We see a promising future research direction in attempting to balance strong and
eventual consistency by proposing a general-purpose transactional memory (based on
the solutions presented in this dissertation) that allows eventually consistent transac-
tions to run alongside consistent ones. Specifically, we propose to extend the versioning
algorithms with a mechanism that allows certain eventually consistent transactions to ex-
ecute quickly, without waiting for currently running transactions. When they commence,
such transactions would grab the most recent consistent snapshot of all the variables
they need of those snapshots that can be obtained without waiting. Once the snapshot
is buffered, these transactions operate only on the buffers, to avoid waiting during reads
and invalidating the global state on writes. Thus, this mode relaxes safety—the client
may initially see an inconsistent view (although one generated using read-consistent data)
and, since his updates are not propagated, has a different impression of the global state.
Thus, the state must eventually be converged, and so, the transaction is concurrently re-
executed in consistent mode to fix the client’s view and apply modifications. Note that
other clients only see the execution of the consistent transaction. We presented some
preliminary ideas with respect to eventually consistent versioning algorithms in [101].

Benchmarks

Initially, TMs were evaluated using microbenchmarks, but these test specific features in
isolation and use data structures that are too trivial to draw general conclusions about a
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TM. Alternatively, there are HPC benchmark suites, but these are difficult to translate
meaningfully into the transactional idiom. That is, benchmarks from SPEComp [4] or
SPLASH-2 [104] are already expertly optimized to minimize synchronization, so any
incorporated transactions are used rarely and have little effect on overall performance.
Hence, a set of TM-specific benchmarks was needed, whose transactional characteristics
and contention for shared resources were both varied and controllable. Thus, benchmarks
and benchmark suites like STMBench7 [34], LeeTM [3], and STAMP [58] were developed.

As with non-distributed TMs, the variety of differently-featured distributed TMs re-
quire empirical evaluation to find how their features, the workloads, and the configuration
of distributed systems influences their performance. Therefore, as with non-distributed
TMs, they must be evaluated empirically. However, the existing TM benchmarks are not
appropriate for distributed TMs. This is primarily the case since the structures they use
are not easy to distribute. Distributing non-distributed TM benchmarks often leads to
arbitrary sharding of the structure that has no purpose for the application itself (e.g.,
the clients still must access the entire domain). Hence distributing STMBench?7, LeeTM,
or labyrinth or k-means from STAMP creates applications that do not reflect realistic
use cases for distributed systems. On the other hand, even if a benchmark has valid
distributed variants, the conversion is often non-trivial and should not be expected to be
done ad hoc, if it is to be uniformly applied by various research teams.

As a result systems like HyFlow, HyFlow2, Atomic RMI, and Atomic RMI 2 are
all evaluated using a few microbenchmarks (usually in-house implementations) supple-
mented by a distributed version of the vacation benchmark from STAMP, which originally
mimics a distributed database use case. In effect, the presentation of the evaluation some-
times leads ambiguities. In addition, a direct comparison between evaluation results from
different papers is often difficult, if not impossible.

Hence, we believe that a suite of dedicated benchmarks for distributed TM systems
should be created. The benchmarks in the suite should allow depth of evaluation, but the
design of such a suite should emulate the breadth provided by STAMP by implementing
a number of distributed applications grounded in real systems. We presented some of the
preliminary work on that front in [11].






Streszczenie

Programowanie wspoélbiezne jest powszechnie uznawane za trudne (zob. np. [21, 39, 40,
68]). Zrédlem trudnosci jest wspélbiezne wykonanie programu, ktére moze potencjalnie
prowadzi¢ do przeplotu operacji wykonywanych przez watki lub procesy na zmiennych
wspoldzielonych, dajac w efekcie nieprawidlowe wyniki. Przykladem jest btedne odczy-
tanie przez proces innej wartoéci zmiennej wspoéldzielonej, niz ta ostatnio zapisana do
tej zmiennej przez ten proces. Dlatego wiec programista musi przewidzie¢ i wyelimino-
waé tego typu nieprawidlowe zachowanie, synchronizujac wykonanie niektérych operacji.
W tym celu programista ma do dyspozycji odpowiednie niskopoziomowe konstrukcje
synchronizacyjne, np. zamki (ang. locks), monitory (ang. monitors), bariery (ang. bar-
riers), czy semafory (ang. semaphores). Jednakze korzystanie z tych mechanizméw w
sposOb poprawny i efektywny nie jest latwe, gdyz wymaga wnikliwej analizy calego sys-
temu, a bledy wynikajace z niewladciwego zastosowania synchronizacji sa czesto trudne
do wykrycia z uwagi na niedeterminizm. Bledna synchronizacja ma powazne skutki dla
dzialania systemu, np. odczyt niespdjnego stanu (ang. inconsistent views), zakleszcze-
nie (ang.deadlock, livelock), hazard (ang. race condition), lub inwersja priorytetéw (ang.
priority inversion).

Programowanie wspétbiezne jest jednak nieuniknione. Wynika to ze wzrastajacej po-
pularnosci procesoréw wielordzeniowych, gdzie wspélbiezne wykonanie programu jest
niezbedne, aby wykorzysta¢ potencjal wielu rdzeni procesora. Ponadto, wraz z populary-
zacja architektur zorientowanych na ustugi (ang. service oriented architectures) oraz prze-
twarzania w chmurze (ang. cloud computing), takze systemy rozproszone, ktére sa z na-
tury wspotbiezne, staly sie wszechobecne. Jest to widoczne do tego stopnia, ze rozmaite
aplikacje, poczawszy od edycji dokumentéw tekstowych, a konczac na bazach danych
i aplikacjach typu Big Data, coraz czesciej deleguja przetwarzanie do uslug zdalnych,
ktore wykonuja okreslony program réwnolegle z programem klienta.

Skoro programisci aplikacji coraz czesciej stykaja sie z problemami programowania
wspdbibieznego, niezbednym staje sie dostarczenie im odpowiednich abstrakcji, ktére po-
zwalalyby wyeliminowa¢ cze$¢ z tych problemdéw oraz ukryé szczegdly implementacji
mechanizmdéw synchronizacji. Abstrakcje takie sa wykorzystywane w innych dziedzinach
programowania. Przykladowo, programisci nie pisza w praktyce wlasnych rozwiazan do
komunikacji przez sieé, lecz korzystaja z hermetycznych bibliotek (np. Netty, JGroups,
Java Message Service lub Java RMI), ktére dostarczaja tego typu funkcjonalno$é w for-
mie wysokopoziomowego API, ktére zwalnia programiste od implementowania szczegdléw
zarzadzania gniazdami czy serializacji danych. W podobny sposéb programisci aplikacji
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powinni moéc tworzy¢ systemy wspdibiezne.

Pamiec¢ Transakcyjna

Pamieé transakcyjna (ang. transactional memory, TM) [44, 71] jest zapozyczona z syste-
mow bazodanowych uniwersalna propozycja rozwiazania problemu synchronizacji w sys-
temach wspélbieznych poprzez zastosowanie abstrakeji transakeji (zob. np. [12, 16, 91]).
W tym podejsciu programista jedynie oznacza fragmenty kodu wymagajace synchroniza-
cji jako transakcje, a a system pamieci transakcyjnej jest odpowiedzialny za wykonanie
poszczegdlnych operacji na danych wspoéldzielonych w ramach transakcji w taki sposob,
zeby zapewniona byla wydajnosé i poprawnosé. Wykonanie kodu transakcji zostaje powie-
rzone odpowiedniemu algorytmowi sterowania wspotbiezno$cia, ktory zapewnia, ze prze-
plot operacji spetnia konkretne gwarancje poprawnosci. Gwarancje te okreslone sg przez
wlasnosci bezpieczenistwa ktére opisuja dany algorytm, np. uszeregowalno$é (ang. seria-
lizability) [60] lub nieprzezroczysto$¢ (ang. opacity) [33]. Programista, z kolei, nie musi
znaé szczegdtow dziatania zastosowanego algorytmu sterowania wspétbieznoscia, a jedy-
nie wlasnosci bezpieczenstwa, ktore ten algorytm spelnia. W konsekwencji, abstrakcja
transakcji ukrywajaca szczegdly implementacji algorytméw sterowania wspélbieznoscia
oraz spelniajaca okreslone wlasnosci bezpieczenstwa, znaczaco upraszcza programowanie,
wspierajac jednoczednie poprawnosé i wydajnosé dzialania systemow wspotbieznych.

Rozproszona pamieé transakcyjna (ang. distributed transactional memory, DTM)
[14, 49, 18, 68, 86, 10] przenosi idee pamieci transakcyjnej do systeméw rozproszonych.
Generalizacja ta powoduje potrzebe rozwigzania dodatkowych probleméw jak asynchro-
niczno$c¢ i awarie czesciowe, ale takze stwarza nowe perspektywy. Cecha najbardziej od-
rozniajaca transakcje w pamieci transakcyjnej od ich bazodanowych poprzednikéw jest
mozliwo$¢ wykonywania innych operacji niz tylko odczyt i zapis na zmiennych wspot-
dzielonych. W systemach pamieci transakcyjnej wspétdzielone miedzy transakcjami moga
by¢ obiekty, ktérych operacje odczytu i zapisu majg bardziej zlozong semantyke, np. licz-
niki, czy kolejki. Moga to by¢ takze obiekty ktorych interfejsy sa dowolnie zdefiniowane
przez programiste i ktérych implementacja ma arbitralna semantyke. W rozproszonej
pamieci transakcyjnej dowolno$¢ definicji obiektéw moze dodatkowo shuzy¢ umiejscowie-
niu wykonania pewnego kodu na konkretnych (zdalnych) wezlach sieci. W szczegblnosci
wyrdznia sie dwa modele. Model przeptywu danych (ang. data flow) zaklada, ze obiekt
na ktorym wykonywana jest operacja migruje do wezla, na ktérym wykonywana jest
transakcja, i wlasnie tam wykonywany jest takze kod operacji. W tym modelu efekty
operacji sa zawsze lokalne wzgledem transakcji. Model przeplywu sterowania (ang. con-
trol flow) zaklada, ze obiekty sa nieruchome i kod operacji wykonuje si¢ zawsze na wezle
,2domowym”. Oznacza to, ze efekty operacji sa lokalne wzgledem obiektu, a nie trans-
akcji. Kazdy z modeli ma swoje wady i zalety, ale unikatows cecha modelu przeptywu
sterowania jest to, ze pozwala on na ,pozyczanie” przez transakcje mocy obliczeniowej od
zdalnych weztéw. Pozwala to na wigksza elastycznosé przy projektowaniu i implementacji
aplikacji rozproszonych.

Optymistyczne Sterowanie Wspotbieznoscia

Powszechnie stosowanym podejSciem do synchronizacji w (rozproszonej) pamieci trans-
akcyjnej jest podejscie optymistyczne. W podejéciu tym, w ujeciu ogdlnym, transakcje sa
wykonywane jednocze$nie bez wzgledu na charakterystyke dostepow wewnatrz transakeji,
a proba walidacji ich poprawnosci nastepuje pézniej, np. w momencie zatwierdzenia (ang.
commit) gdy wszystkie operacje transakcji zostaly wykonane. Zatwierdzenie konczy sie
powodzeniem, gdy wykonanie transakcji przebieglo w sposéb poprawny. Niepowodzenie
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zatwierdzenia nastepuje w wypadku gdy biezaca transakcja wykonala nieprawidtowe ope-
racje, np. usilujac operowaé na tym samym obszarze pamieci (zmiennej wspoéldzielonej,
obiekcie) jednoczesnie z inng transakcja w sytuacji, gdy przynajmniej jedna z nich pré-
buje ten obszar modyfikowaé. Scenariusz taki nazywany jest konfliktem (ang. conflict)
i wymaga on wycofania (ang. abort) jednej z transakcji. Wycofanie transakeji oznacza, ze
transakcja usuwa wszelkie oznaki swojego wykonania. Nastepnie transakcja wycofana zo-
stanie wykonana po raz kolejny, w nadziei, ze tym razem konflikt nie wystapi i transakcja
zostanie zatwierdzona poprawnie. PodejScie optymistyczne mozna zaimplementowaé na
wiele sposobow, ale typowym jest buforowanie operacji lub ich wynikow podczas dziatania
transakcji, i wprowadzanie zmian do oryginalnego obiektu dopiero podczas zatwierdzenia
(ang. commit-time), raczej niz modyfikowanie obiektéw juz podczas wykonywania ope-
racji (ang. encounter-time). Typowe jest wykrywanie konfliktéw jak najwczesniej, w celu
minimalizacji marnotrawienia pracy wykonanej przez ostatecznie wycofane transakcje.

Podejscie optymistyczne jest dos¢ uniwersalnym rozwiazaniem, ale ma ono dwa man-
kamenty. Po pierwsze, podejscie optymistyczne napotyka na problemy wynikajace ze spe-
kulacyjnego wykonywania transakcji w srodowiskach z wysokim wspotczynnikiem wspot-
zawodnictwa (ang. contention)—tj. takich, gdzie wiele transakcji jednoczesnie ubiega sie
o wykonanie operacji na tym samym obiekcie. Wysokie wspolzawodnictwo sprawia, ze
prawdopodobienstwo wystapienia konfliktéw wzrasta, co z kolei powoduje, ze wzrasta cze-
stos¢ z jaka transakcje sa wycofywane. W efekcie zwiekszone jest prawdopodobienstwo,
ze dana transakcja bedzie wielokrotnie wycofana i wielokrotnie (co najmniej czesciowo)
wykonana, zanim w koricu zostanie zatwierdzona. Co wiecej, wykonywanych jest wiele
obliczen, ktorych wyniki sg nastepnie ignorowane, a po odjeciu transakcji wycofanych,
konfliktujace sie transakcje w praktyce wykonuja sie sekwencyjnie. Istnieja mechanizmy,
ktére eliminuja wyzej opisany problem problem przez zarzadzanie ponownym urucha-
mianiem konfliktujacych transakeji, tak, aby nie doprowadzaé¢ do ponownych konfliktow.
W tym celu mozna stosowaé proste rozwiazania jak wykladnicze opdznienie (ang. ezpo-
nential back-off) [43], lub rozwiazania zlozone, jak szeregowanie oparte o prawdopodo-
bienistwo wystapienia konfliktéw [24, 105], a takze inne mechanizmy sterowania wspol-
zawodnictwem (ang. contention management) [25, 70]. Rozwiazania te maja opéZniaé
wykonanie niektérych transakcji (zazwyczaj po pierwszym konflikcie), powodujac obni-
zenie liczby wspoétbieznych transakcji. Rozwiazania te natomiast wymagaja parametry-
zacji, co wymaga strojenia parametrow recznie lub wyprowadzania ich podczas dzialania
systemu, a takze prowadzi do koniecznosci reakcji na zmiany profilu obciazenia. Czesto
takze rozwiazania te wymagaja centralnej koordynacji, co uniemozliwia wykorzystanie
ich w systemach rozproszonych.

Kolejnym problemem podejscia optymistycznego jest obsluga operacji niewycofy-
walnych (ang. irrevocable operations). Operacje niewycofywalne sa to operacje, ktérych
efekty sa obserwowalne, ale nie mozna ich usunaé ani nie powinno sie powiela¢. Przykta-
dami takich operacji sa operacje na zamkach, operacje wejscia/wyjscia, czy komunikacja
sieciowa. Operacje te czesto wystepuja w ztozonych aplikacjach i sg zazwyczaj trudne do
zlokalizowania w kodzie transakcji, poniewaz sa wykonywane w ramach procedur beda-
cych czeéciami uzywanych przez programiste bibliotek. Natomiast jesli operacja niewy-
cofywalna znajdzie si¢ w kodzie transakcji wykonywanej optymistycznie, to ta transakcja
moze spowodowaé wielokrotne wykonanie operacji niewycofywalnej na skutek konfliktu.
Przyktadowo, spowodowaé to moze wielokrotne wystanie tej samej wiadomosci sieciowej,
tamiac protoké! komunikacji, lub wielokrotne pobranie tego samego zamka prowadzac do
zakleszczenia transakcji. Rozwiazanie tego problemu w systemach optymistycznych nie
jest proste. Popularnym rozwiazaniem jest spowodowanie, ze transakcja wykonujaca ope-
racje niewycofywalne nie zostaje nigdy wycofana. Przykladowo, w [92] zaproponowano
system, w ktérym transakcja zawierajaca operacje niewycofywalne staje sie transakcja
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niewycofywalna, ktéra zawsze wygrywa konflikty z innymi transakcjami. Jednakze tylko
jedna taka transakcja moze dziala¢ jednoczesnie w calym systemie ze wzgledu na para-
doks w wypadku konfliktu miedzy dwoma niewycofywalnymi transakcjami. Powoduje to
jednak zmniejszenie wydajnosci systemu. W [9, 62] zastosowane inne rozwiazanie: sys-
tem pamieci transakcyjnej utrzymuje wiele wersji tego samego obiektu, wiec transakcje
moga operowa¢ na starszych wersjach jesli operowanie na nowej wersji powodowaloby
konflikt. Rozwiazanie to prowadzi do skomplikowania i spowolnienia systemu pamieci
transakcyjnej. W konsekwencji, wiele istniejacych systemow pamieci transakcyjnej zabra-
nia wykonywania operacji niewycofywalnych (np. Haskell [41]) lub wymaga zdefiniowania
operacji, ktére wykonaja kompensacji ich efektéw (np. [13]). Sa to jednak rozwiazania
niepraktyczne, zwlaszcza jesli system rozproszonej pamieci transakcyjnej ma by¢ zaapli-
kowany w ztozonych systemach zorientowanych na ustugi. Przyktadowo, jesli wykonanie
operacji na obiekcie-ustudze powoduje efekt materialny (np. wydruk ksiazki), to operacja
niewycofywalna jest czescia semantyki ustugi i nie istnieje kompensacja, ktéra (bezstrat-
nie) odwrdci jej efekt.

Pesymistyczne Sterowanie Wspoélbieznoscia

Prostsza metoda rozwiazywania probleméw wymienionych powyzej jest uzycie pesymi-
stycznego podejscia do sterowania wspotbieznoscia. Podejscie pesymistyczne ma swoje
poczatki w transakcjach bazodanowych (np. blokowanie dwufazowe — ang. two-phase
locking [12, 91]) i zostalo przeniesione do pamieci transakcyjnej w [56, 1, 10] oraz w pra-
cach [96, 97]. Ogdblna idea pesymistycznej pamieci transakcyjnej jest taka, ze transakcje
nie wykonuja operacji spekulacyjnie, lecz najpierw sprawdzany jest warunek poprawnosci
wykonania danej operacji, a operacje dla ktorych warunek nie moze by¢ natychmiast spet-
niony ze wzgledu na potencjalny konflikt sa opéZniane do momentu, az konflikt staje sie
niemozliwy. Oznacza to, ze transakcje sa wycofywane bardzo rzadko lub wecale, dzieki
czemu wyeliminowane zostaja problemy zwiazane wyzej wymienionymi scenariuszami
z wysokim wspolzawodnictwem i z operacjami niewycofywalnymi.

W [56] pokazano jednakze, ze podejécie pesymistyczne w formie stosowanej do tej
pory ma negatywny wplyw na wydajno$¢ systeméw pamieci transakcyjnej, poniewaz jest
uzaleznione od szeregowego wykonywania transakcji, ktére wykonuja zapisy do zmien-
nych. Ograniczenie to ma na celu wykluczenia konfliktow, ale powoduje ono ograniczenie
rownolegtosci wykonania.

Gléwnym celem przedstawionej pracy bylo pokazanie, ze obnizenie wydajnosci nie
jest nieodzowna czeécig podejécia pesymistycznego i moze by¢ catkowicie wyelimino-
wane. W tym celu, rozwazono zastosowanie techniki wezesnego zwalniania zasob6éw (ang.
early release). Wezesne zwalnianie zasob6w to technika optymalizacyjna stosowana w pa-
mieci transakcyjnej, gdzie pary transakcji miedzy ktérymi zachodzi konflikt sa jednak
zatwierdzane [65], jesli tylko przeplot operacji, ktéry prowadzi do konfliktu jest w istocie
poprawny. Technika ta jest szczegdlnie efektywna w podejSciu pesymistycznym, gdzie
transakcje nie sa wycofywane. Przy takim zalozeniu, mozna zezwoli¢ transakcjom na
odczytywanie ostatecznego stanu zmiennych modyfikowanych przez inna transakcje bez
troski o odczytanie stanu niepoprawnego, pomimo tego, ze modyfikujaca transakcja nie
zostala jeszcze zatwierdzona. Systemy korzystajace z techniki wezesnego zwalniania (np.
[43, 65, 28, 13, 75]) pokazuja, ze powoduje ona znaczaca poprawe efektywnosci dziala-
nia pamieci transakcyjnej. Dlatego tez w niniejszej pracy wykorzystano te technike jako
rdzen zaproponowanych optymalizacji, dazac do stworzenia bezpiecznego i wydajnego
systemu pesymistycznej pamieci transakcyjnej.
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Bezpieczenstwo

W odréznieniu od transakcji bazodanowych, pamieé¢ transakcyjna pozwala na wlaczanie
dowolnych operacji do kodu transakcji obok odczytéw i zapisow na danych wspotdzielo-
nych. Powoduje to, ze pamie¢ transakcyjna musi wykonywac¢ transakcje bardziej ostroz-
nie, niz jest to wymagane w bazach danych. Przykladowo, uszeregowalnosé¢ ustanawia,
ze jesli transakcje, ktére sa zatwierdzone, wykonaty sie poprawnie, to calosé wykonania
moze by¢ uznana za poprawna. Jesli wiec transakcja bazodanowa przeczyta ze zmiennej
niespdjng wartos¢, wystarczy, ze nie dopusci sie tej transakcji do zatwierdzenia, i caly
przeplot pozostanie poprawny w swietle uszeregowalnosci. Natomiast, jedli pamieé trans-
akcyjna pozwoli transakcji na odczytanie wartosci niespéjnej, moze dojéé do ztamania
jakiegos$ niezmiennika i wykonania nieprzewidzianej niebezpiecznej operacji, np. podziatu
przez zero lub wejscia w petle nieskonczona. W takim wypadku, klasyczne wlasnosci ba-
zodanowe, takie jak uszeregowalno$é sg niewystarczajace dla zapewniania poprawnosci
pamieci transakcyjnej. Pamieé transakcyjna wymaga wlasnoéci bezpieczenstwa, ktore
beda ograniczaé¢ lub wyklucza¢ mozliwo$¢ odczytu niespéjnego stanu przez transakcje
niezaleznie od tego, czy beda one ostatecznie zatwierdzone. W tym celu zaproponowano
wlasnos¢ nieprzezroczystosci, ktéra, ponad wymagania uszeregowalnosci, wymaga takze
utrzymania miedzy transakcjami porzadku czasu rzeczywistego i uniemozliwia transak-
cjom czytanie modyfikacji wprowadzonych przez zywe (jeszcze niezatwierdzone) transak-
cje. Nieprzezroczystosé stala sie standardowa wlasnoscia systemdw pamieci transakcyjnej
i jest de facto spelniana przez wiekszos¢ systeméw prezentowanych w literaturze.

Jednak, jesli wykluczyé czytanie modyfikacji wprowadzonych przez niezatwierdzone
transakcje, niemozliwym staje si¢ uzycie techniki wczesnego zwalniania zasobdéw, na-
wet jesli nie powoduje to niepoprawnych zachowan. Natomiast przed zaproponowaniem
wydajnej pamieci transakcyjnej, niezbednym staje sie zdefiniowanie gwarancji popraw-
nosci ktore przez taki system musza byé spelnione i odkrycie lub zdefiniowanie wlasno-
Sci bezpieczenstwa ktore beda te gwarancje okreslaé¢, jednoczeénie dopuszczajac uzycie
wczesnego zwalniania zasobdw. Ze wzgledu na fakt, Zze nieprzezroczystosé jest bardzo re-
strykcyjna wlasnoscia, w celach praktycznych w literaturze zaproponowano wiele innych,
rozluZnionych wlasnosci bezpieczenstwa, takich jak sp6jnosé $wiata wirtualnego (ang.
virtual world consistency — VWC') [48], specyfikacja pamieci transakeyjnej (ang. transac-
tional memory specification — TMS1 i TMS2) [22], nieprzezroczysto$é elastyczna (ang.
elastic opacity) [28], nieprzezroczystosé zywa (ang. live opacity) [26] i inne. W ramach tej
rozprawy dokonano analizy tych wlasnosci, a takze istniejacych wlasnosci bazodanowych
celem okreslenia czy pozwalaja na optymalizacje przez wczesne zwalnianie zasobow, jakie
ograniczenia naktadajg na te optymalizacje i jakich wymagaja dodatkowych zatozen. Na
podstawie tej analizy wprowadzono nowe wlasno$ci przeznaczone dla systemow pamieci
transakcyjnej z wezesnym zwalnianiem zasobdéw, ktére jednoczednie dostarczaja silnych
gwarancji bezpieczenstwa.

Model Systemu

Pamieé¢ transakcyjna moze by¢ uzywana w ramach wielu modeléw systemu, ktére wply-
waja na zalozenia, jakie algorytm sterowania wspoétbieznoscia bedzie przyjmowacé. Po
pierwsze, pamieé¢ transakcyjna moze dzialaé¢ na zmiennych (obiektach-zmiennych), czyli
na obiektach, ktérych stan jest zdefiniowany przez pojedyncza wartosé, ktora z kolei moze
by¢ odczytana lub nadpisana. Model taki jest typowy dla nierozproszonej pamigci trans-
akcyjnej (np. [21, 39, 65]), ale rozproszona pamieé transakcyjna czesciej uzywa modelu
gdzie obiekty wspo6ldzielone sa bardziej zlozone (np. [68, 86]). Konkretnie, wyrdzniamy
tutaj dwa modele obiektowe: jednorodny (ang. homogeneus) i niejednorodny (ang. hetero-
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geneous). W modelu jednorodnym obiekty sa jednakowe i relatywnie proste: odpowiadaja
strukturom takim jak liczniki czy stosy. Obiekty wspoétdzielg jeden interfejs, ktory zawiera
jedna operacje odczytu i jedna operacje zapisu o znanej semantyce. W modelu niejedno-
rodnym zaklada sie, ze kazdy z obiektéw definiuje wlasny interfejs zawierajacy dowolne
operacje o dowolnej (i zazwyczaj nieznanej a priori) semantyce, dzialajace na zlozonym,
hermetycznie odizolowanym stanie. R6zne modele maja rézne aplikacje: zmienne znaj-
duja zastosowanie w systemach lokalnych i réwnolegltych o duzej wydajnosci oraz bazach
danych, podczas gdy modele obiektowe uzywane sg w ztozonych systemach chmurowych
czy architekturach zorientowanych na ushugi, gdzie kazdy z obiektow wyraza¢ moze nawet
cale ustugi.

Po drugie, systemy pamieci transakcyjnej moga dostarczaé réznych interfejséw dla sa-
mych transakcji. Wiele optymistycznych i pesymistycznych systeméw jest systemami wy-
lacznie zatwierdzajacymi (ang. commit-only), gdzie transakcja dazy zawsze do tego, zeby
po wykonaniu swoich operacji wykonaé zatwierdzenie (np. [96, 6, 56]). Alternatywnie, pa-
migé transakcyjna moze byé systemem z dowolnoécia wycofania (ang. arbitrary abort),
gdzie transakcja moze w dowolnym momencie dziatania samoistnie wycofaé sie, zamiast
podejmowaé proby zatwierdzenia. Dodanie operacji wycofania do interfejsu transakcyj-
nego powoduje, ze system staje si¢ bardziej ekspresywny, a takze dostarcza istotnej dla
wydajnej implementacji odpornosci na awarie cze$ciowe funkcjonalnosci.

Warto odnotowaé, ze systemy pamieci transakcyjnej dzialajace na zmiennych moga
przyja¢ duzo szersze zalozenia odnosnie do stanu systemu, niz pamie¢ transakcyjna dzia-
tajaca na obiektach w pozostalych modelach. Powoduje to, ze jesli poréwnamy wydaj-
noé¢ takich dwoch systemow stosujac tylko zmienne, pamieé¢ transakcyjna dzialajaca na
zmiennych bedzie bardziej wydajna od pamigci obiektowej. Natomiast, jesli porownamy
te dwa systemy uzywajac modelu obiektowego, pamie¢ transakcyjna dzialajaca na zmien-
nych ma szanse dziala¢ nieprawidtowo ze wzgledu na jej zbyt silne zalozenia. Podobnie,
pamieé transakcyjna przystosowana do dowolnych wycofan moze byé uzyta w modelu
wylacznie zatwierdzajacym, chociaz skutkowaé to bedzie obnizeniem wydajnosci w po-
rownaniu do odpowiednika przystosowanego do pracy w modelu wylacznie zatwierdzaja-
cym. Z drugiej strony, pamigé¢ transakcyjna wylacznie zatwierdzajaca nie moze by¢ uzyta
poprawnie i wydajnie w modelu, w ktérym transakcje moga byé dowolnie wycofywane.
Stypulujemy, ze praktyczno$¢ systemu pamieci transakcyjnej jest uwarunkowana moz-
liwoscia jego aplikacji w szerokiej gamie modeli systeméw przy zachowaniu wydajnosci
i poprawnosci. W konsekwencji rozprawa rozwazy aplikacje wprowadzonych algorytméw
w réznych modelach, starajac sie osiagnaé uniwersalno$¢. Jednoczednie przedstawiamy
warianty naszych algorytméw majace na celu poprawe wydajnosci w konkretnych mo-
delach.

Przyjeto tez zalozenie, ze praktyczny system rozproszonej pamieci transakcyjnej nie
moze opiera¢ si¢ na centralnych strukturach, ktére wprowadzaltyby pojedynczy punkt
awarii (ang. single point of failure), gdyz ograniczaloby to skalowalno$é¢ (ang. scalability)
systemu, oraz uniemozliwialoby jego funkcjonowanie pomimo cze$ciowych awarii.

Zywotno$é i Postep

Dodatkowo, poza poprawnoscia systemu, praktyczny system pamieci transakcyjnej powi-
nien takze gwarantowad, ze poszczegdlne operacje wewnatrz transakcji zostana wykonane,
tj. zywotno$é (ang. liveness), oraz, ze kazda z transakeji ostatecznie bedzie zatwierdzona,
tj. postep (ang. progress). Podstawowa wlasnosci zywotnosci dla pamieci transakcyjnej
jest wolnosé od zakleszczenia (ang. deadlock freedom), ktéra oznacza, ze transakcje nigdy
nie doprowadzaja do zakleszczen. Zakleszczenie to sytuacja, w ktérej miedzy transak-
cjami wystepuje cykl oczekiwania. Silna progresywnosé (ang. strong progressiveness) [33]
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to popularna wlasno$¢ postepu moéwiaca, ze konflikt nie moze doprowadzi¢ do sytuacji,
w ktérej wszystkie skonfliktowane transakcje zostaja zmuszone do wycofania. System
pamieci transakcyjnej ktory nie spelnia tych wlasnosci zywotnoéci i postepu moze do-
prowadza¢ do “klinowania sie“ calego systemu, a wiec nie jest systemem praktycznym.

Teza
W Swietle powyzszych zamierzen i wymogéw, sformulowano w pracy nastepujaca teze:

MoZliwym jest zaproponowanie pesymistycznego algorytmu sterowania wspotbiezZnosciq
dla rozproszonej pamieci transakcyjnej, ktory jednoczesnie:

a) osigga wysokq wydajnosé,
b) speinia silne wlasnosci bezpieczenstwa, Zywotnosci i postepu,
¢) gwarantuje poprawne wykonanie operacji niewycofywalnych,

d) jest stosowalny w ogdlnych modelach systemdw.

Kontrybucja

Przedstawiona teza jest udowodniona poprzez kontrybucje wprowadzone ponizej i opisane
szczegbltowo w poszcezegdlnych rozdziatach rozprawy.

I Analiza istniejacych wtlasno$ci i algorytmoéw pamieci transakcyjnych.
Formalnie przeanalizowano istniejace wlasnosci bezpieczenstwa dla pamieci trans-
akcyjnej oraz bazodanowe warunki spdjnosci celem okreélenia, czy znajduja one
zastosowanie w pamieci transakcyjnej z wezesnym zwalnianiem zasobdéw. W szcze-
gblnosci, okreslono, czy pozwalaja one na wczesne zwalnianie zasobdow, jakie klasy
niespdjnych odczytéw sg przez nie dopuszczane i jakie ograniczenia sg przez nie na-
lozone na transakcje. Nastepnie, zbadano wybrane istniejace pesymistyczne i roz-
proszone pamieci transakcyjne, oraz pamieci transakcyjne stosujace wczesne zwal-
nianie zasobéw, ustalajac ich parametry i gwarancje bezpieczenstwa. Pozwala nam
to wyciagnaé wnioski o stosowalnosci istniejacych wtlasnosci do systemoéw z wcze-
snym zwalnianiem zasobéw. Ponadto, analiza pozwolila na ustalenie, ktére algo-
rytmy i techniki moga by¢ uzyte do implementacji pesymistycznej rozproszonej
pamieci transakcyjnej. Analizy przedstawione sa w Rozdzialach 3 i 4, i stanowia
rozszerzenie wynikéw zaprezentowanych w [77] i [79].

IT Nowe silne wlasno$ci bezpieczenstwa dla pamieci transakcyjnej z wcze-
snym zwalnianiem zasobéw.
W pracy zaproponowano zostaly dwie nowe wlasnosci bezpieczenstwa, nieprzezro-
czystosé do ostatniego uzycia i silna nieprzezroczysto$é do ostatniego uzycia, ktére
daja silne gwarancje spéjnoéci i wykluczaja wickszoéé¢ klas niespdjnych odczytow
stanu, jednoczesnie pozwalajac na wczesne zwalnianie zasobow. Wlasnosci wraz
z ich charakterystyka przedstawiono oraz oméwiono w Rozdziale 5. Wlasnosci te
zostaly wczesniej zaprezentowane w [76, 79].

III Nowe pesymistyczne algorytmy sterowania wspoétbieznoscia dla pesymi-
stycznej (rozproszonej) pamieci transakcyjnej.
Ponadto w pracy opisano szereg nowych algorytméw sterowania wspoltbiezno$cia
dla pesymistycznej (rozproszonej) pamigci transakeyjnej. Rozpoczeto od rozszerze-
nia istniejacych algorytmoéw wersjonowania [96, 97] celem wykluczenia pojedyn-
czego punktu awarii i uogdlnienia ich do modelu pozwalajacego na dowolne wyco-
fywanie transakcji, w efekcie uzyskujac algorytmy BVA+R, SVA+R i RSVA+R.
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Nastepnie zastosowano szereg daleko idacych optymalizacji ze wzgledu na typy
wykonywanych operacji, aby uzyskaé¢ algorytmy sterowania wspdtbieznoscia Opt-
SVA+R i OptSVA-CF+R (wraz z wariantami), ktére daza do wysokiego stopnia
zrownoleglenia transakcji. Pokazujemy, ze owe algorytmy pozwalaja na wicksze
zrownoleglenie wykonan transakcji niz ich poprzednicy i wykazujemy ich wlasnosci.
Algorytmy wprowadzone sa w Rozdziale 6, a ich dowody poprawnoéci znajduja sie
w Rozdziale 7. Nowe algorytmy stanowia rozszerzenie badan zaprezentowanych
w [74, 75, 78, 82, 102].

Dowody bezpieczenstwa i techniki dowodzenia.

Przedstawiono zostaly takze techniki dowodzenia pozwalajace nam na wnioskowa-
nie o bezpieczenistwie (nieprzezroczystosé i nieprzezroczystosé do ostatniego uzycia)
algorytméw z wczesnym zwalnianiem zasobdéw. Nastepnie zastosowano wprowa-
dzone techniki, udowadniajac wtasnosci wybranych algorytméw. Zaprezentowane
jest to w Rozdziale 7 i stanowi rozszerzenie wynikéw pokazanych w [79, 80, 102].

Implementacja nowych algorytméw. Efektem pracy byly tez implementacje
systemoOw rozproszonej pamieci transakcyjnej w modelu przeplywu sterowania dla
dwoéch z zaprezentowanych algorytméw sterowania wspéibieznoscia. Jedna z im-
plementacji postuzyta do pokazania, ze OptSVA-CF+R przewyzsza efektywnoscig
wysokiej klasy optymistyczny system rozproszonej pamieci transakcyjnej. Imple-
mentacje i ewaluacja sg zaprezentowane w Rozdziale 8 i odzwierciedlaja one wyniki
badan w [75, 78, 82].

Analiza statyczna i prekompilator. Wprowadzono tez prekompilator, ktory jest
w stanie wygenerowaé informacje wymagane a priori przez niektére z zaprezento-
wanych algorytmoéw pamieci transakcyjnej na podstawie analizy statycznej kodu
zrodlowego transakceji. Prekompilator zaprezentowany jest w Rozdziale 9 i odzwier-
ciedla badania zaprezentowane w [72, 73].

Analiza Istniejacych Wlasnosci

W celu analizy istniejacych wlasno$ci bezpieczenstwa, zaréwno dla pamieci transakcyjnej,

jak 1 warunkéw spdjnosci dla baz danych, zdefiniowano formalnie wczesne zwalnianie

zasobow jako scenariusz, gdzie wykonywane sg przynajmniej dwie transakcje T; i T}
w taki sposob, ze transakcja T; zapisuje do jakiej§ zmiennej z warto$¢ v, a nastepnie T}
odezytuje v z x , gdy T; jest zywa. Méwimy wtedy, ze T; zwalnia x do T;. Nastepnie
zdefiniowano trzy warunki, ktore okrelaja do jakiego stopnia jakas wlasnos¢ ¥ pozwala

na wezesne zwalnianie zasobow:

Def.

Def.

Def.

4 (Dopuszczanie Wezesnego Zwalniania Zasobéw) Wlasnos$é B dopuszeza taka hi-
storie wykonania, gdzie wystepuje wczesne zwalnianie zasobow.

5 (Dopuszczanie Nadpisywania) Wlasnosé P dopuszcza taka historie wykonania,
gdzie wystepuje wczesne zwalnianie zasobéw i gdzie transakcja T;, ktora zapisuje
warto$¢ v do zmiennej z i zwalnia zmienng x do transakcji T;, nastepnie zapisuje
ponownie jakas warto$¢ v' do z po tym, jak T; odczyta v z .

6 (Dopuszczanie Wycofywania Po Zwolnieniu Zasobéw) Wlasnosé B dopuszcza
taka historie wykonania, gdzie wystepuje wczesne zwalnianie zasobéw i gdzie trans-
akcja T;, zwalnia jaka$ zmienng do transakcji T}, a nastepnie T; ostatecznie zostaje
wycofana.
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Wtlasnosé Zastosowanie Def. 4 Def. 5 Def. 6 CUszeregowalne
Serializability bazy danych, TM v v v v
co bazy danych v v v X
Recoverability bazy danych v v v X
Cascadelessness bazy danych X X X X
Strictness bazy danych X X X v
Rigorousness bazy danych X X X v
Opacity ™ X X X v
Markability ™ X X X v
TMS1 ™ X X X v
TMS2 ™ X X X v
Vvwc ™ v X X v
Live opacity ™ v X X v
Elastic opacity ~TM v X X X

Tablica 11.1: Podsumowanie dopuszczalnosci wczesnego zwalniania zasobéw w istniejacych
wlasnosciach.

Sposrod tych definicji, Def. 4 jest warunkiem koniecznym stosowalnosci wlasnosci
dla pamieci transakcyjnej z wezesnym zwalnianiem. Def. 5 stuzy wykluczeniu wlasnosci
zbyt permisywnych, ktére pozwalaja na czytanie stanu niespdjnego w trakcie dzialania
transakcji. Odczyt takiego stanu moze prowadzi¢ do niebezpiecznych sytuacji opisanych
w [33]: bledéw arytmetyki obiektowej, wejécia w nieskoriczona petle, dzielenia przez zero.
Def. 6 stuzy zapewnieniu, Ze nie ogranicza sie mozliwoéci wycofania transakcji, ktore
wykonuja wczesne zwalnianie zasobéw. Takie ograniczenie czyni te transakcje niewyco-
fywalnymi, co niesie ze soba wiele probleméw, np. ograniczenie mozliwoéci wykonywania
takich transakcji sekwencyjnie [92]. Co wiecej wymuszenie ostatecznego zatwierdzenia
w tych transakcjach doprowadza do tego, ze w systemach z dowolnym wycofaniem (w
szczegblnosci w systemach potencjalnie awaryjnych) wezesne zwalnianie zasobéw jest
wykluczone calkowicie.

Analizujemy istniejace wlasnosci bezpieczenstwa dla pamieci transakcyjnej oraz wa-
runki spéjnosci uzywane w systemach baz danych pod wzgledem wyznaczonych kryteriéow
i zaprezentowano wyniki analizy w Tablicy 11.3. Tablica ta informuje, ktére z wyzej wy-
mienionych definicji sa spelniane przez konkretng wtasnosé. Dodatkowo informuje, czy
wlasnos¢ wywodzi sie z systeméw baz danych i czy jest szeroko uzywana w systemach
pamieci transakcyjnej, a takze, w ostatniej kolumnie, ustalono czy dana wlasnodé jest
silniejsza od uszeregowalnosci — tzn. czy kazda historia spelniona przez dana wlasnosé
spelnia takze wlasnosé uszeregowalnosci. W tabeli podano nazwy wlasnosci w jezyku
angielskim.

Przedstawiona w pracy analiza wykazuje, ze tylko niewielka liczba istniejacych wta-
snoéci pozwala na jakiekolwiek wykorzystanie wczesnego zwalniania zasobéw. Sposrdd
pozostatych wlasnosci, te ktére pozwalaja na wczesne zwalnianie zmiennych sa albo zbyt
dozwalajace, pozwalajac na nadpisywanie uprzednio zwolnionej zmiennej, albo zbyt re-
strykcyjne, wymagajac od transakcji zwalniajacych zmienne, aby byty efektywnie nie-
wycofywalne. W konsekwencji mozna zauwazy¢ brak wlasnosci praktycznie stosowalnej
w systemach pamieci rozproszonej z wczesnym zwalnianiem zasobow.
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Analiza Istniejacych Algorytmow

Nastepnym krokiem bylta analiza istniejacych algorytméw sterowania wspoltbieznoécia
dla pamieci transakcyjnej i systemdéw pamieci transakcyjnej. Poniewaz badania nad pa-
miecia transakcyjna zaowocowaly duza liczba rozwiazan, skupiono sie na systemach od-
zwierciedlajacych nastepujace aspekty: rozproszone systemy pamieci transakcyjnej, pe-
symistyczne pamieci transakcyjne, oraz pamieci transakcyjne wykorzystujace wczesne
zwalnianie zasobow. Dla kazdej kategorii algorytméw dokonano ogdlnego przegladu ist-
niejacych algorytmow, oraz dokladnniejszej analizy wybranych przedstawicieli z kazdej
kategorii.

Wryniki analizy podsumowano w Tablicy 11.2. Kolumna podejscie wskazuje czy al-
gorytm jest pesymistyczny czy optymistyczny. Kolumna postep wskazuje, czy algorytm
jest blokujacy (oparty na zamkach) czy tez jest pozbawiony czekania. Nalezy odnotowad,
ze SemanticTM nie wymaga czekania, przy zalozeniu istnienia odpowiedniego modutu
szeregujacego transakcje przed wykonaniem. Kolumna modyfikacje wskazuje, czy algo-
rytm wprowadza modyfikacje do obiektow podczas wykonania operacji na obiekcie czy
modyfikacje sa op6znione do momentu zatwierdzenia. Kolumna wycofania méwi, kiedy
transakcje w danym algorytmie wykonuja wymuszone wycofanie. W kolumnie a priori
wskazane sa dane wymagane do poprawnego wykonania wykonania transakcji jeszcze
przed uruchomieniem. Kolumna obiekty mowi w jakim modelu ze wzgledu na definicje
obiektow dziala algorytm. Warto zauwazy¢, ze algorytmy dzialajace w modelu obiekto-
wym niejednorodnym moga by¢ uzyte rowniez w modelu jednorodnym, a algorytmy dzia-
tajace w modelu jednorodnym moga by¢ uzyte takze w modelu ze zmiennymi. 7 drugiej
strony algorytmy oznaczone jako dzialajace z dowolnymi obiektami sa uzywane w modelu
zmiennych, ale moga by¢ trywialnie zgeneralizowane do dowolnego modelu obiektowego.
Kolumna zakleszczenie informuje czy algorytm dopuszcza wystapienie zakleszczenia. Ko-
lumna bezpieczenstwo wskazuje, jakie wlasnosci bezpieczenstwa sa spelnione przez algo-
rytm (podane w jezyku angielskim). Kolumna zwalnianie zasobéw méwi czy algorytm
wykorzystuje technike wczesnego zwalniania zasobéw. Niektore algorytmy dopuszczaja
wczesne zwalnianie przez transakcje zmiennych tylko-do-odczytu. W koricu, kolumna ope-
racje niewycofywalne wskazuje jak algorytm radzi sobie z operacjami niewycofywalnymi:
czy sa one wykonywane zawsze poprawnie, czy moga wystapi¢ w wycofanej transakcji
lub czy moga by¢ wykonane wielokrotnie. Rozrézni¢ nalezy tutaj wycofanie w sensie
ogdlnym i wycofanie na zyczenie programisty—jesli programista nakaze transakcji wyco-
faé sie (poprzez wywolanie operacji wycofania), wycofanie operacji niewycofywalnej jest
zamierzone przez programiste, wiec jest zachowaniem poprawnym.

Wilasnosci Pamieci Transakcyjnej z Wczesnym Zwalnianiem

Warto zauwazy¢, ze pomimo istnienia wlasno$ci bezpieczenstwa, ktére pozwalaja na weze-
sne zwalnianie zmiennych, takich jak spéjnosé swiata wirtualnego (ang. wvirtual world
consistency, VW), nieprzezroczystos$é elastyczna (ang. elastic opacity) [28], czy nie-
przezroczystosé zywa (ang. live opacity), to w praktyce algorytmy pamieci transakcyjnej
ktore uzywaja wczesnego zwalniania nie zaspokajaja zadnej z nich, a jedynie relatywnie
staba wlasnos$é uszeregowalnosci (ang. serializability) lub uszeregowalnosci konfliktowej
(ang. conflict serializability). Zauwazamy, ze silniejsze z tych wlasnosci nie moga by¢
uzyte poniewaz wymagaja one, zeby transakcje, ktore zwalniaja wczesnie zmienne nie
mogly sie wycofa¢. Z drugiej strony, zachowania przedstawionych algorytméw bardzo
réznia sie od siebie. Np. algorytmy z rodziny blokowania dwufazowego (ang. two-phase
locking, 2PL) i algorytm wersjonowania w oparciu o suprema (ang. Supremum Versio-



Algorytm Podejscie Postep Modyfikacje ‘Wycofania A priori Obiekty Zaklesz- Bezpie- Zwalnianie Operacje
czenie czenstwo  zasobéw niewycofywalne

B2PL pesymistyczne blokujacy p. wykonania przy zakleszczeniu @ dowolne tak sertalizable  tak wycofywane

C2PL pesymistyczne blokujacy p. wykonania bez wycofywania RSet, WSet dowolne nie serializable  tak poprawne

S2PL pesymistyczne blokujacy p. wykonania przy zakleszczeniu & dowolne tak strict odczyty wycofywane

R2PL pesymistyczne blokujacy p. wykonania przy zakleszczeniu @ dowolne tak rigorous nie wycofywane

CS2PL pesymistyczne blokujacy p. wykonania bez wycofywania RSet, WSet dowolne nie opaque odczyty poprawne

CR2PL pesymistyczne blokujacy p.- wykonania bez wycofywania RSet, WSet dowolne nie opaque nie poprawne

CAS2PL pesymistyczne blokujacy p. wykonania dowolne RSet, WSet dowolne nie opaque odczyty wycofywalne
przez uzytkownika

CAR2PL pesymistyczne blokujacy p- wykonania dowolne RSet, WSet dowolne nie opaque nie wycofywalne
przez uzytkownika

BVA pesymistyczne blokujacy p- wykonania bez wycofywania ASet niejednorodne nie opaque nie poprawne

SVA pesymistyczne blokujacy p. wykonania bez wycofywania ASet, niejednorodne nie sertalizable  tak poprawne

suprema

TL2/DTL2 optymistyczne blokujacy p- zatwierdzenia przy konflikcie 1%} zmienne nie opaque nie wycofywane

TFA optymistyczne blokujacy p. zatwierdzenia przy konflikcie %] jednorodne nie opaque nie wycofywane

MS-PTM pesymistyczne blokujacy p. zatwierdzenia bez wycofywania %] zmienne nie opaque nie poprawne

PLE pesymistyczne blokujacy p- wykonania bez wycofywania 1%} zmienne nie opaque nie poprawne

SemanticTM  pesymistyczne pozbawiony p. wykonania bez wycofywania ASet, zmienne nie opaque nie powtarzane

czekania* zaleznosci
DATM optymistyczne blokujacy p. zatwierdzenia przy nadpisaniu, 1%} zmienne tak conflict tak wycofywane
zakleszczeniu serializable

i kaskadzie

Tablica 11.2: Podsumowanie algorytméw sterowania wspétbieznoscig dla pamieci transakcyjne;j.
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ning Algorithm, SVA) nie pozwalaja na nadpisywanie zmiennej po jej zwolnieniu, podczas
gdy DATM na to pozwala. Poniewaz te réznice nie sg okreslone przez wlasnosci, wnio-
skujemy, ze brakuje odpowiednich wlasnosci bezpieczenstwa dla pamieci transakcyjnej
wykorzystujacej wezesne zwalnianie zasobdw.

Rozproszona Pamie¢é¢ Transakcyjna

Sposérdéd przeanalizowanych algorytméw wyszezegdlniamy algorytmy, ktore moga byé
uzyte do implementacji rozproszonej pamieci transakcyjnej: algorytmy blokowania dwu-
fazowego, algorytmy wersjonowania (ang. versioning algorithms): BVA i SVA, oraz DTL2
i TFA. Algorytmy te byly projektowane ze szczegdlnym uwzglednieniem systeméw roz-
proszonych lub sa w nich wykorzystywane. Spoérdd tych systemow BVA i SVA uzywaja
globalnego zamka celem przyznania kazdej uruchamianej transakcji numeru wersji. Jest
to problematyczne ze wzgledu na skalowalnosé systemu, poniewaz wymaga, zeby kazdy
klient kontaktowal si¢ z jednym konkretnym weztem sieci. Natomiast, jak pokazano poni-
zej, globalny zamek mozna z tych algorytmoéw wyeliminowaé na rzecz bardziej zlozonego
schematu zamkéw opartych na wiedzy a priori wykorzystywanej przez te algorytmy. Po-
nadto, sposréd tych algorytmoéw, TFA jest zaprojektowany do pracy w modelu przeptywu
danych, podczas gdy blokowanie dwufazowe, algorytmy wersjonowania i DTL2 dziataja
w modelu przeplywu sterowania.

Algorytmy MS-PTM, PLE i DATM sa mniej zdatne do implementacji w srodowi-
sku rozproszonym, poniewaz uzywaja globalnych zamkéw, ktore sa problematyczne ze
wzgledu na skalowalnos$é. Ponadto, MS-PTM, PLE i DATM implementujg mechanizm
bezruchu (ang. quiescence), ktéry opdznia zatwierdzanie transakcji do momentu kiedy
wszystkie poprzednie transakcje zakonczyly proces modyfikacji zmiennych. Dzieki temu,
wszystkie transakcje moga zakonczyé sie bezkonfliktowo, ale mechanizm ten wymaga
komunikacji pomiedzy procesami obstugujacymi transakcje. Komunikacja taka jest nie-
praktyczna w systemie rozproszonym, gdzie klienci moga by¢ geograficznie rozproszeni,
oddzieleni zaporami ogniowymi (ang. firewalls) lub, w przypadku urzadzeii mobilnych,
moga nie posiada¢ odpowiedniej mocy obliczeniowej do obstugi wykrywania bezruchu.
W konsekwencji przed wprowadzeniem tych algorytméw do srodowiska rozproszonego
nalezy najpierw wprowadzi¢ metody pozwalajace transakcjom na wypychanie informacji
niezbednych do dzialania mechanizmu bezruchu oraz rozproszy¢ globalne zamki. W prze-
ciwienstwie do algorytméw wersjonowania, wymagane tutaj rozwiazania sa nietrywialne.

Trudno jest wyobrazi¢ sobie zastosowanie SemanticTM w $rodowisku rozproszonym
ze wzgledu na wymaganie tego systemu co do porzadku wykonywania operacji. Seman-
ticTM wymaga, zeby operacje na zmiennych byly umieszczone w kolejkach odpowiednich
dla tych zmiennych w taki sposéb, ze dla dowolnych dwdch transakcji wszystkie opera-
cje pierwszej z nich sg umieszczone we wszystkich kolejkach przed operacjami drugiej
transakcji lub vice versa. Wymaganie to jest trudne do zaspokojenia w systemie rozpro-
szonym, gdzie jego egzekwowanie wymagatoby zastosowania mechanizmu szeregujacego
rownie zlozonego jak sama pamie¢ transakcyjna. Z tego powodu nalezy uznaé¢ Seman-
ticTM za algorytm malo praktyczny w kontekscie systeméw rozproszonych.

Warto zauwazy¢, ze spoéréd wymienionych systeméw nadajacych sie do implementa-
cji w systemach rozproszonych, tylko blokowanie dwufazowe i algorytmy wersjonowania
wspieraja operacje niewycofywalne.
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Nowe Wlasnosci

Zaréwno wykonany przeglad wlasnosci, jak i przeglad algorytméw, sugeruja, ze brak jest
wlasnosci dobrze opisujacych praktyczne algorytmy sterowania wspotbieznoscig w pa-
mieci transakcyjnej. W konsekwencji, wprowadzono dwie nowe wlasnosci, ktore wypel-
niaja owa nisze.

Nieprzezroczystos¢ do Ostatniego Uzycia

Pierwsza zaprezentowana wlasnoscia jest wlasno$é nieprzezroczystosci do ostatniego uzy-
cia (ang. last-use opacity). Wlasnosé ta jest oparta o definicje nieprzezroczystosci, wiec
zachowuje ona silne gwarancje bezpieczenstwa. Wyjatkiem jest wymaganie, zeby trans-
akcje zawsze czytaly wartosci zmiennych ktére byly zapisane przez transakcje uprzednio
zatwierdzone. Nieprzezroczystosé do ostatniego uzycia zezwala na czytanie danych zapi-
sanych przez transakcje niezatwierdzone pod warunkiem, ze dane te byly zapisane przez
ostateczne operacje zapisu (ang. closing writes). Ostateczna operacja zapisu to taka ope-
racja, po ktorej nie wystapi zadna inna operacja zapisu na tej samej zmiennej i bedzie
to prawda dla wszystkich potencjalnych wykonan tej transakcji.

Wtlasnos¢ nieprzezroczystosci do ostatniego uzycia méwi, ze transakcje, ktore sa za-
twierdzone moga czytaé tylko wartosci zapisane przez inne transakcje, ktore sg rowniez
zatwierdzone. Ponadto, transakcje niezatwierdzone (zywe lub wycofane) moga czytaé
wartodci zapisane przez inne transakcje, jesli transakcje te sa zatwierdzone lub jesli war-
tosci te byly zapisane przez ostateczng operacje zapisu jakiej$ niezatwierdzonej transakcji.

Okreslona w ten sposob wlasnosé bezpieczenstwa moze by¢ uzywana do opisu syste-
mow z wezesnym zwalnianiem zasobéw, jednocze$nie wykluczajac nadpisywanie i pozwa-
lajac na wycofywanie transakcji, ktére zwolnity zasoby wczesnie.

Gwarancje

Nieprzezroczystos¢ do ostatniego uzycia zapewnia nastepujace silne gwarancje wzgledem
poprawnoéci wykonania kodu transakcyjnego:

Uszeregowalno$é (ang. Serializability) Jesli transakcja zostanie zatwierdzona, to do-
wolna warto$¢ przez nia odczytana moze by¢ wyjasniona przez operacje poprze-
dzajacych lub wspétbieznych zatwierdzonych transakcji. Transakcje czytajace stan
niespdjny nie zostang zatwierdzone.

Porzadek Czasu Rzeczywistego (ang. Real-time Order) Kolejne transakcje nie beda
zamieniane kolejnoscia celem zaspokojenia uszeregowalnosci, wiec poprawny prze-
plot bedzie odpowiadaé¢ zewnetrznemu wzgledem systemu zegarowi.

Odzyskiwalnos$é (ang. Recoverability) Jesli transakcja odczyta warto$é zapisana przez
druga transakcje, to pierwsza z nich zostanie zatwierdzona dopiero po tym, jak
druga z nich zostanie zatwierdzona.

Wykluczenie Nadpisywania (ang. Precluding Overwriting) Jedli transakcja odczytuje
wartos¢ zapisana do jakiej$ zmiennej przez druga transakcje, to ta druga transakcja
nie wykona ponownie zapisu do tejze zmiennej.

Wycofywanie po Wczesnym Zwolnieniu (ang. Aborting Early Release) Transakcja,
ktora wykonala wczesne zwolnienie zasobu, moze nastepnie zosta¢ wycofana.
Wylaczny Dostep (ang. Fzclusive Access) Transakcja ma wylaczny dostep do danej
zmiennej, od chwili wykonania pierwszej operacji na tej zmiennej i co najmniej do

momentu ostatecznego zapisu na niej.
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miedzy pierwsza operacja, ktéra wykona na tej zmiennej, i minimum do ostatecznej
modyfikacji ktora wykonuje na tej zmienne;j.

Niespojny Odczyt Systemu

Nieprzezroczystosé do ostatniego uzycia nie wyklucza sytuacji, gdzie transakcja odczytuje
wartos¢ zapisana przez inna transakcje, ktora to nastepnie zostanie wycofana. Rezultatem
takiej sytuacji jest odczyt niespdjnego stanu systemu przez pierwsza z transakcji, co
moze mieé rézne implikacje dla poprawnoéci dziatania programu w zaleznosci od modelu
systemu.

W modelu systemu z transakcjami wytacznie zatwierdzajacymi transakcje nie moga
samoczynnie zosta¢ wycofane — moga jednak zosta¢ wycofane sitlowo, np. w konsekwen-
cji konfliktu. Poniewaz nieprzezroczysto$¢ do ostatniego uzycia wyklucza odczyt danych
zapisanych przez transakcje przed ostatecznym zapisem do danej zmiennej, transakcja
wycofana nie zapisywaltaby do tej zmiennej jakiejkolwiek innej wartosci. W konsekwen-
cji, warto$¢ zapisana przez te transakcje bylaby identyczna niezaleznie, czy transakcja
ostatecznie wykonalaby zatwierdzenie czy wycofanie. Dlatego tez mozna uwazaé stan
zaobserwowany przez inne transakcje za bezpieczny. Innymi slowy, jesli wartosé¢ odczy-
tana z wycofanej transakcji spowodowalaby btad, wystapilby on niezaleznie od tego, czy
ta transakcja zostala wycofana czy zatwierdzona. W takim wypadku, programista ma
gwarancje, ze odczyt technicznie niespéjnego stanu nie wprowadzi niepoprawnego zacho-
wania do systemu. Warto zauwazy¢, ze taki model systemu jest powszechnie uzywany
(np. [28, 5, 6]).

Alternatywnym jest model z transakcjami dowolnie wycofywanymi. W takim modelu
transakcja moze wykonaé¢ operacje wycofania dowolnie, takze w ramach swojej ,logiki
biznesowej”. W takim wypadku mozliwym jest, ze transakcja bedzie uzywata operacji wy-
cofania wtaénie do naprawieniu stanu systemu po zapisaniu do zmiennych niespojnych,
niebezpiecznych wartosci. Przyktadowo, transakcja T; moze zapisa¢ do jakiej$ zmiennej
x warto$¢ v, po czym, jesli v lamie predefiniowany warunek niezmienny, wykonaé¢ wy-
cofanie. Natomiast, jesli zapisanie do z warto$ci v bedzie ostatecznym zapisem, z moze
zostac¢ odczytane przez inng transakcje 17, jeszcze zanim T; wykona wycofanie. W takim
wypadku T; moze podja¢ niebezpieczne dziatanie na podstawie wartosci v. W konsekwen-
¢ji, uzywanie modelu dowolnego wycofania moze powodowaé niebezpieczne zachowania.
Zachowan tych mozna uniknaé¢, np. nigdy nie wprowadzajac do zmiennych wartosci la-
migcych niezmienniki, lub przesuwajac potencjalne wykonanie wycofania przed operacje
ostateczna. Jeli rozwiazania te sa niewystarczajace, ponizej przedstawiono silniejsza wer-
sje wlasnosci nieprzezroczystosci do ostatniego uzycia, ktéra wyklucza niespdjny odczyt
stanu systemu.

Wprowadzano takze w pracy alternatywny wariant powyzszego modelu, ktéry na-
zwano modelem z ograniczonym wycofaniem (ang. restricted abort model). W modelu
tym zakladamy, ze transakcje mogg wykona¢ operacje wycofania dowolnie, ale operacja
ta jest umieszczana w kodzie transakcji automatycznie przez niezalezne od transakcji
zdarzenia, np. awarie lub przerwania, a nie sg one czescia logiki biznesowej transakcji.
Jesli programista nie moze zwiaza¢ logiki transakcji z operacja wycofania, wlasnosé daje
takie same gwarancje wzgledem niesp6jnego stanu jak w modelu z transakcjami dazacymi
do zatwierdzenia.

Silna Nieprzezroczystos¢ do Ostatniego Uzycia

Wilasnosé silnej nieprzezroczystosci do ostatniego uzycia (ang. strong last-use opacity)
jest odmiana wtasnosci nieprzezroczystosci do ostatniego uzycia, ktéra zachowuje sie po-
dobnie, ale wykorzystuje inna definicje operacji ostatecznych. Silnie ostateczna operacja
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Wlasnosé Zast. Def. 4 Def. 5 Def. 6 CUszeregowalne
Last-use opacity ™ v X v v
Strong last-use opacity TM v X v v

Tablica 11.3: Podsumowanie dopuszczalnosci wezesnego zwalniania zasobéw we wprowadzo-
nych wtasnoéciach.

zapisu to taka operacja, po ktorej nie wystapi zadna inna operacja zapisu na tej samej
zmiennej ani operacja wycofania i bedzie to prawda dla wszystkich potencjalnych wy-
konan tej transakcji. Silna nieprzezroczysto$¢ do ostatniego uzycia méwi, ze transakcje,
ktére sg zatwierdzone, moga czytaé¢ wartosci zapisane przez inne transakcje, ktore sa row-
niez zatwierdzone. Transakcje niezatwierdzone natomiast moga czytaé¢ wartosci zapisane
przez inne transakcje, o ile transakcje te sa zatwierdzone, lub jesli odczytywane wartosci
byty zapisane przez silnie ostateczna operacje zapisu transakcji niezatwierdzonej.

Zdefiniowana w ten sposOb wlasnos¢ daje te same wlasnosci co nieprzezroczystosé
do ostatniego uzycia, a ponadto wyklucza negatywne konsekwencje niesp6jnego stanu
we wszystkich modelach. Wiaze sie to jednak z wykluczeniem potencjalnie poprawnych
wykonan. Oznacza to takze, ze w systemach, gdzie operacja wycofania moze wystapi¢
w dowolnym momencie (np. ze wzgledu na awarie), wczesne zwalnianie zasobéw jest
catkowicie wykluczone.

Nowe Algorytmy

W pracy wprowadzono nowe algorytmy pesymistycznego sterowania wspdtbieznoscia dla
pamieci transakcyjnej, ktére kierujemy w szczegélnosci do systemoéw rozproszonej pa-
mieci transakcyjnej, w ktorych wystepowaé moga operacje niewycofywalne. Nowe al-
gorytmy opieraja sie o rodzine algorytméw wersjonowania, a w szczegdlnosci algorytm
SVA. Algorytmy wersjonowania sg pesymistyczne i pozbawione wycofani, wiec nie po-
woduja blednych wykonan operacji niewycofywalnych. Dodatkowo SVA wykorzystuje
mechanizm wczesnego zwalniania zmiennych, ktéry moze by¢ uzyty do wykonania wcho-
dzacych w konflikt transakcji czeSciowo réwnolegle, co pozwala na krétsze przeploty, niz
np. algorytmy blokowania dwufazowego.

W ponizszych opisach algorytméw uzyto notacji z, y, z kiedy odnosimy sie do zmien-
nych, natomiast obiekty (zaréwno w modelu obiektéw jednorodnych, jak i niejednorod-
nych) oznaczono dla odréznienia jako [z, [y], [z].

SVA

Algorytm SVA [96, 97] jest podstawowym algorytmem wersjonowania, na ktérym oparto
algorytmy zaproponowane w rozprawie. Algorytmy wersjonowania uzywaja licznikéw
wersji w celu ustalenia, czy dana transakcja moze w biezacym momencie wykona¢ opera-
cje na konkretnym obiekcie wspétdzielonym czy owa operacja musi by¢ op6zniona celem
unikniecia konfliktu.

Mechanizm Wersjonowania

Intuicyjnie, liczniki te dzialaja przez analogie do zarzadzania kolejka w banku: klienci
ktérzy przychodza do banku pobieraja numerek z automatu i czekaja z podejéciem do
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start; m;([z])—0 tryC, — C;
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Rys. 11.1: Mechanizm wersjonowania w SVA.

okienka az ich numerek zostanie wywolany. W analogii tej klient jest transakcja, okienko
obiektem wspotdzielonym, a numerek pobrany przez klienta to wersja transakcji dla tego
okienka, ktéra jest poréwnywana z wywolywanym numerkiem—wersjg obiektu.

Konkretnie, za kazdym razem, kiedy transakcja T; jest uruchamiana, pobiera ona
prywatng wersje pv,;([z]) dla kazdego obiektu wspdldzielonego [z |, na ktérym trans-
akcja bedzie wykonywaé operacje (zbiér tych obiektéw jest znany z goéry). Wartosci
wersji prywatnych dla obiektu [z| nadawane kolejnym transakcjom sa kolejnymi licz-
bami naturalnymi. Dodatkowo, warto$ci te nadawane sa atomowo w taki sposéb, ze
majac dwie transakcje T;, Tj, jesli dla jakiego$ obiektu [z], pv,([z]) < pv,([z]), to
dla kazdego innego obiektu [y|, na ktérym obie transakcje beda wykonywaé operacje,
pv;([y]) <pv,([y]). W celu zapewnienia tego warunku SVA uzywa globalnego zamka,
ktory szereguje operacje rozpoczecia wykonywane przez wszystkie transakcje.

Po pobraniu wersji, SVA uzywa wersji prywatnych do podjecia decyzji, czy trans-
akcja T; moze wykonaé operacje na obickcie [z |, poréwnujac pv,([z]) z wersjg lokalng
obiektu 1v([z]). Wersja lokalna obiektu jest réwna wartosci wersji prywatnej transakeji,
ktora jako ostatnia tego uzywala obiektu i juz zakoriczyla jego uzywanie (np. juz zostala
zatwierdzona). W takim wypadku, biorac pod uwage, ze transakcje maja kolejne war-
tosci wersji prywatnej, transakcja T; moze wykonywaé operacje na [z] wtedy, gdy jej
wartos¢ wersji prywatnej dla [x] jest kolejna wzgledem wartosci wersji lokalnej [z], tj.
pv;([z]) — 1 =1v([z]). Warunek ten nazwano warunkiem dostepu.

Kiedy transakcja zakonczyta wykonywanie wszystkich operacji, wykonuje ona opera-
cje zatwierdzenia, kiedy to dla wszystkich obiektéw, dla ktérych pobrata wersje prywatne,
zapisuje swoja wartos¢ wersji prywatnej dla tego obiektu do licznika wersji lokalnej tego
obiektu. W kontekscie algorytméw wersjonowania nazywa sie to zwolnieniem obiektu [x].

Na Rys. 11.1 pokazano przyklad dziatania mechanizmu wersji. Tutaj T; i T} prébuja
wykonaé operacje na obiekcie [z] w tym samym czasie. Transakcja T; startuje wcze-
$niej, wiec pv,([z]) = 1, natomiast T} stratuje jako druga, wiec pv,([x]) = 2. Poniewaz
poczatkowo 1v([z|) = 0, to T; nie jest w stanie wykonaé operacji na [z |, wiec czeka.
Z kolei dla T; warunek pv,([z]) —1 = 1v([x]) jest prawdziwy, wiec T; wykonuje operacje
(metode) m na [z] bez czekania (zwracana wartos$é nie jest istotna, wiec jest oznaczona
0). Kiedy T; zostanie zatwierdzona, ustawia 1v([z]) na pv,([z]) czyli 1, co powoduje,
ze Tj spelni teraz warunek pv,([z]) — 1 = 1v([z]) i przejdzie do wykonania operacji na
[x]. W miedzyczasie T}, moze wykonaé operacje na [y| zupelnie réwnolegle.

Mechanizm wersjonowania zapewnia transakcjom wylaczny dostep do obiektéw, jed-
noczesnie powodujac, ze transakcje o roztacznym zbiorach obiektow, na ktérych wykonuja
operacje, nie blokuja si¢ nawzajem.
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Rys. 11.2: Przyktad wczesnego zwalniania zmiennych w SVA.

Wczesne Zwalnianie Zasobow

Dodatkowo, SVA uzywa mechanizmu wczesnego zwalniania zasobéw opartego o suprema.
Supremum dla obiektu [z] (oznaczone supr,([z|)) w transakeji T; to liczba informujaca
jaka jest maksymalna liczba wykonan operacji na [z] przez transakcje T;. Jesli supremum
jest zdefiniowane a priori w transakcji T;, to transakcja liczy wywolania operacji na
obiekcie x| za pomoca licznika ac;([z]), i jesli po wywolaniu operacji na [z| liczba
wywolan jest réwna supremum, to obiekt [z] zostaje zwolniony przez zapisanie wartosci
wersji prywatnej transakcji do wersji lokalnej obiektu. Dzieki temu inna transakcja moze
zacza¢ wykonywaé operacje na tym obiekcie jeszcze zanim T; zostanie zatwierdzona.
Z drugiej strony, poniewaz T; osiagnela supremum dla [z], to nie wykona kolejnych
operacji na [x].

Przyktad przeplotu wygenerowanego przez SVA z uzyciem wczesnego zwalniania zmien-
nych jest pokazany na Rys. 11.2. Tutaj transakcje T; i T; wykonuja operacje na [z]. Tak
jak na Rys. 4.12, poniewaz wersja prywatna T; dla [z] jest nizsza niz w przypadku T},
ta pierwsza wykonuje swoje operacje na [x] jako pierwsza, a T; czeka az [z| bedzie
zwolniony. Tutaj natomiast T; zna swoje supremum dla [z], t.j. supr;([z]) = 1. Wiec
wykonawszy swoja operacje na [z, T; zwieksza ac;([z]), co oznacza, ze supremum zo-
stalo osiagniete, tj. ac;([x]) = supr;([z]). W takim wypadku T; zwalnia [z] od razu,
zamiast czeka¢ do momentu zatwierdzenia. W rezultacie, T; moze wykonywacé operacje
na [z| wczesniej. Transakcja T; moze nawet byé zatwierdzona przed T;.

Mechanizm wczesnego zwalniania zasobéw przez suprema pozwala transakcjom ko-
rzystajacym z tych samych obiektéw na wykonywanie si¢ z wigkszym wspdtczynnikiem
zrownoleglenia, niz w wypadku samego mechanizmu wersjonowania, jednoczesnie zapew-
niajac, ze odczytany z niezatwierdzonych transakcji stan zawsze bedzie prawidtowy. Po-
zwala to na efektywne i poprawne przeplatanie transakcji.

Wtlasnosci

W ramach pracy zademonstrowano gwarancje bezpieczenstwa SVA. Konkretnie, wpro-
wadzono dekompozycje — technike dowodzenia oparta na rafinacji obserwacyjnej (ang.
observational refinement) ktéra pozwala pokazaé, ze dany przeplot jest nierozréznialny
od poprawnego przeplotu nieprzezroczystego pod wzgledem efektow wykonania operacji.
W ten sposéb demonstrujemy, ze mimo tego, ze SVA nie jest nieprzezroczystym algoryt-
mem, to kazdy przeplot wygenerowany przez SVA jest nierozréznialny od poprawnego
przeplotu nieprzezroczystego (Twierdzenie 7). Ponadto, SVA nie powoduje zakleszczen
oraz zapewnia silna progresywnosc.

Rozproszone Pobieranie Wersji

Celem zapewnienia atomowosci pobierania wersji przy starcie transakcji algorytm SVA
uzywa globalnego zamka, ktéry kazda transakcja pobiera na poczatku swojej procedury
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inicjalizacji i zwalnia na jej koncu. Zamek ten rodzi problem, jesli algorytm ma by¢ zaim-
plementowany w srodowisku rozproszonym, poniewaz globalny zamek stanowi przeszkode
dla skalowalno$ci—niezaleznie od tego, ile nowych weztéw dodamy do systemu, zawsze
wszyscy klienci musza kontaktowaé sie z jednym wezlem, ktéry jest odpowiedzialny za
globalny zamek. Dodatkowo, jesli wezel, na ktérym znajduje sie zamek, ulegnie awarii,
to taka awaria (czeSciowa) paralizuje caly system.

Aby wyeliminowa¢ problemy zwigzane z globalnym zamkiem, zaprezentowano w pracy
wariant SVA, ktéry uzywa rozproszonych zamkow w procedurze rozpoczecia transakeji.
Wariant ten wymaga, zeby z kazdym obiektem wspdétdzielonym [x] zwiazany byl zamek
1k([z]) (zlokalizowany na tym samym wezle co [x]). Wtedy kazda transakcja, zamiast
pobieraé globalny zamek przed pobraniem wersji, bedzie pobieraé¢ zbiér zamkéw zwia-
zanych z obiektami, na ktérych transakcja planuje wykonywaé operacje. Oznacza to,
ze transakcje, ktére nie wspoldziela obiektéw, moga wykonywaé procedure rozpoczecia
rownolegle, a takze, ze nie ma pojedynczego zamka, ktory musi obstugiwaé wszystkie
transakcje.

Dodatkowo, celem unikniecia zakleszczenn wymagamy, zeby zamki byly zawsze po-
bierane w wedtug globalnie ustalonego porzadku. Jesli ten porzadek jest zachowany, nie
moga wystapi¢ cykle oczekiwan, a wigc zakleszczenia sa wykluczone. Jest to prostsze
rozwigzanie niz np. istniejace rozwiazanie w konserwatywnych algorytmach blokowania
dwufazowego, gdzie unikanie zakleszczen zaimplementowane jest przez cykliczne odpy-
tywanie o stan zamkdw.

SVA+R

SVA jest algorytmem dzialajacym w modelu transakcji wylacznie zatwierdzajacych (a
nawet wykonania pozbawione sa catkowicie wycofan). Natomiast, jesli algorytm pamieci
transakcyjnej ma by¢ praktyczny w dowolnym systemie, powinien on wspiera¢ operacje
wycofania, a wiec dziata¢ w modelu dowolnych wycofari. Wprowadzono wiec nowy algo-
rytm wersjonowania SVA+R (ang. SVA with rollback), ktory rozszerza SVA o operacje
wycofania. Wymaga to wprowadzenia dodatkowych mechanizméw opisanych ponizej.

Odtwarzanie Obiektow

Po pierwsze, wprowadzono bufor st;([z]), ktéry transakcja T; utrzymuje dla kazdego
obiektu [z, na ktérym wykonuje operacje. Obiekt [x] jest kopiowany do bufora st;([z])
w momencie kiedy transakcja po raz pierwszy spelni warunek dostepu do obiektu [z],
czyli tuz przed wykonaniem pierwszej operacji na [z]. Bufor jest nastepnie uzywany
wewnatrz samej procedury wycofania transakcji: transakcja przed zwolnieniem obiektu
[2] przywréci go do wezesniejszej postaci, kopiujac zawartosé st;([z]) z powrotem do

[].

Porzadek Zatwierdzania

Druga modyfikacja ma na celu zapobieganie sytuacjom, gdzie transakcja T; zwolni obiekt
[x]|, pozwalajac innej transakcji 7 na odczytanie jego stanu, a nastepnie 7; wykona
zatwierdzenie, zanim T; zostanie zatwierdzona. Jest to problematyczne, poniewaz istnieje
mozliwos¢, ze T; ostatecznie zostanie wycofana, co powoduje, ze T} zostala zatwierdzona
wykonawszy operacje na juz-niespdjnym stanie.

W tym celu SVA+R porzadkuje wykonania operacji zakonczenia transakcji: wycofan
i zatwierdzen, w taki sam sposob jak dostepy do obiektéow. W zwigzku z tym wprowa-
dzono lokalng koricowq wersje obiektu (ang. local terminal version) oznaczona 1tv([z])
dla obiektu [z]. Wersja ta dziala podobnie jak 1v([x]), ale transakcje zapisuja tam
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Rys. 11.3: Wymuszenie porzadku zatwierdzania transakcji w SVA+R.
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Rys. 11.4: Wykrycie niespéjnego stanu systemu w SVA+R.

swoja wersje prywatna tylko wtedy, gdy zakonczyly wykonywaé zatwierdzenie lub wyco-
fanie. Dodatkowo, kazda transakcja T; przed wykonaniem zatwierdzenia lub wycofania
czeka, az warunek pv,([z]) — 1 = 1tv([z]) stanie si¢ prawdziwy. W konsekwencji, jesli
transakcja T; bedzie operowac na obiekcie zmodyfikowanym przez Tj, to zatwierdzenie
T; bedzie opdznione tak, zeby wystapilo po zatwierdzeniu lub wycofaniu 7;. Przyklad
takiej sytuacji jest pokazany na Rys. 11.3.

Kaskadowe Wycofania

Trzecia modyfikacja to rozwiazanie sytuacji gdzie transakcja T; zwolni obiekt [z], po-
zwalajac innej transakcji T na odczytanie jego stanu, a nastepnie T; zostanie wycofana.
Powoduje to, ze T; operuje na technicznie niespéjnym stanie, wiec musi takze zostaé
wycofana.

SVA+R rozpoznaje ta sytuacje i zmusza T; do wykonania wycofania. Wykrywanie nie-
spéjnego stanu jest osiagniete za pomoca dwéch licznikéw: wersji obecnej (ang. current
version) oznaczonej cv([z]) dla obiektu [x| i wersji naprawczej (ang. recovery version
oznaczonej rv;([x]) dla obiektu [z| i transakcji T;. Wersja obecna wyznacza najnowsza
spdjna wersje obiektu, podczas gdy wersja naprawcza oznacza ostatnia spdjna wersje
tego obiektu, ktora zostala zaobserwowana przez dang transakcje. Transakcje przypi-
suja coraz wigksze wartoSci wersji obecnej obiektu w momencie gdy transakcje te sa
zatwierdzane lub zwalniaja obiekt wezesnie (na podstawie swojej wersji prywatnej). Na-
tomiast, jesli transakcja jest wycofywana, to warto$¢ wersji obecnej obiektu jest cofana
do warto$ci mniejszej (na podstawie wersji naprawczej transakeji). Z kolei warto$é wersji
naprawczej transakcji jest pobierana z wersji obecnej, kiedy transakcja po raz pierwszy
spelni warunek dostepu do obiektu [z]. Mozna wiec zauwazy¢, ze jesli transakcja zaob-
serwowala jaka$ wartos¢é wersji obecnej obiektu, ktora zostala zapisana w liczniku wersji
naprawczej tej transakcji, a nastepnie jaka$ wcze$niejsza transakcja zostala wycofana
i zmniejszyta wartosé¢ wersji obecnej, to rv;([z]) > cv([x]). W konsekwencji transakcje
SVA+R sprawdzaja warunek rv;([z]) > cv([z]) przed wykonaniem dowolnej operacji
oraz zatwierdzenia dla kazdej zmiennej, dla ktérej pobrana zostala wersja naprawcza.
Jedli warunek jest prawdziwy, to wiadomo, ze transakcja dziala na niespéjnym stanie,
wiec bedzie zmuszona do wykonania wycofania zamiast wykonania zamierzonej operacji.
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Pokazano przyktad takiego scenariusza na Rys. 11.4. Transakcje T; i T; wykonujg ope-
racje na obiekcie [z] i maja przyznane wersje prywatne dla [z | réwne odpowiednio 1 i 2.
W konsekwencji, T; wykonuje operacje na [z jako pierwsza. W tym momencie T; usta-
wia rv;([z]) na obecna wartosé cv([z]) = 0 (warto$¢ poczatkowa z zalozenia) i kopiuje
obiekt do bufora. Nastepnie T; wykonuje operacje na [z] i zwalnia [2| (na podstawie su-
premum), przez co T; takze podnosi cv([z|) do wartosci swojej wersji prywatnej dla [z ],
czyli 1. Nastepnie T spelnia warunek dostepu do [z] po raz pierwszy, wiec kopiuje [z]
do bufora i ustawia rv;([z]) na obecng warto$¢ cv([x]) = 1. Skoro rv,([z]) = cv([z]),
to zezwala sie na wykonanie operacji. Nastepnie transakcja 7); prébuje wykona¢ zatwier-
dzenie, ale nie moze tego zrobié, poniewaz T; nie zostala zatwierdzona, dlatego T} czeka.
W miedzyczasie transakcja T; zostanie arbitralnie wycofana. Powoduje to, ze transak-
cja zapisuje swoja wersje naprawcza z powrotem do wersji obecnej obiektu cv([z]) =0
i obiekt zostaje przywrécony z bufora. Wéwczas, jesli transakcja 1 wykona jakakolwiek
operacje lub sprébuje si¢ zatwierdzi¢, to prawdziwy bedzie warunek rv;([z]) > cv([z]),
co spowoduje, ze transakcja T; zostanie forsownie wycofana.

‘Wilasnosci

SVA+R nie powoduje zakleszczen, oraz zapewnia silna progresywnos¢, tak jak SVA.
Jednak w przeciwienstwie do SVA, nie mozna pokazaé, ze SVA+R bedzie generowal nie-
odréznialne przeploty od przeplotéw nieprzezroczystych. Jest tak, poniewaz moze sie zda-
rzy¢, ze transakcja odczyta stan innej transakcji, ktora to zostanie ostatecznie wycofana.
Natomiast, jak pokazuje Twierdzenie 8, SVA+R spelnia wlasnoé¢ nieprzezroczystosci do
ostatniego uzycia.

RSVA+R

Poniewaz wprowadzenie mechanizmu dowolnego wycofywania transakcji do algorytmu
powoduje, ze SVA+R pozwala na kaskadowe wycofania i niespdjne widoki, to wystepuje
problem w kontekscie operacji niewycofywalnych. To znaczy, moze dojsé do sytuacji,
gdzie transakcja odczyta wartosé obiektu zwolnionego wczesniej przez wczesniejsza trans-
akcje i wycofanie wezeéniejszej z transakcji spowoduje wycofanie obu. Jesli ktérakolwiek
transakcja zawierala operacje niewycofywalne, to sg one w takim przypadku obstuzone
niepoprawnie. W szczegdlnoéci, transakcja zmuszona do wycofania na skutek wycofa-
nia innej, zwalniajacej obiekty wczesnie transakcji nie jest w stanie takiego wycofania
przewidzie¢.

Celem zazegnania tego problemu wprowadzono w pracy wariant algorytmu SVA+R
nazwany RSVA+R, ktéry pozwala na zdefiniowane klasy transakcji niechetnych (ang.
reluctant), ktére nigdy nie sa wycofywane. Jest tak dlatego, ze forsowne wycofanie trans-
akcji w SVA4+R wymaga, zeby transakcja operowala na zmiennej zwolnionej wczeénie
przez inna transakcje ktora zostanie ostatecznie wycofana. Mozna te sytuacje wykluczy¢,
jesli transakcja nie przyjmie zmiennej zwolnionej wczesniej, lecz poczeka, az wczesniejsza
transakcja wykona zatwierdzenie lub si¢ wycofa. Transakcje, ktora nie przyjmuje zmien-
nych zwolnionych wczesniej nazywamy wlasnie transakcja niechetna, a implementacja tej
transakcji zmienia warunek dostepu do zmiennych z pv,([z]|) —1 = 1v([z]) na warunek
pv;([z])—1 = 1tv([x]). Jesli transakcja niechetna nigdy nie jest zmuszona do wycofania,
to jest ona podobna do transakcji niewycofywalnej, ale moze ona jednoczesnie wykona¢
operacje wycofania samodzielnie.

RSVA+R umozliwia doprowadzenie do poprawnego wykonania transakcji z opera-
cjami niewycofywalnymi. Rozwiazanie to wprowadza trade-off miedzy poprawnoscia wy-
konania operacji niewycofywalnych i wydajnoscia systemu. Jegli zbiér transakcji nie-
chetnych jest duzy, to system pamieci transakcyjnej ma mato szans na zréwnoleglenie
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Rys. 11.5: Optymalizacja tylko-do-odczytu w OptSVA+R.

wykonan skonfliktowanych transakcji. W konsekwencji transakcje skonfliktowane nie-
chetne beda czesto wykonywane sekwencyjnie. Warto zauwazy¢, ze w przeciwienstwie
do rozwiazan z [92], ktére wymagaja, zeby transakcje niewycofywalne byly wykonywane
pojedynczo, RSVA4+R mimo wszystko pozwala na wykonanie niechetnych nieskonflik-
towanych transakcji rownolegle. Z drugiej strony, jesli zbiér transakcji niechetnych jest
niewielki, to algorytm RSVA+R zapewnia jednoczesnie w pelni poprawne wykonanie
operacji niewycofywalnych oraz wysoki stopien zréwnoleglenia transakcji.
RSVA+R spelnia te same wlasnosci co SVA+R.

OptSVA+R

Algorytmy wersjonowania zaprezentowane do tej pory dzialaja w oparciu o model obiek-
téw niejednorodnych oraz przy zalozeniu, ze semantyka operacji wykonywanych na obiek-
tach jest zastrzezona lub ulega zmianom dynamicznie w trakcie dzialania systemu. W ta-
kich systemach traktowanie wszystkich operacji konserwatywnie jako potencjalny odczyt
i modyfikacja jest praktycznym uniwersalnym rozwiazaniem.

7 drugiej strony, w systemach takich jak rozproszone magazyny danych czy nieroz-
proszone systemy transakcyjne czeSciej wykorzystuje sie prostsze obiekty jednorodne lub
zmienne. W takich systemach algorytmy wersjonowania sa duzo mniej wydajne niz alter-
natywne pamieci transakcyjne, poniewaz nie wprowadzaja one optymalizacji generowa-
nych przeplotéw na podstawie semantyki operacji. Przykladowo, dwie operacje odczytu
zmiennej we wspotbieznych transakcjach moga byé¢ zawsze wykonane réwnolegle wzgle-
dem siebie, podczas gdy warianty SVA+R zawsze wykonaja je sekwencyjnie.

W konsekwencji zaprezentowano algorytm OptSVA+R, ktéry rozszerza algorytm
SVA+R i sprowadza go do modelu zmiennych, wykorzystujac wiedze¢ odnosnie seman-
tyki operacji i uproszczong definicje stanu obiektéw w celu wprowadzenia optymalizacji
majacych na celu maksymalne zréwnoleglenie skonfliktowanych transakcji. OptSVA+R
wprowadza do SVA+R buforowanie operacji ktérych efekty nie sa widoczne na zewnatrz
transakcji celem opodznienia sprawdzania warunku dostepu do zmiennych. Dodatkowo
OptSVA+R wprowadza nowatorski mechanizm przekazywania wykonania niektérych
operacji do osobnych watkéw, jedli operacje te opdznityby wykonanie transakcji, a ich
wyniki nie sa niezbedne do kontynuowania obliczen.

Zmienne Tylko-do-odczytu

Pierwsza optymalizacja mozliwa dzigki rozréznieniu operacji odczytu od zapisu jest wy-
korzystywane w wiekszosci istniejacych pamieci transakcyjnych zrownoleglenie wykonan
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transakcji tylko-do-odczytu. OptSVA+R idzie o krok dalej, pozwalajac takze na cze-
Sciowe zréwnoleglenie wykonan operacji odczytu na zmiennych tylko-do-odczytu nawet
w transakcjach, ktére wykonuja zapisy na innych zmiennych.

W OptSVA+R suprema rozbite sa na dwie wartosci: maksymalna liczba odczytéw
zmiennej, ktére transakcja T; wykona na zmiennej z, czyli rub;(z), oraz analogiczna mak-
symalna liczba zapiséw wub; (). Jesli transakcja T; zastanie sytuacje, gdzie dla zmiennej
rub;(z) > 01wub;(z) = 0, to taka zmienna jest zmienng tylko-do-odczytu. W przypadku
takich zmiennych transakcja OptSVA+R zapisze spéjna warto$é zmiennej z do bufora
oznaczonego buf;(z) i wykona wszystkie odczyty nie bezposrednio ze zmiennej, a wlasnie
z bufora buf;(z). Podczas gdy zapisanie zmiennej do bufora wymaga, zeby transakcja
zsynchronizowala sie z innymi transakcjami (gdyz inna transakcja moze w tym samym
czasie wykonywa¢ modyfikacje na zmiennej z), transakcja T; musi przed wykonaniem
buforowania spelni¢ warunek dostepu. Natomiast, od razu po zbuforowaniu zmiennej
transakcja moze juz ows zmienng zwolnié¢, a takze, biorac pod uwage, ze zmienna nie
ulegnie modyfikacji, wykona¢ procedure zatwierdzenia transakcji dla tej zmienne;j.

W celu zwolnienia zmiennej jak najwcze$niej buforowanie mozna wykonaé¢ nawet przed
pierwszym odczytem zmiennej przez transakcje, wiec w OptSVA+R buforowanie zmien-
nych tylko-do-odczytu uruchamiane jest juz przy starcie transakcji. Natomiast ze wzgledu
na fakt, ze buforowanie wymaga, zeby transakcja czekala na warunek dostepu, buforowa-
nie oddelegowane jest do osobnego watku. Pozwala to transakcji nie spowalnia¢ wykony-
wania innych operacji ze wzgledu na buforowanie zmiennych. 7 drugiej strony, operacja
odczytu na zmiennej tylko-do-odczytu moze sie¢ odby¢ tylko po tym jak zmienna zostanie
zbuforowana, wiec operacje na takich zmiennych czekaja, az watek zakonczy procedure
buforowania. Wykonanie buforowania w osobnym watku pozwala transakcji na znalezienie
najlepszego mozliwego momentu w czasie kiedy ta procedura moze by¢ przeprowadzona,
zwalniajac zmienng najwczesniej jak to tylko mozliwe, a jednoczesnie blokujac transakcje
na warunku dostepu tylko, jesli jest to absolutnie niezbedne.

Przyklad optymalizacji zmiennej tylko-do-odczytu jest zilustrowany na Rys. 11.5.
W momencie startu transakcja 7T; uruchamia osobny watek celem zbuforowania zmien-
nej z. Operacje wykonywane w osobnym watku sa zaprezentowane ponizej linii gléwnego
watku transakcji. Watek wykonuje dwie kolejne operacje: buforowanie i zatwierdzanie
pojedynczej zmiennej. Buforowanie zmiennej moze odby¢ sie dopiero, gdy spelniony jest
warunek dostepu do zmiennej x, wiec watek czeka do momentu, az T; zwolni zmienna x.
Od razu po zbuforowaniu zmiennej, watek zwalnia zmienng z i przechodzi do wykonania
procedury zatwierdzenia. Pozwala to transakcji Tj na wykonanie operacji na z jak tylko
T; ja zbuforuje, lecz nie wymaga czekania az T; wykona na niej wszystkie swoje opera-
cje. Dodatkowo, T}, moze takze zakonczy¢ si¢ wczedniej, poniewaz transakcja 1; wykona
procedure zatwierdzenia dla z jeszcze przed zakonczeniem samej transakcji. Warto za-
uwazy¢, ze w wypadku wycofania samej T; warto§¢ zmiennej z nie musi by¢ zmieniona,
wiec nie ma potrzeby zmuszaé Ty do wycofania sie, natomiast w przypadku gdyby T;
zostala wycofana, zaréwno T; jak i T beda wycofane.

Synchronizacja przy Pierwszym Odczycie

Jedli pierwsza (lub jedyna) operacja na jakiej$ zmiennej jest zapis, to zapis ten mozna
wykona¢ na buforze, bez odniesienia do aktualnego stanu zmiennej. Wykonanie operacji
na buforze nie wymaga synchronizacji z innymi transakcjami, wiec pierwsza operacja
zapisu na zmiennej moze sie odby¢ bez sprawdzania warunku dostepu. Dodatkowo, po-
niewaz wszystkie kolejne operacje zapisu lub odczytu na tej zmiennej moga by¢ wykonane
na buforze, transakcja moze odsunaé¢ sprawdzanie warunku dostepu az do ostatniego za-
pisu. Ostatecznie warunek dostepu musi by¢ spelniony celem zapisania wartosci zmiennej
z bufora do zmiennej wtasciwej, co moze zosta¢ wykonane w dowolnym momencie miedzy
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Rys. 11.6: Opédiniona synchronizacja przy pierwszym zapisie w OptSVA+R.
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Rys. 11.7: Woczesne zwalnianie przy ostatnim zapisie w OptSVA+R.

ostatnim zapisem a zatwierdzeniem transakcji. Poniewaz moment jest dowolny, to zada-
nie czekania na warunek dostepu i uaktualnienia zmiennej z bufora jest oddelegowane do
osobnego watku.

Przyklad takiego przeplotu jest pokazany na Rys. 11.6, gdzie transakcja 7; ma dostep
do zmiennej z, ale T} jednocze$nie wykonuje operacj¢ zapisu na z, stosujac bufor, a po
wykonaniu tej operacji uruchamia watek, ktéry czeka na warunek dostepu (az T; zwolni
z) 1, gdy ten jest spelniony, zapisuje warto$é z bufora do zmienne;j.

Optymalizacja ta pozwala transakcji na wykonanie dodatkowych operacji na danym
obiekcie (uzywajac bufora), zanim spelniony zostanie warunek dostepu dla tego obiektu.
W konsekwencji oznacza to, ze konfliktujace ze sobg transakcje wykonuja sie bardziej
réwnolegle niz bylo to mozliwe w przypadku SVA+R.

Woczesne Zwalnianie przy Ostatnim Zapisie

Poniewaz OptSVA+R rozréznia odczyty od zapiséw, mozna zastosowaé kolejna opty-
malizacje. Jesli wykonywaé wszystkie zapisy na lokalnym buforze i wprowadza¢ mo-
dyfikacje do zmiennych dopiero przy ostatnim zapisie, to odczyty, ktére nastepuja po
zapisach, moga takze korzysta¢ z bufora. W konsekwencji, jesli zmienna zostala zbufo-
rowana i wszystkie zapisy zostaly wykonane, zmienna moze by¢ zwolniona, a wszystkie
kolejne odczyty moga korzysta¢ z wartosci zmiennej zapisanej w buforze. Powoduje to,
ze wezesne zwalnianie zmiennych jest wykonywane wezesniej, niz w innych algorytmach
wersjonowania.

Scenariusz taki jest zilustrowany na Rys. 11.7. T; po wykonaniu wszystkich swoich
zapiséw na zmiennej z (tzn. jednego) zwalnia zmienna i wykonuje kolejne odezyty na
buforze. Pozwala to transakcji T; na wykonywanie operacji na zmiennej z mimo tego,
ze T; wykonuje dalsze odczyty na tej zmiennej (korzystajac z bufora). Powoduje to, ze
przeplot transakcji jest bardziej zréwnoleglony, a wiec wykonanie jest bardziej efektywne.

Zaprezentowana optymalizacja pozwala transakcjom na zwalnianie obiektéow wcze-
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$niej, niz w przypadku SVA+R, poniewaz transakcje OptSVA+R nie muszg czekaé na
wykonanie wszystkich operacji odczytu na zmiennej, zanim zmienna zostanie zwolniona.
Powoduje to zwiekszenie stopnia wspdibieznosci miedzy transakcjami operujacymi na
tych samych zmiennych, co przeklada sie na efektywnosé algorytmu. Co wiecej, wyko-
rzystanie wszystkich trzech optymalizacji powoduje, ze transakcje wymagaja wylacznego
dostepu do zmiennych w bardzo krétkich interwatach:

a) zmienne, ktére sa tylko czytane, sa trzymane na wylaczno$¢ tylko w momencie
buforowania,

b) zmienne, do ktérych sie tylko zapisuje, sa trzymane na wylacznosé tylko w momen-
cie przepisywania stanu z bufora do pamigci po ostatniej operacji zapisu,

¢) zmienne, z ktérych zaréwno sie czyta jak i do ktérych sie pisze, ale gdzie pierwsza
operacja jest zapis, sa rowniez trzymane na wylaczno$¢ tylko w momencie przepi-
sywana stanu z bufora do pamigci po ostatniej operacji zapisu,

d) pozostale zmienne sg trzymane na wylacznos$é tylko miedzy pierwszym odczytem
a ostatnim zapisem.

‘Wilasnosci

W przypadku OptSVA+R formalnie poréwnano przeploty wygenerowane przez ten al-
gorytm z przeplotami generowanymi przez SVA+R i pokazujemy, ze przeploty wygene-
rowane przez OptSVA+R sg zawsze nie dtuzsze, a zazwyczaj krotsze, niz te wytworzone
przez SVA+R. W konsekwencji OptSVA+R zapewnia wicksza wydajnoéé niz jego po-
przednik.

Jednoczesnie OptSVA+R daje te same gwarancje bezpieczenstwa co SVA+R: spel-
nia nieprzezroczysto$¢ do ostatniego uzycia. Natomiast ze wzgledu na sposob, w jaki
OptSVA+R oddziela wykonanie operacji od efektu, jaki dana operacja ma na zmienng,
staje si¢ trudnym udowodnienie tej wlasnosci wprost. W konsekwencji wprowadzono nowa
technike dowodzenia nazwana harmonia $ladéw (ang. trace harmony). Slad definiujemy
jako historie wykonania danego programu, w ktorej ujete sa wykonania operacji trans-
akcyjnych oraz wykonania instrukcji niskopoziomowych, takich jak dostepy do pamigci.
Jedli operacje i instrukcje w $ladach spelniajg zestaw czastkowych wymagan okreslo-
nych w Definicjach 29-52, to przeplot pokazany w danym $ladzie jest nieprzezroczysty
do ostatniego uzycia, co pokazano w Twierdzeniu 9. Nastepnie w Lemacie 70 i Wnio-
sku 22 pokazujemy, ze kazdy Slad wygenerowany przez OptSVA+R jest harmoniczny,
wiec OptSVA+R jest nieprzezroczysty do ostatniego uzycia.

Dodatkowo OptSVA+R jest takze wolny od zakleszczen i silnie progresywny.

Warianty

Przez analogie do SVA+R i RSVA+R wprowadzono w pracy ROptSVA+R, wariant Opt-
SVA+R, ktéry pozwala na zdefiniowanie klasy transakcji niechetnych, ktére nigdy nie sa
zmuszane do wycofania kosztem wykonywania operacji na zmiennych zwolnionych wcze-
$niej. Ponadto wprowadzono OptSVA, wariant OptSVA+R, ktéry usuwa z algorytmu
mozliwo$¢ wykonania recznej operacji wycofania, co prowadzi do catkowitego wyelimino-
wania wycofann w algorytmie. Algorytm ten jest prostszy od OptSVA+R, ale nadaje sie
do uzycia jedynie w modelu systemu z transakcjami dazacymi do zatwierdzenia.

OptSVA-CF+R,

Ograniczenie OptSVA+R do modelu obiektéw-zmiennych pozwala na wprowadzenie du-
zej liczby optymalizacji wzgledem SVA+R. Natomiast przyjecie tego modelu powoduje,
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ze OptSVA+R nie jest stosowalny w wielu typach aplikacji. W szczegdlnosci, jesli Opt-
SVA+R mialtby zostaé¢ wykorzystany do tworzenia rozproszonych systemow pamieci trans-
akcyjnych dzialajacych w modelu przeplywu sterowania, ktére z kolei bytyby aplikowane
w zlozonych systemach rozproszonych, zatozenia ktére OptSVA+R czyni wzgledem stanu
zmiennych i operacji ktére te zmienne wspieraja sa zbyt silne. W konsekwencji wprowa-
dzono kolejny algorytm, OptSVA-CF+R, ktéry ma zaaplikowaé¢ optymalizacje wprowa-
dzone w OptSVA+R do obiektéw jednorodnych i niejednorodnych zarazem stanowiac
kompromis pomiedzy wydajnoscig a ogdlnoscia stosowanego modelu.

Obiekty Niejednorodne

Jesli przyjaé, ze OptSVA-CF+R nie posiada zadnej wiedzy na temat obiektéw na ktérych
operuje, zadna z wprowadzonych w OptSVA+R optymalizacji nie jest stosowalna. Nie
mozna jednak oczekiwaé¢ od uniwersalnego rozwiazania, zeby znana i brana pod uwage
byta semantyka kazdej operacji kazdego obiektu w modelu niejednorodnym. W konse-
kwencji wprowadzono kompromis, ktory wymaga kategoryzacji kazdej operacji kazdego
obiektu w jednej z trzech klas:

a) operacja odczytu to operacja, ktéra wykonuje dowolny kod (takze z efektami ubocz-
nymi), ktéry moze zwraca¢ dowolna warto$é, ale ktéry nie modyfikuje stanu obiektu,

b) operacja zapisu to operacja, ktéra wykonuje dowolny kod, ktéry moze modyfikowaé
stan obiektu, ale ktory nie czyta stanu obiektu ani nie zwraca wartosci,

¢) operacja aktualizacji to dowolna operacja ktéra wykonuje dowolny kod i moze za-
réwno odezytywad, jak i modyfikowaé stan obiektu, oraz zwracaé wartosc.

Klasyfikacja ta pozwala okredli¢ semantyke operacji w stopniu pozwalajacym na zaapli-
kowanie optymalizacji. Rozréznienie operacji ,,czystego” zapisu od operacji aktualizacji
pozwala nam w szczegélnosci na aplikowanie optymalizacji zwiazanych z buforowaniem
operacji zapisu. W wypadku gdy semantyka jakiej$ operacji jest nieznana, moze ona za-
wsze by¢ sklasyfikowana jako operacja aktualizacji bez grozby niepoprawnego wykonania.

Buforowanie Obiektéw

Poniewaz operacje zapisu na zmiennych maja prosta semantyke, ktora wiaze si¢ z nadpi-
saniem calego stanu zmiennej, tj. jej wartoéci, mozliwe jest wykonywanie operacji zapisu
na ,pustych” buforach. Nie jest to mozliwe jednak w przypadku obiektéw, ktérych stan
jest zlozony: po wykonaniu operacji zapisu nie ma pewnosci, ze nastepna operacja od-
czytu bedzie korzysta¢ z tego samego pola, ktore zostalo zapisane przez operacje zapisu.

Celem rozwiazania tego problemu wprowadzono kolejny typ bufora: dziennik (ang. log
buffer). Dziennik ma taki sam interfejs jak obiekt, z ktérym jest zwiazany, ale operacja
zlecona do wykonania nie zostaje wykonana de facto, a jedynie dodana do listy operacji
do wykonania. Nastepnie taki dziennik moze by¢ zaaplikowany do obiektu, z ktérym jest
zwiazany, co spowoduje wykonanie wszystkich zleconych operacji. Dziennik moze by¢

tak jak jest to konieczne w przypadku standardowych buforéw.

Asynchroniczne Buforowanie

OptSVA-CF+R obstuguje obiekty tylko-do-odczytu przez analogie do OptSVA+R. Po-
dobnie jest w przypadku buforowania obiektéw, na ktérych wykonywany jest zapis,
chociaz w tym wypadku procedura jest bardziej zlozona i konserwatywna ze wzgledu
na uzycie dwoch typéw buforéw. W wypadku, gdy pierwsza operacja na danym typie
obiektu jest zapisem, zapis ten jest wykonywany bez synchronizacji na dzienniku dla
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tego obiektu. Jedli po zapisie wystepuja kolejne zapisy, to one takze sa kierowane do
dziennika obiektu. Natomiast, jesli po zapisach wystepuje aktualizacja lub odczyt, to
nalezy dziennik zaaplikowa¢ do obiektu, zeby uzyskaé¢ zaktualizowany stan. Oznacza to,
ze OptSVA-CF+R w takim wypadku musi dokonaé synchronizacji i czekaé¢ na warunku
dostepu do danej zmiennej, co nie jest konieczne w przypadku OptSVA+R. Dodatkowo,
w przeciwienistwie do OptSVA+R, gdzie zapisy zawsze wykonywane sg przy uzyciu bu-
fora, transakcje OptSVA-CF+R, ktore wykonuja zapisy, wykonuja je bezposrednio na
obiekcie wlasciwym, jesli warunek dostepu zostal uprzednio spelniony podczas odczytu
lub aktualizacji. W koncu, OptSVA-CF+R, podobnie jak OptSVA+R, wykonuje kopie
obiektu do bufora przy ostatnim zapisie lub aktualizacji (ostatniej potencjalnej mody-
fikacji dowolnego typu). W wypadku, gdy na obiekcie wykonywane byly tylko zapisy,
buforowanie wymaga takze, aby dziennik byl zaaplikowany do obiektu przed skopiowa-
niem go do bufora.

Ré6znice miedzy optymalizacjami zaaplikowanymi w OptSVA+R i OptSVA-CF+R sa
ilustruje Rys. 11.8. Pokazano tam wykonanie tego samego programu przy uzyciu Opt-
SVA+R (Rys. 11.8a) i OptSVA-CF+R (Fig. 11.8b). W obu przyktadach [z] jest ko-
morka z referencja; prostym obiektem ktory, zawiera pojedyncze pole stanowiace jego
stan i interfejs analogiczny do zmiennej. W obu zaprezentowanych przeplotach transak-
cja T; uruchamia sie jako pierwsza, ale wykonuje operacje zapisujaca 2 do zmiennej z
(obiektu [z|) dopiero po dlugim opéznieniu. W miedzyczasie transakcja T; wykonuje
wlasny zapis do = ([z]), zapisujac 1. Poniewaz jest to poczatkowy zapis, to OptSVA+R
wykonuje go na buforze buf;(z), a OptSVA-CF+R na dzienniku log;([x]), wigc zaden
z algorytméw nie powoduje, ze T czeka na T;. Nastepnie T; wykonuje operacje¢ odczytu
na z ([z]). W OptSVA+R ta operacja jest wykonana na buforze buf ;(z), co nie wymaga
synchronizacji, wiec operacja wykonuje sie¢ bez czekania. Natomiast w OptSVA-CF+R
operacja odczytu nie moze by¢ wykonana na dzienniku, poniewaz dziennik nie zna stanu
obiektu. Niezbednym wiec jest w OptSVA-CF+R, zeby T; w tym momencie czekala, az T;
nie zwolni obiektu [z]. Dopiero wtedy T; moze zaaplikowa¢ log,([z]) do [z] i wykonaé
odczyt. W efekcie T; wykonuje si¢ dtuzej w OptSVA-CF+R niz w OptSVA+R.

Przyklad pokazuje wiec, ze generalizacja modelu niesie ze soba potencjalny spadek
efektywnosci wykonania. Jest to nieuniknione, biorac pod uwage ztozonosé obstugiwanych
obiektow. Z drugiej strony, OptSVA-CF+R wciaz cechuje sie bardzo wysokim stopniem
zrownoleglenia transakcji skonfliktowanych i, jak pokazano ponizej, osiagga wysoka wy-
dajnos¢ w praktyce.

Warianty

Tak samo, jak w przypadku OptSVA+R i SVA+R, OptSVA-CF+R ma wariant z transak-
cjami niechetnymi (ROptSVA-CF+R) oraz wariant dzialajacy w modelu z transakcjami
dazacymi do zatwierdzenia (OptSVA-CF).

Wlasnosci

Pokazujemy, ze OptSVA-CF+R jest nieprzezroczysty do ostatniego uzycia przez analogie
do OptSVA+R, oraz ze jest on wolny od zakleszczen i silnie progresywny.

Podsumowanie

Wprowadzone algorytmy sa podsumowane w Tablicy 11.4. Wszystkie algorytmy sa pe-
symistyczne, blokujace i pozbawione zakleszczen. Algorytmy z transakcjami niechetnymi
zapewniaja poprawne wykonanie transakcji niechetnych ze wzgledu na operacje niewyco-
fywalne, a algorytmy bez wycofan zapewniaja poprawne wykonanie wszystkich transakcji
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Rys. 11.8: Obsluga buforowania w OptSVA+R vs OptSVA-CF+R.



Algorytm Modyfikacje Wycofania A priori Obiekty Bezpie- Zwalnianie Operacje
czenstwo zasoboéw niewycofywalne

SVA p. wykonania bez wycofania ASet, supr niejednorodne opaque-equivalent tak T, €T
SVA+R p. wykonania dowolne, przy kaskadzie ASet, supr niejednorodne last-use opaque tak (%]
RSVA+R p. wykonania dowolne, przy kaskadzie ASet, supr, R niejednorodne last-use opaque tak T; €R
OptSVA p. zatwierdzeniu bez wycofania ASet, wub, rub, zmienne last-use opaque™* tak T, €T
OptSVA+R p. zatwierdzeniu dowolne, przy kaskadzie ASet, wub, rub, zmienne last-use opaque tak (%]
ROptSVA+R p- zatwierdzeniu  dowolne, przy kaskadzie ASet, wub, rub, R zmienne last-use opaque tak T; €R
OptSVA-CF p. zatwierdzeniu bez wycofania ASet, wub, rub, klasy operacji dowolne last-use opaque* tak T, €T
OptSVA-CF+R p. zatwierdzeniu dowolne, przy kaskadzie = ASet, wub, rub, klasy operacji dowolne last-use opaque tak (%]
ROptSVA-CF+R  p. zatwierdzeniu  dowolne, przy kaskadzie ASet, wub, rub, R, klasy operacji dowolne last-use opaque tak T; €R

Tablica 11.4: Podsumowanie wprowadzonych algorytméw wersjonowania.
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ze wzgledu na operacje niewycofywalne. Dodatkowo, algorytmy bez wycofania, poza spel-
nianiem nieprzezroczystoéci do ostatniego uzycia, generuja przeploty nierozréznialne od
przeplotéw nieprzezroczystych pod wzgledem efektéw.

Implementacje

Zaimplementowano dwa z zaproponowanych algorytméw: SVA+R i OptSVA-CF+R (wraz
z wariantami pozwalajacymi na definicje transakcji niechetnych) jako systemy rozpro-
szonej pamieci transakcyjnej oparte na Java RMI, nazwane odpowiednio Atomic RMI
i Atomic RMI 2. Implementacje dostarczaja mechanizméw niezbednych do praktycznego
funkcjonowania systemu w Srodowisku rozproszonym, takich jak obstuga awarii czescio-
wych, serializacja obiektow, implementacja buforéw, oraz instrumentacja kodu w spo-
s6b ukrywajacy algorytmy sterowania wspoétbieznosciag przed programistg. Architektura
zaimplementowanych systeméw rozproszonej pamieci transakcyjnej rozszerza architek-
ture Java RMI o obiekty pelnomocnikéw (ang. prozy), ktére implementuja algorytmy
sterowania wspoétbieznoscia przechwytujac komunikacje miedzy klientami-transakcjami
a obiektami wspétdzielonymi.

Implementacje zostaly przetestowane pod wzgledem wydajnoéci przy uzyciu pro-
gramu wzorcowego (ang. benchmarks) EigenBench [47] przystosowanego do ewaluacji
rozproszonej pamieci transakcyjnej. Ewaluacja poréwnuje Atomic RMI i Atomic RMI 2
z wysokiej klasy optymistycznym systemem rozproszonej pamieci transakcyjnej, HyFlow2
[86]. Dodatkowo poréwnano zaimplementowane w ramach pracy systemy z implementa-
cjami algorytméw blokowania dwufazowego opartymi na zamkach z rozréznieniem opera-
cji odezytu i zapisu (R/W) lub traktujacymi operacje jednakowo (Mutex), a takze z im-
plementacja zamka globalnego. Implementacje przetestowano na 16-wezlowym klastrze
obliczeniowym polaczonym siecia o predkosci 1Gb. Kazdy wezel posiada dwa czterordze-
niowe procesory quad-core Intel Xeon L3260 taktowane 2.83 GHz z 4 GB pamieci RAM.
Na kazdym wezle dziala system operacyjny OpenSUSE 13.1 (jadro 3.11.10, architektura
x86_64). Uzyto jezyka Groovy w wersji 2.3.8 oraz 64-bitowej Java HotSpot(TM) JVM
w wersji 1.8 (build 1.8.0_25-b17).

Wyniki ewaluacji pokazane sa na Rys. 11.9-11.10. Miara wydajnosci jest przepusto-
wo$¢ mierzona w liczbie operacji wykonanych na sekunde. Rys. 11.9 pokazuje, ze wraz
ze wzrostem liczby klientéw (a wigc i ze wzrostem wspdlzawodnictwa o zasoby) spada
przepustowo$¢ wszystkich systeméw. Spadek wydajnosci jest szczegdlnie stromy do liczby
256 klientéw i stabilizuje sie dla 1024 klientéw. Wszystkie algorytmy przewyzszaja wy-
dajnoscia wykonanie sekwencyjne przy uzyciu zamka globalnego. W scenariuszu, gdzie
stosunek odczytéw do zapiséw wynosi 90%, HyFlow2 i Atomic RMI 2 wykonuja sie
z wydajnos$cig znacznie przewyzszajacg wydajnosé pozostalych systeméw o 9-267%, lecz
poréwnywalng wzgledem siebie. W pozostalych dwéch scenariuszach wszystkie implemen-
tacje tracg na efektywnosci, z wyjatkiem Atomic RMI 2, ktéry dziata 9-359% lepiej od
pozostatych implementacji (w tym HyFlow2). R6znica wydajnosci jest wynikiem optyma-
lizacji operacji zapisu w Atomic RMI 2, ktéra pozwala na skracanie przeplotéw transakcji,
gdy wystepuja dlugie sekwencje operacji zapisu. Pozostale implementacje nie optyma-
lizuja zapiséw w takim stopniu. W szczegdlnosci HyFlow2 i 2PL opieraja sie glownie
o zréwnoleglenie odczytéw. Degradacja wydajnosci Atomic RMI 2 jest wyjaéniona po-
trzeba zarzadzania watkami w celu obstugi asynchronii lokalnej. Powoduje to, ze kazdy
wezel musi obstuzyé¢ wiecej dzialajacych jednocze$nie watkéw niz w innych implemen-
tacjach. Spoéréd pozostatych implementacji, warianty C2PL dzialaja zawsze lepiej, niz
odpowiadajace im warianty CS2PL, natomiast warianty R/W dzialaja lepiej niz Mutex.
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Atomic RMI dziala poréwnywalnie pod wzgledem wydajnosci do C2PL i zdecydowanie
gorzej niz Atomic RMI 2.

Rys. 11.10 pokazuje zmiane w przepustowosci wraz z dodawaniem nowych wezléw
do systemu (ale przy stalej przepustowosci). Wraz z poszerzaniem systemu o dodatkows
moc obliczeniowa, przepustowos¢ systemu wzrasta, dzigki powigkszajacej si¢ liczbie po-
tencjalnie wykonywanych réwnolegle operacji. Poréwnanie pokazuje, ze Atomic RMI 2
zdecydowanie przewyzsza wydajnosciag pozostale implementacje, w tym takze Atomic
RMI i HyFlow2. Réznica ta uwydatnia sie znéw w wypadku gdy scenariusz jest zdomi-
nowany przez operacje zapisu, ktore sg lepiej zoptymalizowane w Atomic RMI 2 niz w in-
nych implementacjach. Ze wzgledu na stosunkowo duza liczbe obiektéw wspodtdzielonych
w systemie (10 tablic na kazdym z wezléw), spos6b generowania transakeji powoduje, ze
Atomic RMI 2 jest takze w stanie czesto zwalnia¢ obiekty wczesnie, prowadzac do wigk-
szego wspolczynnika zrownoleglenia transakcji. Spodziewaé sie mozna, ze gdyby liczba
obiektéw byla ograniczona, réznica miedzy HyFlow2 i Atomic RMI 2 wyréwnalaby sie
w przypadku scenariuszy analogicznych do Rys. 11.9b i 11.9c.

Istotnym jest takze, ze w ewaluacji liczba transakcji wycofanych przez Atomic RMI
i Atomic RMI 2 wynosita 0, podczas gdy HyFlow2 musial wycofaé¢ i ponowi¢ 60-89%
transakcji (w zaleznosci od scenariusza). Oznacza to, ze w praktyce Atomic RMI 2 za-
chowuje sie bezpiecznie wzgledem operacji niewycofywalnych, podczas gdy w HyFlow2
moga one by¢ wykonane wielokrotnie.

Statyczna Analiza i Prekompilator

Dodatkowym elementem prezentowanym w pracy, poza algorytmami i ich wlasnoSciami,
sa dwa narzedzia majace na celu poprawienie praktycznosci i wydajnosci zaprezentowa-
nych systeméw: prekompilator i modut szeregowania transakcji.

Ze wzgledu na fakt, ze algorytmy wersjonowanie wymagaja znajomosci a priori obiek-
téw uzywanych przez poszczegdlne transakcje, zadaniem prekompilatora jest analiza sta-
tyczna kodu kazdej z transakcji i wydobycie tej informacji w sposéb automatyczny.
Dodatkowo, prekompilator bada kod, poszukujac poszczegdlnych wywotan operacji na
obiektach wspdéldzielonych i oblicza przyblizone suprema dla kazdego z obiektéw we-
wnatrz transakcji. Prekompilator uwalnia programiste od potrzeby przygotowywania tej
informacji recznie.

Podsumowanie

Aby udowodnié¢ gléwna teze niniejszej pracy zostaly przeanalizowane istniejace wlasno-
Sci bezpieczenstwa oraz ich przydatnosé w kontekscie pamieci transakcyjnej z wezesnym
zwalnianiem zmiennych (Rozdzial 3). Nastepnie wprowadzone zostaly wlasnosci bezpie-
czenstwa, ktére maja praktyczne zastosowanie dla tego typu pamieci transakcyjnych:
nieprzezroczystosé¢ do ostatniego uzycia i silna nieprzezroczysto$¢ do ostatniego uzycia
(Rozdzial 5).

W dalszej kolejnosci opisano istniejace pesymistyczne algorytmy sterowania wspol-
bieznoscia dla pamieci transakcyjnej, zaréwno te rozproszone jak i nierozproszone, oraz
optymistyczne algorytmy sterowania wspoétbieznoscia w rozproszonej pamieci transak-
cyjnej, a takze algorytmy uzywajace wczesnego zwalniania zasobéw (Rozdzial 4). Na
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podstawie tej analizy wybrano rodzing algorytmoéw wersjonowania jako podstawe do dal-
szych badan. Nastepnie zmodyfikowano algorytm SVA, eliminujac zalezno$¢ od global-
nego zamka, oraz pozwalajac na swobodne wycofywanie transakeji (Rozdzial 6, Sekcje 6.1
16.2).

Dalej zaprezentowano algorytmy OptSVA+R i OptSVA-CF+R oraz ich warianty. Sa
to nowatorskie algorytmy pesymistycznego sterowania wspoétbieznoécia rozszerzajace ist-
niejace algorytmy wersjonowania i stosujace optymalizacje, ktére pozwalaja na wykonanie
skonfliktowanych transakcji z wigkszym stopniem zréwnoleglenia niz byto to mozliwe do
tej pory (Rozdzial 6, Sekcje 6.3-6.4). Opracowane pesymistyczne algorytmy sterowania
wspotbieznoécia zostaly uzyte do implementacji dwéch systemow rozproszonej pamieci
transakcyjnej. W pracy pokazano, ze system oparty na OptSVA-CF+R i ROptSVA-
CF+R jest w stanie uzyskaé lepsza wydajnosé, niz wysokiej klasy implementacja opty-
mistycznej pamieci transakcyjnej, jednoczesnie nie powodujac koniecznosci wycofania
transakcji (Rozdzial 8).

Pokazano takze, ze cho¢ zastosowane algorytmy reprezentuja bardziej ogdlne i wy-
dajne podejscie, zachowuja one silne gwarancje bezpieczenstwa. Zostalo to w pracy zade-
monstrowane przeprowadzajac formalne dowody poprawnosci tych algorytmoéw, co wy-
magalo wprowadzenia nowych technik dowodzenia poprawnosci algorytméw sterowania
wspotbieznoscia (Rozdzial 7).

Ponadto, zaproponowano dodatkowy praktyczny modut dla opracowanych systeméow
pamieci transakcyjnej, tj. prekompilator, ktory automatycznie generuje wiedze a priori
uzywang do wczesnego zwalniania obiektéw w algorytmach wersjonowania przez sta-
tyczna analize kodu programu (Rozdzial 9).

Dowodd Tezy
Jako dowdd postawionej w pracy tezy:

Przedstawiono Atomic RMI 2, system rozproszonej pamieci transakcyjnej w modelu prze-
plywu sterowania, implementujacy pesymistyczne algorytmy OptSVA-CF+R i ROptSVA-
CF+R.

a) W Sekcji 8.2.2 pokazano, ze Atomic RMI 2 przewyzsza wydajnoscia wysokiej klasy
optymistyczny system rozproszonej pamieci transakcyjnej, a wiec Atomic RMI 2
jest systemem wydajnym.

b) Twierdzeniem 10 pokazano, ze OptSVA-CF+R jest nieprzezroczysty do ostatniego
uzycia, Twierdzeniem 4 pokazano, ze jest on silnie progresywny, a Twierdzeniem 3
pokazano, ze jest on pozbawiony zakleszczen. W konsekwencji OptSVA-CF+R spet-
nia silne gwarancje bezpieczenstwa, postepu i zywotnosci.

¢) W Sekeji 8.2.2 pokazano, ze OptSVA-CF+R w praktyce nie doprowadza do wycofain
transakcji, a wigc operacje niewycofywalne wykonywane sa (w praktyce) poprawnie.
Ponadto, ROptSVA-CF+R catkowicie wyklucza mozliwo$¢ wycofywania transakcji
niechetnych, a wiec operacje niewycofywalne zawsze beda wykonywane popraw-
nie w przypadku ogélnym, zakladajac, ze beda wykonywane w ramach transakcji
niechetnych.

d) OptSVA-CF+R wspiera dowolne wycofywanie transakeji, i operuje na niejedno-
rodnym modelu obiektowym. Dodatkowo, nie ma pojedynczego punktu awarii. Po-
nadto, informacje niezbedne do dzialania tego algorytmu moga by¢ wygenerowane
a priori przez prekompilator. W konsekwencji OptSVA-CF+R mozna uznaé za
algorytm majacy praktyczne zastosowanie.

Reasumujac, teza jest spelniona. (|



[1]

Bibliography

Y. Afek, A. Matveev, and N. Shavit. Pessimistic software lock-elision. In Pro-
ceedings of DISC’12: the 26th International Symposium on Distributed Computing,
Oct. 2012.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: principles, tech-
niques, and tools. Addison Wesley, 2nd edition, Aug. 2006.

M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, C. Kirkham, and I. Watson. Lee-TM:
A non-trivial benchmark for transactional memory. In Proceedings of ICA3PP’08:
the 8th International Conference on Algorithms and Architectures for Parallel Pro-
cessing, June 2008.

V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and B. Parady.
SPEComp: A new benchmark suite for measuring parallel computer performance.
In Proceedings of WOMPAT’01: the International Workshop on OpenMP Applica-
tions and Tools: OpenMP Shared Memory Parallel Programming, July 2001.

H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. A programming language per-
spective on transactional memory consistency. In Proceedings of PODC’13: the
32nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
2013.

H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. Safety of live transactions in
transactional memory: TMS is necessary and sufficient. In Proceedings of DISC’14:
the 28th International Symposium on Distributed Computing, 2014.

H. Attiya and S. Hans. Transactions are back—but how different they are? In Pro-
ceedings of TRANSACT’14: the Tth ACM SIGPLAN Workshop on Transactional
Computing, Feb. 2014.

H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of deferred update in trans-
actional memory. In Proceedings of ICDCS’13: the 33rd International Conference
on Distributed Computing Systems, July 2013.

H. Attiya and E. Hillel. Single-version STMs can be multi-version permissive. In
Proceedings of ICDCN’11: the 12th International Conference on Distributed Com-
puting and Networking, Jan. 2011.



236

[10]

[11]

[16]

[17]

[18]

22]

[23]

11  Bibliography

H. Avni, S. Dolev, P. Fatourou, and E. Kosmas. Abort free semantic TM by depe-
dency aware scheduling of transactional instructions. In Proceedings of NETYS’1:
the International Conference on Networked Systems, May 2014.

J. Baranowski, P. Kobylinski, K. Siek, and P. T. Wojciechowski. Helenos: A realistic
benchmark for distributed transactional memory. Journal of Systems and Software,
Mar. 2016. arXiv:1603.07899 [cs.DC] (revision).

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. Addison-Wesley, 1987.

A. Bieniusa, A. Middelkoop, and P. Thiemann. Brief announcement: Actions in
the twilight—concurrent irrevocable transactions and inconsistency repair. In Pro-
ceedings of PODC’10: the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, July 2010.

R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software transactional memory
for large scale clusters. In Proceedings of PPoPP’08: the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2008.

Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and A. Silberschatz. On rig-
orous transaction scheduling. IEEE Transactions on Software Engineering, 17(9),
Sept. 1991.

W. Cellary, E. Gelenbe, and T. Morzy. Concurrency control in distributed database
systems. North-Holland, 1988.

J. C. Corbett and et al. Spanner: Google’s globally-distributed database. In Pro-
ceedings of OSDI’12: the 10th USENIX Symposium on Operating Systems Design
and Implementation, Oct. 2012.

M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM: Dependable
distributed software transactional memory. In Proceedings of PRDC’13: the 15th
IEEE Pacific Rim International Symposium on Dependable Computing, Nov. 2009.

D. Cunningham, K. Gudka, and S. Eisenbach. Keep off the grass: Locking the right
path for atomicity. In Proceedings of CC’08: the 17th International Conference on
Compiler Construction, part of Part of ETAPS’08: the Joint European Conferences
on Theory and Practice of Software, Mar. 2008.

D. Dice, A. Matveev, and N. Shavit. Implicit privatization using private transac-
tions. In Proceedings of TRANSACT’10: the 5th ACM SIGPLAN Workshop on
Transactional Computing, Apr. 2010.

D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Proceedings
of DISC’06: the 20th International Symposium on Distributed Computing, Sept.
2006.

S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying
and verifying transactional memory. Formal Aspects of Computing, 25(5), Sept.
2013.

S. Dolev, P. Fatourou, and E. Kosmas. Abort free semantic TM by depedency
aware scheduling of transactional instructions. In Proceedings of TRANSACT’13:
the 8th ACM SIGPLAN Workshop on Transactional Computing, Mar. 2013.



11 Bibliography

[24]

[31]

[32]

237

S. Dolev, D. Hendler, and A. Suissa. CAR-STM: Scheduling-based collision avoid-
ance and resolution for software transactional memory. In Proceedings of PODC’08:
the 28th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Comput-
ing, Aug. 2008.

A. Dragojevi¢, R. Guerraoui, A. V. Singh, and V. Singh. Preventing vs curing:
Avoiding conflicts in transactional memories. In Proceedings of PODC’09: the
28th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Aug. 2009.

D. Dziuma, P. Fatourou, and E. Kanellou. Consistency for transactional memory
computing. Bulletin of the FATCS, 113, 2014.

A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop bound
analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In Proceedings of WCET ’07: the 7th International Workshop
on Worst-Case FExecution Time Analysis, July 2007.

P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In Proceedings
of DISC’09: the 23rd International Symposium on Distributed Computing, Sept.
2009.

C. Ferdinand and R. Heckmann. AiT: Worst-case execution time prediction by
static program analysis. In Proceedings of WCC' ’04: the 18th International Feder-
ation for Information Processing World Computer Congress, Aug. 2004.

C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-
life processor. In Proceedings of EMSOFT’01: the 1st International Workshop on
Embedded Software, Oct. 2001.

E. M. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler framework.
In Proceedings of TOOLS ’98: the 26th International Conference on Technology of
Object-Oriented Languages and Systems, Aug. 1998.

R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In
Proceedings of PPoPP’08: the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Feb. 2008.

R. Guerraoui and M. Kapaltka. Principles of Transactional Memory. Morgan &
Claypool, 2010.

R. Guerraoui, M. Kapatka, and J. Vitek. STMBench7: A benchmark for soft-
ware transactional memory. In Proceedings of EuroSys’07: the 2nd ACM SIGOPS
FEuropean Conference on Somputer Systems, June 2007.

J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a flow analysis for embedded
system C programs. In Proceedings of WORDS’05: the 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems, Sept. 2005.

V. Hadzilacos. A theory of reliability in database systems. Journal of the ACM,
35(1), Jan. 1988.

T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad. A modular worst-case
execution time analysis tool for Java processors. In Proceedings of RTAS08: the
14th IEEFE Real-Time and Embedded Technology and Applications Symposium, Apr.
2008.



238

[38]

[39]

[40]

[41]

11  Bibliography

T. Harris. Exceptions and side-effects in atomic blocks. Science of Computer
Programming, 58(3), 2005.

T. Harris and K. Fraser. Language Support for Lightweight Transactions. In Pro-
ceedings of OOPSLA’03: the 18th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Oct. 2003.

T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan & Claypool,
2nd edition, 2010.

T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory
transactions. In Proceedings of PPoPP’05: the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, June 2005.

J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In Proceedings
of ESOP’86: the 1st European Symposium on Programming, 1986.

M. Herlihy, V. Luchangco, M. Moir, and I. W. N. Scherer. Software transac-
tional memory for dynamic-sized data structures. In Proceedings of PODC"03: the
22nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
July 2003.

M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of ISCA’93: the 20th International Sym-
posium on Computer Architecture, pages 289-300, May 1993.

M. Hicks, J. S. Foster, and P. Prattikakis. Lock inference for atomic sections. In
Proceedings of TRANSACT 06: the 1st ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing, June 2006.

N. Holsti, T. Langbacka, and S. Saarinen. Worst-case execution-time analysis for
digital signal processors. In Proceedings of EUSIPCO 2000: the 10th Furopean
Signal Processing Conference, Sept. 2000.

S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and K. Olukotun.
Eigenbench: A simple exploration tool for orthogonal TM characteristics. In Pro-
ceedings of IISWC’10: the IEEE International Symposium on Workload Character-
ization, 2010.

D. Imbs, J. R. de Mendivil, and M. Raynal. On the consistency conditions or
transactional memories. Technical Report 1917, IRISA, Dec. 2008.

C. Kotselidis, M. Ansari, K. Jarvis, M. Lujan, C. C. Kirkham, and I. Watson.
DiSTM: A software transactional memory framework for clusters. In Proceedings
of ICPP’08: the 37th IEEFE International Conference on Parallel Processing, Sept.
2008.

L. Lamport. Proving the correctness of multiprocess programs. IEEFE Transactions
on Software Engineering, SE-3(2), Mar. 1977.

Y .-F. Lee, B. G. Ryder, and M. E. Fiuczynski. Region analysis: A parallel elimina-
tion method for data flow analysis. IEEE Transactions on Software Engineering,
21, Nov. 1995.

M. Lesani and J. Palsberg. Decomposing opacity. In Proceedings of DISC’14: the
28th International Symposium on Distributed Computing, 2014.



11 Bibliography

[53]

[54]

[55]
[56]

[57]

[58]

[62]

[63]

[64]

[65]

[68]

239

Y.-T. S. Li and S. Malik. Performance analysis of real-time embedded software.
Springer, Nov. 1998.

T. Lundqvist and P. Stenstréom. An integrated path and timing analysis method
based on cycle-level symbolic execution. Real-Time Systems, 17(2-3), 1999.

N. Lynch. Distributed algorithms. 1996.

A. Matveev and N. Shavit. Towards a fully pessimistic STM model. In Proceedings
of TRANSACT ’12: the Tth ACM SIGPLAN Workshop on Transactional Comput-
ing, Aug. 2012.

B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: Synchronization in-
ference for atomic sections. In Proceedings of POPL’06: the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Jan. 2006.

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford trans-
actional applications for multi-processing. In Proceedings of IISWC’08: the IEEE
International Symposium on Workload Characterization, Sept. 2008.

J. Navas, M. Méndez-Lojo, and M. V. Hermenegildo. User-definable resource us-
age bounds analysis for Java bytecode. Flectronic Notes in Theoretical Computer
Science, 253(5), Dec. 2009.

C. H. Papadimitrou. The serializability of concurrent database updates. Journal
of the ACM, 26(4), 1979.

D. Peng and F. Dabek. Large-scale incremental processing using distributed trans-
actions and notifications. In Proceedings of OSDI ’10: 9th USENIX Symposium on
Operating Systems Design and Implementation, Oct. 2010.

D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In
Proceedings of PODC’10: the 29th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, July 2010.

P. Pratikakis, J. S. Foster, and M. Hicks. Existential label flow inference via CFL
reachability. In Proceedings of SAS’06: the 13th International Symposium on Static
Analysis, Aug. 2006.

W. Pugh. The Omega Test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM, 8, 1992.

H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Committing conflicting trans-
actions in an STM. In Proceedings of PPoPP’09: the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, Feb. 2009.

H. E. Ramadan, I. Roy, and E. Witchel. Dependence-aware transactional mem-
ory for increased concurrency. In Proceedings of MICRO’08: the 41st annual
IEEE/ACM International Symposium on Microarchitecture, Nov. 2008.

M. M. Saad and R. B. Transactional forwarding: Supporting highly-concurrent
STM in asynchronous distributed systems. In Proceedings of SBAC-PAD’12: the
24th IEEE International Symposium on Computer Architecture and High Perfor-
mance Computing, Oct. 2012.

M. M. Saad and B. Ravindran. HyFlow: A high performance distributed trans-
actional memory framework. In Proceedings of HPDC ’11: the 20th International
Symposium on High Performance Distributed Computing, June 2011.



240

[69]

[70]

[80]

[81]

[82]

11  Bibliography

M. M. Saad and B. Ravindran. Transactional forwarding algorithm. Technical
report, Department of Electrical and Computer Engineering, Virginia Tech., Jan.
2011.

I. W. N. Scherer and M. L. Scott. Advanced contention management for dy-
namic software transactional memory. In Proceedings of PODC’05: the 24th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, July 2005.

N. Shavit and D. Touitou. Software transactional memory. In Proceedings
of PODC’95: the 14th ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, Aug. 1995.

K. Siek and P. T. Wojciechowski. Brief announcement: Statically computing up-
per bounds on object calls for pessimistic concurrency control. In Proceedings
of EC?’10: the Workshop on Exploiting Concurrency Efficiently and Correctly, July
2010.

K. Siek and P. T. Wojciechowski. A Formal Design of a Tool for Static Analysis of
Upper Bounds on Object Calls in Java. In Proceedings of FMICS’12: the 17th In-
ternational Workshop on Formal Methods for Industrial Critical Systems, number
7437 in Lecture Notes in Computer Science, Aug. 2012.

K. Siek and P. T. Wojciechowski. Brief announcement: Towards a fully-articulated
pessimistic distributed transactional memory. In Proceedings of SPAA’13: the
25th ACM Symposium on Parallelism in Algorithms and Architectures, July 2013.

K. Siek and P. T. Wojciechowski. Atomic RMI: a distributed transactional memory
framework. In Proceedings of HLPP’1/: the 7th International Symposium on High-
level Parallel Programming and Applications, July 2014.

K. Siek and P. T. Wojciechowski. Brief announcement: Relaxing opacity in pes-
simistic transactional memory. In Proceedings of DISC’1/: the 28th International
Symposium on Distributed Computing, Oct. 2014.

K. Siek and P. T. Wojciechowski. Zen and the art of concurrency control: An
exploration of tm safety property space with early release in mind. In Proceedings
of WTTM’1): the 6th Workshop on the Theory of Transactional Memory, July
2014.

K. Siek and P. T. Wojciechowski. Atomic RMI: A distributed transactional memory
framework. International Journal of Parallel Programming, 44(3), June 2015.

K. Siek and P. T. Wojciechowski. Last-use opacity: A strong safety property for
transactional memory with early release support. ACM Transactions on Program-
ming Languages and Systems, June 2015. arXiv:1506.06275 [cs.DC] (submit-
ted).

K. Siek and P. T. Wojciechowski. Proving opacity of transactional memory with
early release. foundations of computing and decision sciences. Foundations of Com-
puting and Decision Sciences, 40(4), Dec. 2015.

K. Siek and P. T. Wojciechowski. Transactions scheduled while you wait. Journal
of Grid Computing, Oct. 2015. (submitted).

K. Siek and P. T. Wojciechowski. Atomic RMI 2: Highly parallel pessimistic dis-
tributed transactional memory. Transactions on Parallel and Distributed Systems,
Apr. 2016. arXiv:1606.03928 [cs.DC] (submitted).



11 Bibliography

[83]

[84]

[93]

[94]

241

T. Skare and C. Kozyrakis. Early release: Friend or foe? In Proceedings of WTW’06:
the Workshop on Transactional Memory Workloads, June 2006.

J. Staschulat, J. Braam, R. Ernst, T. Rambow, R. Schlor, and R. Busch. Cost-
efficient worst-case execution time analysis in industrial practice. In Proceedings
of ISoLA’06: the 2nd International Symposium on Leveraging Applications of For-
mal Methods, Verification and Validation, Nov. 2006.

H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by
separated cache and path analyses. Real-Time Systems, 18:157-179, May 2000.

A. Turcu, B. Ravindran, and R. Palmieri. HyFlow2: A high performance dis-
tributed transactional memory framework in scala. In Proceedings of PPPJ’13: the
10th International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools, Sept. 2013.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot—a
Java optimization framework. In Proceedings of CASCON’99: the Conference of
the Centre for Advanced Studies on Collaborative Research, Nov. 1999.

R. Vallée-Rai and L. J. Hendren. Jimple: Simplifying Java bytecode for analyses
and transformations. Technical Report 1998-4, McGill University, July 1998.

W. Vogels. Eventually consistent. Communications of the ACM, 52(1), Jan. 2009.

W. E. Weihl. Local atomicity properties: modular concurrency control for abstract
data types. ACM Transactions on Programming Languages and Systems, 11(2),
Apr. 1989.

G. Weikum and G. Vossen. Transactional information systems: Theory, algorithms,
and the practice of concurrency control and recovery. Morgan Kaufmann Publish-

ers, 2002.

A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions and their
applications. In Proceedings of SPAA’08: the 20th ACM Symposium on Parallelism
in Algorithms and Architectures, June 2008.

R. Wilhelm. Determining bounds on execution times. In Handbook on Embedded
Systems, chapter 14. CRC Press, 2006.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. P. Puschner, J. Staschulat, and P. Stenstrém. The worst-case execution time
problem—overview of methods and survey of tools. ACM Transactions on Embed-
ded Computing Systems, 7(3), Apr. 2008.

A. Wojciechowski and K. Siek. Barcode scanning from mobile-phone camera photos
delivered via MMS: Case study. In Advances in Conceptual Modeling— Challenges
and Opportunities, volume 5232 of Lecture Notes in Computer Science, Oct. 2008.

P. T. Wojciechowski. Isolation-only transactions by typing and versioning. In
Proceedings of PPDP’05: the 7th ACM SIGPLAN International Symposium on
Principles and Practice of Declarative Programming, July 2005.

P. T. Wojciechowski. Language design for atomicity, declarative synchronization,
and dynamic update in communicating systems. Publishing House of Poznan Uni-
versity of Technology, 2007.



242

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

11  Bibliography

P. T. Wojciechowski. Extending atomic tasks to distributed atomic tasks. In
Proceedings of EC?’10: the Workshop on Exploiting Concurrency Efficiently and
Correctly, July 2008.

P. T. Wojciechowski, T. Kobus, and M. Kokocinski. Model-driven comparison
of state-machine—based and deferred-update replication schemes. In Proceedings
of SRDS’12: the 31st IEEE International Symposium on Reliable Distributed Sys-
tems, Oct. 2012.

P. T. Wojciechowski, O. Riitti, and A. Schiper. SAMOA: A framework for a
synchronisation-augmented microprotocol approach. In Proceedings of IPDPS’04:
the 18th IEEFE International Parallel and Distributed Processing Symposium, Apr.
2004.

P. T. Wojciechowski and K. Siek. Having your cake and eating it too: Combining
strong and eventual consistency. In Proceedings of PaPEC’1: the 1st Workshop
on the Principles and Practice of Fventual Consistency, Apr. 2014.

P. T. Wojciechowski and K. Siek. The optimal pessimistic transactional memory
algorithm, May 2016. arXiv:1605.010361 [cs.DC] (in submission).

F. Wolf, R. Ernst, and W. Ye. Path clustering in software timing analysis. I[EFEE
Transactions on Very Large Scale Integrated Systems, 9, Dec. 2001.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 programs: characterization and methodological considerations. In Proceedings
of ISCA’95: the 22nd Annual International Symposium on Computer Architecture,
May 1995.

R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for transactional
memory systems. In Proceedings of SPACC’08: the 20thACM Symposium on Par-
allelism in Algorithms and Architectures, June 2008.



Proofs

Property Strength

Last-use Opacity

Below we compare last-use opacity to other properties and consistency conditions to
determine their relative strength.

Opacity
Opacity is strictly stronger than last-use opacity.

Lemma 71. For any history S and transaction T; € S, if Vis(S,T;) is legal, then
LVis(S,T;) is legal.

Proof. By definition of Vis(S,T;), if operation op € Vis(S,T;), then op € Vis(S,T;) only if
op € H|T; and either ¢ = j or T; <g T; and T} is committed. By definition of LVis(S,T;),
given transactions T;,7; and operation op € S|T}, if i = j or T; <g T; and Tj is
committed, then S|T; C LVis(S,T;). Therefore LVis(S,T;) = Vis(S,T;). Since Vis(S,T;)
and LVis(S,T;) preserve the order of operations in S, then LVis(S,T;) = Vis(S,T;).
Hence, if Vis(S,T;) is legal, then LVis(S,T;) is legal. O

Lemma 72. Any final-state last-use opaque history H is final-state last-use opaque.

Proof. From Def. 12, for any final-state opaque history H, there is a sequential history
S = Compl(H) s.t. S preserves the real time order of H and every transaction T; in S is
legal in S. Thus, for every transaction T; in S Vis(S,T;) is legal. From the definition of
completion, any T; is either committed or aborted in Compl(H) and therefore likewise
completed or aborted in S. If T; is committed in S, then it is legal in S, so Vis(S,T;)
is legal, and therefore T; is last-use legal in S. If T; is aborted in S, then it is legal in
S, so Vis(S,T;) is legal, and therefore, from Lemma 71, LVis(S,T;) is also legal, so T;
is last-use legal in S. Given that all transactions in S are last-use legal in S, then, from
Def. 23, H is final-state last-use opaque. [

Lemma 73. Any opaque history H is last-use opaque.
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A Proofs

Proof. If H is opaque, then, from Def. 13, any prefix P of H is final-state opaque. Since
any prefix P of H is final-state opaque, then, from Lemma 72, any P is also final-state
last-use opaque. Then, by Def. 24 H is last-use opaque. O

Serializability
Last-use opacity is strictly stronger than serializability.
Lemma 74. Any last-use opaque history H is serializable.

Proof. From Lemma 23. O

Virtual World Consistency
VWC is incomparable to last-use opacity.
Lemma 75. There exists a last-use opaque history H that is not virtual world consistent.

Proof. Since last-use opacity supports aborting early release (Lemma 27), then by Def. 4
and by Def. 6 there exists some last-use opaque history where some transaction reads
from a live transaction and aborts. Since, by Lemma 16 VWC, does not support aborting
releasing transactions, then, by the same definitions, such a history is not VWC. Hence
a history with a transaction releasing early may be last-use opaque but not VWC. [

Lemma 76. There exists a virtual world consistent history H that is not last-use opaque.

Proof. Since each transaction in a VWC history can be explained by a different causal
past from other transactions, it is possible that in a correct VWC history transactions
do not agree on the order of operations in the sequential witness history. However, in
order for H to to be last-use opaque the legality of transactions needs to be established
using a single sequential history with a single order of operations. Thus, it is possible for
a VWC history not to be last-use opaque. [

Transactional Memory Specification
TMS1 is incomparable to last-use opacity.
Lemma 77. There exists a last-use opaque history H that is not TMS1.

Proof. Since last-use opacity supports aborting early release (Lemma 27), then by Def. 6
it supports early release, so by Def. 4 there exists some last-use opaque history where
some transaction reads from a live transaction and aborts. Since, by Lemma 13 TMS1,
does not support early release, then, by the same definitions, histories containing early
release are not TMS1. Hence a history with a transaction releasing early may be last-use
opaque but not TMSI. O

Lemma 78. There exists a TMS1 history H that is not last-use opaque.

Proof. Let history H be the history presented in Fig. A.1. In [22] (Fig. 6 therein) the
authors show that the history satisfies TMS1. The same history is not last-use opaque.
Note that if Vis(S,T;) is to be legal, in any S equivalent to H, T; <g T}, because T; reads
0 from « and T writes 2 to ¢ (and commits). In addition, T <g T}, because T; reads 2
from z and T} <g 13, because 1 reads z from Tj. Then, by extension T; <s T; <g 1;.
However, note that in any .S it must be that T; <g T;, because T} reads y from T;, which
is a contradiction. Thus, H is not last-use opaque. O

TMS2 is strictly stronger than last-use opacity.
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Figure A.1: TMSI1 history example [22].
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Figure A.2: Last-use opaque history that does not satisfy elastic opacity.

Proposition 1. All TMS2 histories are last-use opaque.

Proof. The authors of [22] believe (but do not demonstrate) that all opaque histories
satisfy TMS2. If this is the case, then, since all opaque histories are last-use opaque
(Lemma 88), then it is true that all last-use opaque histories satisfy TMS2. Thus, we
believe the proposition is true, pending a demonstration that all opaque histories satisfy
TMS2. O

Elastic Opacity

Last-use opacity and elastic opacity are incomparable.
Lemma 79. There exists an elastic opaque history H that is not last-use opaque.

Proof. Since elastic opaque histories may not be serializable [28], and since, as all last-use
opaque histories trivially require serializability then some elastic opaque histories are not
last-use opaque. O

Lemma 80. There exists a last-use opaque history H that is not elastic opaque.

Proof. Let history H be the history presented in Fig. A.2. It should be straightforward
to see that H is last-use opaque for an equivalent sequential history S = H|T; - H|T}.
Operations on z are always justified in any sequential equivalent history since they are
all within 7; and their effects are not visible in 7. The read operation on y is expected
to read 0 since it is not preceded in S by any write, and it does read 0. Thus operations
on y and z will not break legality of either T; or T;. With that in mind, the history can
be shown to be last-use opaque by analogy to Lemma 82.

On the other hand, let T; be an elastic transaction. The only possible well-formed
cut of H|T; is C; = {[r(2)0, w(x)1,r(y)0, w(y)1]}. (In particular, the following cut is
not well-formed, since w(z)l and w(y)0 are in two different subhistories of the cut:
C! = {[r(2)0, w(x)1], [r(y)0, w(y)1]}). Let fo(H) be a cutting function that applies cut
C. Then, since the cut contains only one subhistory, it should be straightforward to
see that fo(H) = H. Then, we note that H contains an operation in H|T; that reads
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start;  wi(z)l—ok; tryC,— C;
i © S o

starty, k(@) =1 re(y)—3  tryCh— Ay
O

k © Y

‘ Ostartj w;(x)2— ok; /wi(ré/V)Sﬁukj OtryC'jﬂ Cj
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Figure A.3: Cascadeless history that does not satisfy last-use opacity.

the value of z from H|T; and T; is live. That means that in the prefix P of H s.t.
H = P [tryC; — Ci, tryC; — Cj] both transactions will be aborted in any completion
of P, so for any sequential equivalent history S Vis(S,T;) will not contain S|T}, since
either Tj is aborted in any S. Therefore Vis(S,T;) will not justify reading 1 from z and
will not be legal, causing P not to be final state opaque (Def. 12), which in turn means
that H is not opaque (Def. 13). O

Recoverability
Last-use opacity is strictly stronger than recoverability.
Lemma 81. Any last-use opaque history H is recoverable.

Proof. From Lemma 25. O

Cascadelessness
Cascadelessness is incomparable to last-use opacity.
Lemma 82. There exists a last-use opaque history H that is not cascadeless.

Proof. Let H be the history in Fig. 5.2. Since T} reads from Tj in H; and rj(z) = v <,
tryC,; — C; the history is not cascadeless, since it contradicts Def. 10. Let C = Compl(H)
s.t. H=C, and let Sy be a sequential history s.t. S = C|T; - C|T;. Then Vis(Sg,T;) =
Su|Ti = [wi(z)1 — ok;] and LVis(Sy,T;) = Su|T; - Su|T; = [wi(x)1 — ok;, r5(x) — 1].
Trivially, st(S‘ w,T;) and LVz's(S' w,T;) are both legal, so T; is committed and legal, and
Tj is last-use legal. Thus H is final-state last-use opaque. By analogy, all prefixes of H
are also final-state last-use opaque, so H is last-use opaque. O]

Lemma 83. There exists a cascadeless history H that is not last-use opaque.

Proof. The history in Fig. A.3 is shown to be cascadeless (ACA) in [7]. However, note,
that Compl(H) = H, and given any sequential S = Compl(H) T} T) must follow both
T; and T, in S because T}, reads form both transactions. Since T; <z 1} and T; <y Tk,
then T; must precede both other transactions in S. Hence, S = H|T; - H|T; - H|Ty,
so Vis(S,T) = S and therefore Vis(S,T}) is illegal because r(z) — 1 is preceded in
Vis(S, Tg)|z by rx(x) — 2. O

Strictness
Strictness and last-use opacity are also incomparable.

Lemma 84. There exists a last-use opaque history H that is not strict.

Proof. Since any strict history is also ACA [7], and since Lemma 82 shows that not all
last-use opaque histories are ACA, then not all last-use opaque histories are strict. [
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Lemma 85. There exists a strict history H that is not last-use opaque.

Proof. The history in Fig. A.3 is shown to be strict in [7]. However, as we show in
Lemma 83, this history is not last-use opaque. O

Rigorousness

Rigorousness is strictly stronger than last-use opacity.
Lemma 86. Any rigorous history H is last-use opaque.

Proof. Since [7] demonstrates that rigorous histories are opaque, and since we show in
Lemma 88 that opaque histories are also last-use opaque, then all rigorous histories are
last-use opaque. O

Live Opacity
Live opacity is stronger than last-use opacity.
Lemma 87. Any live opaque history H is last-use opaque.

Proof. Since H is live opaque there exists a sequential history S that justifies serializabil-
ity of H and an extension S’ of S where if transaction T; is not in S then it is replaced
in S by TY" containing only non-local reads. S’ is legal and preserves the real-time order
of H (accounting for replaced transactions). In addition, from Lemma 19, no transaction
in H reads from a live transaction (in any prefix of H). Therefore, since S’ is legal, any
read operation op; = r;(z) — v in H that is preceded wj(z)v—w in H, T} is committed
in S and is included in S’ in full.

Let S” be a sequential history constructed by replacing the operations removed to
create S’ where if T; € H and T; ¢ S then T; is aborted in S”. S” preserves the real
time order of H and S” = H. Note that, since S’ is legal, if some write op¥ is in S”
and not in S/, then there is no non-local read operation op” reading the value written by
op". Hence any operation reading the value written by op™ is local, and since all local
reads in transactions that are replaced in S’ read legal values (by Def. 18), then all reads
reading from any op,, read legal values in S”. Since S’ is legal, then all reads reading
from transactions that are in S read legal values in S’. Since S” = H, then these read and
write operations also read legal values in S”. Because of this, and since no transaction
reads from another live transaction, Vis(S”,T;) will be legal for any transaction in S”. In
addition, LVis(S”,T;) will be legal for any aborted transaction in S”. Therefore any live
opaque H will be final state last-use opaque. Since any prefix of H is also live opaque,
then any prefix will also be final-state last-use opaque, hence H is last-use opaque. [

Markability

Lemma 88. Any markable history H is last-use opaque.

Proof. Trivially from Lemma 88. O

Commitment Order Preservation

CO and last-use opacity are incomparable.

Lemma 89. There exists a last-use opaque history H that is not CO.
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Proof. Let H be the history in Fig. 5.9. Since both H|T; and H|T; each single write oper-
ation on z, then for any equivalent sequential history Sy, all of VZ'S(S'H7 T;), Vis(S’H, T;),
LVis(Sy,T;), and LVis(Sy, T;) are always legal. Hence, H is final-state last-use opaque.
Since the conclusion follows for any prefix of H, then any prefix is final-state last-use
opaque, and H is last-use opaque. However, since T; and T} conflict, and since T; executes
its write on z before T}, but T; commits before T3, then H is not CO. O

Lemma 90. There exists a CO history H that is not last-use opaque.

Proof. We show in Lemma 5 that CO supports overwriting, so by Def. 5, there exists
some H that contains overwriting and satisfies CO. We show in Lemma 26 that last-use
opacity precludes overwriting, so such H is not last-use opaque. O

SVA+R Last-use Opacity

Since the values used within writes are under the control of the program (rather than
SVA+R) we simply assume that they are within the domain of the variables (Assump-
tion 5).

Definition 54 (Operation Execution Conditional). Given predicate P and operation op
P — op denotes that P is true only if op executes.

Definition 55 (Operation Execution Converse). Given predicate P and operation op
P — op denotes that op executes only if P is true.

Let there be any P,II, H |= £(P,II), op, € H|T;.
Definition 56. op; is closing access on z in T;, denoted op; = opy if both:

a) op; is closing read on x in T; or op; is closing write on z in T;, and

b) Bop, € H s.t. op; <p opl and op) is closing read on x in T; or op) is closing write
on x nT;.

Let there be any P, I, H = E(P,II), op, € H|T;, op; = ri(x) — v or w;(x)v— ok;.
Lemma 91 (Access Condition). 1v(z) = pv,(z) — 1 «— op;.
Proof. Condition at line 11 dominates access at line 16. O

Lemma 92 (Abort Condition). 1tv(z) = pv,(z) — 1 «— res;[4;].

Proof. Access condition at line 35 dominates :dismiss at line 36 in procedure abort for
each variable. Hence, all variables must pass line 35 before abort concludes. O

Lemma 93 (Commit Condition). 1tv(z) = pv,(z) — 1 — res;[C;].
Proof. By analogy to Lemma 92. O
Lemma 94 (Early Release). If op; = op7 then 1v(z) = pv,(z) — op;.

Proof. 1v(z) can be set by T; at line 59 and at line 47. The former is set during the last
access on some z in T; (line 18 dominates line 59). The latter is set during commit, which
means that if any closing access was present, it was executed prior to commit. O]

Let r; = res; [Ai] or res; [CJ
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Lemma 95 (Release). If fop, € HI|T; s.t. op = 6p? and © € ASet; then 1v(z) =

pv;(z) — 7.

Proof. If op} is not closing access then line 18 will not be passed, so only assignment of
1v(z) is in line 47 which execute only during commit or abort. O

Lemma 96 (Terminal Release). If x € ASet; then 1v(z) = pv,(z) — r;.

Proof. 1tv(z) can be set only in line 39 or line 30, which are part of abort and commit,
respectively. O

Let there be any H, T; € H, T; € H, op; € H|T;, op; = ri(z) — u, op; € H|Tj,

op; = wj(z)v— ok;.

Lemma 97 (No Buffering). If op; <y, op; and not op; <u res; [Aj] <u op; then

U ="v.

Lemma 98 (Revert On Abort). If op; <p|, op; and op; <p res; [Aj] <m op; then
U # v.

Proof. If abort is executed then the :recover procedure is executed for all z € ASet;.
Thus, line 54 restores = to value v’ which is acquired before the any operation on z is
executed by T}, hence v # v, so u # v. O

Let H|start be a subhistory of H that for each T; € H contains only the operation
start;.

Lemma 99 (Consecutive Versions). If z € ASet; N ASet; and inv;[start;] —<<m|start
inv; [start;] then pv,(z) — 1 = pv,(z).

Proof. If T; returns at line 3 for = then no 7} s.t. v € ASet; returns at line 3 until 7;
executes line 7 for z. Hence, T; alone increments gv(z) at line 5 and sets pv,;(z) to the
new value of gv(z). If start; <p|stare start; then T; will return at line 3 and T} will
return next. No other transaction will return at line 3 between T; and Tj. O

Lemma 100 (Unique Versions). If z € ASet; N ASet; then pv,(z) # pv;(z).
Proof. From Lemma 99. O

Lemma 101 (Monotonic Versions). If z € ASet; N ASet; and inv; [starti] =< H|start
inv; [start;] then pv,(z) < pv; ().

Proof. From Lemma 99, Lemma 100. O
Definition 57 (Version Order). Let <, be an order s.t. T; <, Tj iff pv,(z) < pv,(z).
Lemma 102 (Forced Abort Condition). rv;(z) < cv(z) — res; [4;].

Proof. Condition at line 14 dominates abort at line 15. Condition at line 27 dominates
abort at line 28. O

Let there be any P,II, H = £(P,II), op, € H|T;, op; = ri(x) — v or w;(x)v— ok;.
Lemma 103. cv(z) < rv;(z) «— op;.
Proof. Condition at line 14 dominates abort at line 15. O
Lemma 104 (Current Version Early Release). If op; = 6p? then cv(z) = rv;(z) — op,.

Proof. By analogy to Lemma 94. O
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Lemma 105 (Current Version Release). If flop, € H|T; s.t. op; = 6p* and x € ASet;
then cv(z) = rvi(z) — r;.

Proof. By analogy to Lemma 95. O
Lemma 106. cv(z) = rv;(z) — res;[4;].
Proof. From Lemma 95 and Lemma 105. O

Let there be any P,IL H = E(P,I), T; € H, T; € H, op; € H|T;, op; € H|Tj,
op; = 1i(z) = v or w;(z)v— ok, op; = rj(z) = v or wj(z)v— ok;.

Lemma 107 (Access Order). pv,(z) < pv;(z) € op; <m op;.
Proof. From Lemma 91 and Lemma 101. O

Let there be any H, T; € H, T; € H, op; € H|T;, op; = ri(x) — u, op; € H|Tj,
op; = wj(r)v— ok;. Let there be any P, 1L, H |= £(P, II).

Lemma 108 (Access Prefix). If 1v(z) = pv,(z) then VI, € H s.t. pv (k) < pv,(z)
either res,, [Ck] € H|Ty, res, [Ak.} € H|Ty, or dp} € H|Tk.

Proof.
VT, T, € H s.t. pv,(I) =pv, (k) —1: (A.1)
Lemma 91 = 1v(z) = pv, (k) — 1 — op, (A.2)
(A1) A (A2) = 1v(z) = pv,(I) — op; (A.3)
Lemma 94 = 1v(z) = pv,(I) — dpf (A.4)
Lemma 95 = 1v(z) = pv,(l) — r where r = res;[4;] or r = res; [ C;] (A.5)
(A.4) A (A.5) = T; is committed, aborted or decided on z (A.6)

Trivially extends for any Tj, T, s.t. pv,(I) < pv,(k). O

Lemma 109. If 1tv(z) = pv,(z) then VI}, € H s.t. pv,(k) < pv,(z) either res, [Ci] €
H|Ty, or res,[Ax] € H|Ty.

Proof.
V1, T, € H st.pv,(I) =pv,(k)—1: (A7)
Lemma 93 = 1tv(z) = pv, (k) — 1 — res;, [C;] (A.8)
(A7) A (A8) = 1tv(z) = pv, (1) «— opy (A.9)
Lemma 96 = 1tv(z) = pv,(I) — r where r = res;[A;] or r = res;[C;] (A.10)
(A.10) = T; is committed or aborted (A.11)
Trivially extends for any T, T} s.t. pv (1) < pv, (k). O

Let there be any H, T; € H, T; € H, op; € H|T}, op; = ri(z) — u, op; € H|Tj,
op; = wj(z)v— ok;.

Lemma 110 (Forced Abort). If z € ASet; N ASet; and res; [4,] € H|T; and op; <u

res; [Aj] then res; [Ai] € H|T;.
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Proof.

res;[A;] € H|T; A Lemma 106 = cv(z) = pvjz ~— res;[A;] ( )
Lemma 101 = pv,(z) < pv,(z) ( )
(A12) A (A13) = cv(z) < puiz ~— res; [4;] ( )
Lemma 103 = cv(z) = rvi(z) ~ op; = rv;(z) = pv,(7) (A.15)
(A.15) A (A.13) = rvi(z) > pv,(4) ( )
(A.16) A (A14) = Tvi(z) < cv(z) ( )
(A.18)

(A.17) = rv;(z) < cv(z) — res;[A;] = res;[A;] € H|T,

Let there be any P,II, H = £(P,I), T; € H, T; € H, op; € H|T;, op; € H|Tj,
op; = ri(x) — v or wi(x)v— ok;, op; = rj(x)—v or w;(z)v— ok;.

Definition 58 (Completion Construction). Ho = Compl(H) s.t. VT}, € H, res; [Cy| &
H|Tk < Tesy, [Ak] S Hc‘Tk

Definition 59 (Sequential History Construction). Sy is a sequential history s.t. Sy =
He and T <p. Ty = Ti <5, Tj and T; <, T; = T; <4, Tj.
Let there be any H, T; € H, T; € H, op; € H[T}, op; = ri(z) — u, op; € H|Tj,

op; = wj(x)v— ok;.

Lemma 111. IfT; reads x from T then T is committed in H or T} is decided on x in
H.

Proof.

T; reads z from T; = op; = ri(x) > v A op; = wj(x)v—0k; A op; <m op;  (A.19)
Lemma 91 = 1v(z) = pv_(z)1 « op, (A.20)
Lemma 107 A op; <pu op; = pv;(z) < pv,(z) (A.21)
(A.21) A Lemma 108 = Tj is committed, aborted, or decided on x (A.22)

Let us assume that T} is aborted:
op; < res;[A;] : Lemma 99 = v # v = contradiction (A.23)
res;[Aj] <m op; : Lemma 94 = 1v(z) = pv_ (z)op; A op; = 6p} (A.24)
Thus, T; is committed or decided on zx. O]

Corollary 23. If P is any prefix of H, then if T; reads x from T; in P then T} is
committed in P or T} is decided on x in P.

Lemma 112. If T; reads x from 1T and T} is committed in H then T} is committed in
H.
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Proof.

T; reads x from T; = op; = ri(z) = v A op; = w;(x)v— ok; A op; <H op; (A.25)

Lemma 93 = 1tv(z) = pv, (k) — 1 — res; [ok;] (A.26)

Lemma 107 A op; <u op; = pv,(z) < pv,(z) (A.27)
Lemma 109 A (A.26) A (A.27) = r € H|T; where r = res; [A;] or r = res; [ C}]

(A.28)

Lemma 110 = if res; [A;] € H|T} then res;[A;] € H|T; = contradiction  (A.29)

(A.29) = res;[A;] € H|T; (A.30)

O

Let there be any P, IL H |= (P, 1), T; € H, op; = r;(z) = v, op; € H|T;.
Lemma 113. If res;[C;] € Sy|T; then Jop; = w;(z)v— ok; € Vis(Sw, Ty).

Proof. 1f i = j then trivially op; € Vis(Sg, T;). Otherwise:

i # j A Lemma 97 = 3T; A op; € Hcl|T; (A.31)
(A.31) A Lemma 112 A res; [ C;] € He|T; = dres; [C;] € He|T; (A.32)
Def. 59 A (A.32) = res; [C5] € SulTj AT; =g, T (A.33)
(A.33) = SulT; C Vis(Su,T;) = op; € Vis(Su,T;) (A.34)
O
Lemma 114. Jop; = w;(z)v— ok; € LVis(Sy,T;).

Proof. 1f i = j then trivially op; € LViS(SH,Ti). Otherwise:
i # j A Lemma 97 == 3T; A op; € HolT) (A.35)
(A.35) A Lemma 111 A res; [ C;] € He|T; => either dres; [C;] € He|T; or 3opj € He|T;
(A.36)
Def. 59 A (A.36) = res; [C}] € Su|Tj ATy =g, T; (A.37)
(A.37) = Sy|T; C LVis(Su, T;) = op; € LVis(Su, Ty) (A.38)
(A.36) = op] € SulT; AT; =g, T (A.39)
(A.39) A Sy|T; C LVis(Su, T;) = op; € LVis(Sy, T;) (A.40)

Lemma 115. Given S’H and any two transactions T;,T; € S'H s.t. there is an operation
execution w;(x)v — ok; € Su|T; and ri(z) — v € Sy|T; then there is no operation
wi(x)u — oky, (executed by some Ty € S’H) n Vis(ﬁH,Ti) s.t. wp(x)u — oky precedes
ri(x) = in Vis(Sy,T;) and follows w;(x)v— ok; in Vis(Sy,T;).

Proof. For the sake of contradiction, assume that op,, exists as specified.

If k =i, then op, <g |7, 0p;, which contradicts Lemma 97 (assuming unique writes).

If £ = j, then from Lemma 111 T} is either committed or decided on z in Sg. If T;
commits, then op, reading v contradicts Lemma 97. If T; does not commit in P, then
this contradicts Lemma 112.

Otherwise, 3T}, € H s.t. op,, € H|T} from Lemma 111 Tj is either committed or
decided on z in S g and from Lemma 112 T}, is committed in H. Since T} commits, this
contradicts Lemma 97. O
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Lemma 116. Given Sy and any two transaction T;,T; € Sy s.t. there is an operation

execution w;(z)v — ok; € Sy|T; and n( ) > v € S’H|T then there is no operation

wi(x)u — oky, (executed by some T}, € SH) n Lst(SH7 Z) s.t. wg(z)u — oky precedes
ri(x) = in Vis(Sy,T;) and follows w;(x)v— ok, in Vis(Sg,T;).

Proof. By analogy to Lemma 115. O

Proof for Lemma 38. Given Su,let T; € Sy be any transaction that is committed in Sy
In that case, from Lemma 113 and Lemma 115, every read operation execution r;(z) — v
in Vis(Sy, T;) is preceded in Vis(Sgr, Ti) by a write operation execution wj(z)v— ok; (for
some T} ) In addition, from Assumption 5, every write operation execution wl( Yv— ok;
in Vis(Sw,T;) trivially writes v € D. Therefore, for every variable z, Vis(Sy, Ti)|z €
Seq(z), so Vis(S, i) is legal. Consequently T; in Sy is legal in Sp.

Given the same S ", let T; € Sy be any transaction that is not committed in Sy (so
it is aborted in S 1). From Lemma 114 and Lemma 116, every read operation execution
ri(z) = v in LVis(Sy,T;) is preceded in LVis(Sg,T;) by a write operation execution
wj(z)v — ok; (for some Tj). In addition, from Assumption 5, every write operation
execution wl( Yo — ok; in LVis(Sy,T}) tr1v1ally writes v € D. Therefore, for every
variable z, LVis(Sy,T;)|z € Seq(x), so LVis(Sy,T;) is legal. Thus, T; in Sp is last-use
legal in Sy.

Since all committed transactions in S 1 are legal in S 'm and since all aborted transac-
tions in S i are last-use legal in S 1, then, by Def. 23 H is final-state last use opaque. [J

Last-use Opacity from Trace Harmony

Composition Rules

Given trace .7 and a history H = Hist(.7), let C' = Compl(H) be a completion of H s.t.
for every T; € H, if T; is live or commit-pending in H, then T; is aborted in Ho. Let T;
such a transaction in C' that corresponds to a completion of T; in C.

Definition 60 (Equivalent Sequential History Construction). Let Sy be a sequential
history s.t. Sy = He and, given two transactions T;,T; € C:
1. if Ty <9 Ty, then T; <3, Ij
2. otherwise, if T;<zT; for any variable x, then T; <5, Ljs
3. otherwise, if Jop; = w;(x)0 — ok; € F|T; and Ie' = g;(z)0 € T|T; or e =
osi(z)0 € T|Ti, then T; =g, Tj.
Definition 61 (Last-use Visible History Construction). Given transactions T; and T
1. if T; is committed in T, then Tj s included in LVis(SH,Ti) as a whole, otherwise

2. if T} is aborted in & and T; <o Tj, Tj is not included in LVZ’S(S’H,TZ-) at all,
otherwise

3. if there exists £(T,T;,T;), then S’HTTJ is included in LVis(Sy,T;), otherwise
4. Ty is not included in LVis(Sg,T;) at all.
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Auxiliary Lemmas

Lemma 117. Let there be a consonant, isolation-ordered, trace 7 in obbligato and
H = Hist(J) from which Sy is generated, and T;,T; € . Given any non-local op; =
ri(z) > v € T|T; s.t. Je; = gi(x)v € T|T; and op; < e; and given any non-local
op; = wj(z)v— ok; € T|T; s.t. Jej =€ osi(z)v € T|Tj and op; ~ e;, and e; <g e,
then 3Ty, € T s.t. Ty op,, = w;(x)v' — ok; s.t. op; =g, OPr =g, op; and Ty is either
committed or decided on x in trace .

Proof. Assume for the sake of contradiction that such T}, exists in 7. Since both op, and
op; are non-local, then i # j # k.

If T} is committed, then, from the definition of commit write obbligato, Jep =
osg(z)v' € T|Ty if inv, [wy(z)0'] is the invocation event of op, then inv, [wy(z)v'] <&
er < res, [Ck].

If Ty, is decided on z in 7, then, from the definition of closing write obbligato, Jej =
osg(z)v' € T|Ty s.t. if invy, [wg(2)v'] is the invocation event of opy, then inv, [wy(2)v'] <2
e =g €;.

Thus, in either of the above cases, e; <7 e and either e, < e; or e; < e. If then
er < €, it is not true that e; <& e;, which is a contradiction. Alternatively, if e; < e,
then, since 7 is isolation-ordered, T; =<5 T}, which implies that T; < Sn Ty. In this case,

op; <g, 0Py, which is a contradiction.
Therefore, there can be no such Tj, which satisfies the lemma. O

Lemma 118. Given a consonant trace 7, and T; € 7, if T} is the first element of
Va7 (T, ), then Je, = g;(z)v € T|T; that is initial and non-local, and either

a) v=0 and PTy € T s.t. e, = sp(2)v € T[T} and e, <7 e,

b) v#0 and 3T € T s.t. ey, = sp(x)v € T|T, and ey, <7 €.

Proof. Since Tj is in 9 o (T}, z) then by definition, either k =i or e, = Xs;(z)v € T|T;.

In either case e, = g;(z)v € T[T s.t. e, is initial and non-local (in the former case by

definition of ¥z (T;, z) and in the latter by definition of recovery update consonance).
Since e, is consonant and non-local, then either:

a) v=0and ITy € T s.t. eysp(z)v' € T|T) ey <7 €,

b) v# 0 and 3T} € T s.t. e, = osj(z)v € T[Ty, i # k, ey, <z e, €, is consonant,
and e, is the ultimate routine update on z in J|T}, or

¢) e, € T s.t. e, = 1s;(x)v for some try, j # k, ey, <z e, €, is a consonant recovery

event, and is the ultimate update on z in J|T}.

In the latter-most case, if such e, exists in T} then, T, € ¥z (Tj,z) so that Ty
preceded T; in ¥z (T}, z). Thus, T} would precede T} in ¢z (T;, z), and therefore Tj is
not the first element of ¥z (T3, ). Thus, the latter-most case is impossible. O

Lemma 119. Given a consonant trace J, and T; € T, VT; € Yo (T;,x) (i # j), Tj is
aborted or live in T .

Proof. Since i # j then VT; € 7, Je, = xsj(z)v.7|T;. Since 7 is consonant, then e, is
consonant, so e, is dooming. Thus T} is aborted or live in 7. O

Lemma 120. Given a consonant, abort abiding trace 7 in obbligato, and a pair of trans-
action T;,Tj, € T, and T} is the first element in Yz (T;, ), VT, € T if T;<5Tp<5T;
and op,wi(z)v— ok, € T|T}, then Ty, is aborted or live in T .
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Proof. If i = j, then the lemma is vacuously true.

Since Tj<5Ty<5T;, then Je, = osy(z)v' € T T, or e, = gp(z)v' € T|T). Hence,
either e, exists in .7|T} or it does not.

If e,, does not exist, then, from commit write obbligato, T} cannot commit in trace,
so T}, is either live or aborted in 7.

If e, exists, then, since T;<5Tp<%T; and from the definition of ¢z (T}, z), there is
some pair of transactions T, and Tp € 7 s.t. Ty, Ts € ¢ (15, z) and T, immediately
precedes T in ¢ (T;,z) and T,<%T,<5Ts. Therefore Je, = Hso(z)ve € T|T, and
eg = gg(x)vg € T3 s.t. eq <z eg. In addition, since e, is consonant, then it is
needed, so Jel, = 08, (2)v), € T |Ty s.t. €, <z eq. Also, from definition of isolation order,
e, <7 ey, <7 eg. Then, e/, <7 e, <o <zeg. Therefore, from the definition of abort
accord, Ty, is either live or aborted in 7. O

Lemma 121. Given a consonant trace 7, and T, € T, VT, T, € vz (Ti,x) (1 # j), if
T; precedes Ty, in 7 (T;, z) then T; <5 Ty.

Proof. Given ¢z (T;, z), from Lemma 119, VT, € ¥ (T}, z), T is aborted or live in 7.
In addition, since for all T;,, € 5 (T;, x) except the first, where €' = g, (z)v € T|T,
there is some T;, that directly precedes T, in 7 (T;, ) and contains el = xs,(z)v s.t.
el <g el'. Since el is conservative, there is a preceding view €}l = g, (z)v s.t. e} <z ell.
Thus e <z ™, 50 T, <G T. O

Corollary 24. Given a consonant trace 7, and T; € T, VT; € Yo (T;,x) (i # j),
T; <% T;.

> A N N
Lemma 122. Given T;,T; s.t. T; C LVis(3y,Ty), YTy, if Te C LVis(S,T}), then
N < A N N
Ty, € LVis(S, Ty) and LVis(Sy, T;)|Tw = LVis(Sy, T;)| T

Proof. If Ty, is committed in .7 and T é LVis(Sy, Tj,) then Sg|Ti, € LVis(Sw,T;,) and
T <5y Tj. Since T é LVis(ﬁH,ﬂ,) , then Tj <5y T;. Since T, is committed in .7 and
Tj <§H Tl’, then SH‘T]C - LVZS(SH,TZ)

If T}, is not committed in .7 and T é LVis(Sy,Tj,) then S’HTTk = LVis(Sy, Tj, |) Tk
and Ty =g, T and T}, A5 T and 3¢(F, Tk, T;) (from Def. 61).

Since T}, is not committed in .7, and since .7 is commit abiding, then from Lemma 124,
there cannot be {(.7, Ty, T}) s.t. T} is committed. Thus Tj is not committed in 7. Thus,
if $|T; then Ty <g, T} and Tj A T, and 3¢(7,T;,T,).

If (7, T, T;) and (T, T}, T;) then 3T T, T;.

Either T}, aborts in .7 (i.e. res, [A;c]) or Ty is live in 7. In the latter case trivially
Ty £ T;. In the former case, from Lemma 125, also Ty, 4o T;. .

Since 3¢(7, Tr,,, Tr,) and Ty, <g, Ti and Tj, £z T then Sy|Ty = LVis(Sy, T, |) Tk
(from Def. 61). O

<&

Lemma 123. Given T;,T; s.t. Tj é LVis(Sy,T;), YTy if Ty ¢ LVis(§H7Tj) and
(T, Tr,, Tr,) then Ty C LVis(Sy, ).

<>
Proof. It Ty, ¢ LVis(gH, T;) and Ty <5y Tj then T} is not committed in 7.
1t Sy|Ty ¢ LVis(Sy,T;) and T}, < s, Tj then either Ty < T; or 3¢(7,T;,Tj). The
latter case contradicts the assumptions of the lemma, hence T}, <o Tj.
If T, <7 Tj, then Ir = res, [Ak] € J|Ty s.t. for every event e in J|T;, r <7 e.
Since 3¢(7,T;,T;) then there is some view event e}, in .7 |T; and some update event e,
in 7|Tj s.t. e), < €!. Therefore r <z e, < €.
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Since no events can occur in 7 |T}, after v, then for all events in e in J|T} apart
from r, e < r. So, for any &(.7, Ty, T;) for any update event e = osy(z)v € T|Tk,
eﬁ <gr<g ef).

From abort coda, Jel, = ms;(z)v" s.t. ek <5 €, <7 7, and, from conservatism and
unique routine updates, v # v'. Thus, since ek <5 €, <7 e and v # v/, there cannot
be such &(.7, Ty, T;) that satisfies chain isolation, and therefore 3¢(.7, T, T;).

Therefore, from Lemma 61, SHTTk ¢ LVis(Sy, T;).

A A <> A
Thus, Sy |T; € LVis(Su,T;). O

Lemma 124. Given {(7,T;,T}), if T; is committed in T, then VI, € £&(T,T;,T}), Tk
is committed in T .

Proof. Given a pair of transaction 1}, T, € 7 s.t. T,,<~T}, from commit accord, if T}, is
committed in .7, then 1; is also committed in 7.

It £(7,T;,T;) =T, - Tj, then n since T is committed in 7, then so is T;.

Since, (7,15, T;) = T;§(7,T;,Ty) - T; and T}, is such that T;< Ty, then since T is
committed in 7, then so is Tj. This follows recursively for £(7, T;, Tk).

Thus every transaction in (7, T, T;) is committed in 7. O

Lemma 125. Given {(7,T;,T;), if T; aborts in T, then T; A7 Tj.

Proof. Assume for the sake of contradiction that T; <o 1.

Thus, there exists Tj, € £(7,T;,T;) s.t. Tp<~T;, so Jei, = os;(z)v € T|T; and e*
gr(z)v € T|Ty and €}, <7 ek.

If T; is aborted, then, from abort coda, Jel = os;(z)v' s.t. €}, <7 €., <7 res; [Az]
and from unique routine updates v # v'.

Since T} is in £(7, T;,Tj), 3ed = g;(y)v” and since T; <7 Tj, then res;[4;] <7 €],
Thus, €}, <7 €', <7 €.

This contradicts chain isolation, so it is not true that T; <o T}, so T; Ao T}. O

Main Lemmas

Let there be a harmonious trace 7 and H = Hist(J) from which Sy is generated. Let
there be such T; € 7 that T; is committed in 7. Then:

Lemma 126 (Unique Routine Updates). If J is consonant, and J has unique writes,
then given any s;(z)v and s;(z)v s.t. v # v'.

Proof. Since both events are consonant, then for s;(z)v there exists op; = w;(z)v’ — ok;
s.t. v = v', and for s;(z)v’ there exists op; = w;(z)v/ — ok; s.t. v/ = 7. Since F has
unique writes, then v’ # v7, so v # v'. O

Lemma 127 (Non-local Read Consistency). For any op; € T|T; s.t. op;, = ri(op;) = v
and op; is non-local, then either:
1. v#0 and Jop; € Vis(Sg, T;) for some Tj s.t. op; = wj(z)v—0kj, 0p; <y 5, 7
op;, or
2. v=0 and ﬂopj € Vis(S’H,Ti) s.t. op; = wj(z)v— ok; and op; = Vis($y 1) OPi-

Proof for Lemma 127. Since op; is consonant and non-local, then Je, = g;(z)v € 7, s.t.
op; «~ e, and e, is consonant. Then, from e,’s consonance, either:
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a) v=0and fe, = s;(2)v' € T for some T} € T s.t. e, <7 €.
In which case, if Bop;w;(z)v' — ok; € T|Tj s.t. op; <7 gi(z)v, then, AT € T s.t.
T;<7T; and op; € J|T;. Thus, from construction of SH, ET € 7 s.t. T =<5, T
and op; € Sy|T;. Thus, from construction of Vis(Sy,T}), for any such T}, Sg|Tj ¢
Vis(Sg, i), so for any such Tj, w;j(z)v— ok; & Vis(Se,Ti) and v = 0.
On the other hand, if Jop;w;(z)v' — ok; € T|T; s.t. op; <z gi(z)v, then if T; is
committed in .7, then, from the definition of commit write obbligato, os;(z)v" €

T |T;, which contradicts the abbumptlon of case a)) Thus, T; is not committed in
T, so T} is not committed in SH7 and therefore SH|T ¢ Vis( SH, ) Thus for any
such Ty, w;(z)v' — ok; ¢ Vis(Sg,Ti) and v = 0.

b) v# 0 and Je, = os;(z)v € J for some T; € I s.t. e, <z e, and e, is consonant.
Since e,, is consonant, then Jop; = w;(z)v— ok; € F|T; s.t. op; is non-local and
consonant, and op; <osj(z)v. Thus, since e, < 7 €,, Tj<%T;, then, by construction,
T =< SHT
Since T; is committed in 7 and T;<~T;, and since .7 is commit-abiding, then
T; must be committed in 7. Thus T} is also committed in Sg. Thus, Su|T; C
VZS(SH, 3 ), and therefore 0P = vis($y.1s) OPir Then, from Lemma 117, 0D < yig($ )

;- Thus, w;(z)v— ok; <45, 7, op; and v # 0.

¢) deq = 1sj(z)v e T for some T; € T s.t. e, <z e, and e, is consonant.
Given ¥z (T;, z), from Lemma 119, VT} € ¢ (T;, z), Ty is aborted or live in 7.
So, by construction, T} is aborted in Sy, and therefore excluded from Vis(g 1, T;).
Thus for any Ty € o (T}, ), Yop,, = wi(z)v— €T |Tk, opy & Vis(Su,T;).
Given ¢ o (T3, ), from Lemma 118, Je!, = gr(z)v € T |Tk s.t. T}, is the first element
of ¥ (T;, z) that is initial and non-local, and either of the following is true:

i) v=0and AT} € T s.t. e/, = s;(zx)v € F|T; and €/, <7 €.

Then, either 3¢/, € s;(z)v € F|T; and €/, <7 ¢!, or fe!, = s;(z)v € T|T}.

If 3e, € s)(z)v' € T|T; and e, <7 e, then from Lemma 118, e/, = os;(z)v
Thus, be definition of isolation order, Ty <%1T;. Thus, if 7;<% 1T}, then, from
Lemma 120, T; is aborted or live in .7, so, by construction, Ty is aborted in
Sy. Therefore Tj ¢ Vis(S‘H,E), so for any write operation execution op; =
wy(z)v' — ok; in any such T}, op, & Vis(Sg,T;) (and v = 0). Alternatively, if
T;<%T,, then since e, <z e,, then it is not possible that e, <z €, < e,.
By corollary, from the definition of isolation order, it is not possible that
T; <9Tl<9T Then, by construction, T <&, Tl, SO Tl ;(_ Vis( SH, 7). There-
fore, for any write operation execution op, = w;(z)v — ok; in any such Ty,
op, & Vis(Sw,Ty) (and v = 0).

On the other hand, if fe!, € s;(z)v € F|Tj, then either 7|T; contains some
write operation op; = w(z)v" — ok; or it does not. If it does not, then

vacuously, for any write operation execution op;, = w(z)v" — ok; in any
such Ty, op; & Vis(Sg,T;) (and v = 0). On the other hand, if op, € Z|T},
then from commit write obbligato, since fle!, = os;(z)v € 7|1}, then T;
is not committed in 7. Thus, 7} is aborted in Sy and 7T} ¢ Vis(S’H,E).
Thus, for any write operation execution op; = wy(z)v" — ok; in any such Tj,
op; & Vis(Sy,T;) (and v = 0).
it) v#0and 3T) € T s.t. e, = osi(z)v € T|T; and e, <z €.

Since 7 is consonant, then e/, is consonant, so Jop; = w;(z)v— ok; s.t op; ~
el,.

Since for all T, € Yo (T3,z), € = gm(x)v” there is some T,, that directly
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precedes T, in ¢z (T;,z) and contains €], = Xs,(z)v” s.t. €] <z el. Since e/

is conservative, there is a preceding view el = g,(z)v” s.t. e/ <z ell. Thus

v
e < gell soT,<5Ty,. Therefore, Ty <% T;, and, by extension, since e/, < €/,
T,<% Ty, then T;<5T;. Since T is committed in .7, then since T;<% T}, then,
from commit coherence, T; is either committed or aborted in 7}.
Transaction Tji cannot be aborted in 7, as follows. Let us assume by con-
tradiction that T; is aborted (i.e. 3r, = res; [Al] € J|T;). Then, since J has
coda, then for some T, e/ = s, (z)v" s.t. e, <o e/ <z r. Since €, is
consonant, then since it is clean and T;<% T}, then there is no recovery event
following e, and preceding e/,. In addition from commit coherence, 7; must
abort before T; commits, so, by extension e/ must precede resi[Ci} in 7.

a
Thus either e/ <z €} or e/, <z e/ <z r,. In the former case, if e/ < e,

then this contradicts that €]’ is consonant (ending), and if e}, <z e/ < €.,
it contradicts that e/, <z e]. On the other hand, if ¢/, <5 e/ <7 r,, then
one of three scenarios is possible. If for some T,, € ¥ 5 (T;, z), s.t. i # m and
gm(2)0 <7 €l <z "spy(z)d, then this contradicts that s, ()0 is clean.
Alternatively, if for a pair T),, T, € ¥z (T}, ), s.t. T,,, directly precedes T,
in Yo (T;, x), and X, (2)0 <7 € <7 gn(z)0, then this contradicts that
s, (2)0 <z gn(z)0. Finally, if e, < el
7 (case b), and is also a contradiction. Thus, there cannot be such e

therefore T; cannot be aborted in 7.

, then this violates abort coda of
n and

a

~

Hence, T; must be committed in 7. Then since T;<%7T; (so T <5y T;),
op, € Vis(Sy, T).

Since e/, is non-local, then it is not followed in .7|T; by another e/l = os;(z)wv.
Since op, ~ €!,, fop, = wi(x)v' — ok; s.t. op, <7|1; °D;-

Let T,,, be a transaction in 7 s.t. T}<5T,<5T;. If T,, € ¥ (T}, z), then
from Lemma 119, T}, is not committed in 7. If T,,, € ¥ (T}, z), then from
Lemma 120, T}, is also not committed in 7. In either case, Tm is aborted
in Sg. Thus, for any T, s.t. T,<5Tm<5T;, §H|Tm ¢ VZS(SH,Z) Therefore,
for any write operation execution op,, = wp(z)v" — 0ky, € T\ T, op,, &
Vis(Sw, T;).

Let T,,, €  be any transaction s.t. T;<5T,,,<5T;. Since e, consonant, it
is is needed, so e, = s;(z)v" € T|T; s.t. e, <5 e,. In addition, since
T;<5Tyn<5T;, then by definition of isolation order, Je = s,,,(z)v" € T |T,y,,
or e = gy (x)v" € T Ty, so € <7 e <z e,. Since e, <z e,, then el <
e <7 e,. Thus, by definition of abort accord, T, is not committed in 7, so,
by construction, T, is aborted in Sg. Thus, for any T,, s.t. Tj<%Tn<%T;,
Su|Tm ¢ Vis(Sy,i). Therefore, for any write operation execution op,, =
Wi (2)0" = 0ky € T | Ty, 0p,, & Vis(Sw, Th).

Since no other write operation execution follows op;, in Z|T,,, and since
there is no transaction T,, € 7 s.t. 1) <5y Ton <5y T (and therefore
T, = Vis(8u. 1) Ton = Vis(8u, ) TZ) s.t. Jop,,, = Wy ()" — ok, € T|T,, and
op,, € Vis(Sw,T;), then wy(z)v— ok <Vis(Sn, 1y OPi and v # 0.

O

Corollary 25 (Total Non-local Read Consistency). By extension of the above, since, by
definition, if for some sequential history S, Sgltr; € Vis(S,T;), then Vis(Su,T}) is a
prefiz of Vis(S,T;), then for any op; € T |1} s.t. op; = ri(op;) —v either:

1. v#0 and Jop,, € Vis(gH,Tk) for some Ty, s.t. op, = wi(z)v— ok, 0Pk <vis($y 1)
op;, or
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2. v =0 and Pop,, € Vis(Sy,T;) s.t. op), = wi(x)v— ok, and op, = Vis(8.1) OPj-
Lemma 128 (Local Read Consistency). For any op;, € Z|T; s.t. op; = r;(op;) = v and

op; is local, then Jop,, € Vis(Sy, T;) s.t. op, = w;(x)v— ok;, op) is(8y .y OPi-

Proof. From local read consonance it follows that For any op, € J|T; s.t. opi is local,
then Jop; € 7|T; and op; < 7|1, op;. Thus, op] <Gy |F; OPi- Since T; C Vis(Sy,T;) then
0Dy <vig(gy.1y) OPi- O
Corollary 26 (Total Local Read Consistency). For any op; € TIT; s.t. op; = ri(op;) —
v and op; is local, then for any T;, Jop; € Vis(Sg,T;) s.t. op; = wi(z)v — ok,
op; <vis($.,1;) OPi-

Let there instead be such T; € 7 that T; is either committed or not committed 7.
Then:

Lemma 129 (Non-local Read Last-use Consistency). For any op; € J|T; s.t. op; =
r;(op;) — v and op; is non-local, then either
i) v#0and3op; € LVis(Sg, T;) for some Ty s.t. op; = w;(2)v—0kj, 0P < vic s, T
op;, or

i

it) v=20 and iﬂopj € LVis(Sy,T;) s.t. op; = wj(x)v— ok; and op; <py.5,, 7,y OP

Proof. Since op, is consonant and non-local, then e, = g;(z)v € 7, s.t. op; «~ e,. Then,
since .7 is consonant, then e, is also consonant, so one of the following is true:

a) v=0and fe, = sj(z)0 € T for some Tj € T s.t. ey <7 €.
In which case, if ﬂopj = w;j(z)d— ok; € TITj s.t. op; <z gi(z)v, then, ﬂTj e
s.t. Tj< 2 T; and op; € J|T;. Thus, from construction of Sh, ﬂTJ € 7 s.t. Tj <4y
T; and op; € Sp|T;. Thus, from construction of LVis(Sy,T;), for any such T,
Su|T; & LVis(Sw,Ti), so for any such Tj, w;(z)v— ok; ¢ LVis(Sy,T;) and v = 0.
On the other hand, if Jop;w;(z)00 — ok; € T s.t. op; <7 gi(z)v, then if
T; is committed in 7, then, from the definition of commit write obbligato, 3 o
sj(¢)0 € J|Tj, which contradicts the assumption of case a)). If, however, T} is not
committed in 7, then either T} is decided on « in .7, or it is not. In the former of

those two cases, from the definition of closing write obbligato, 3 o s;(z)0 € J|T},
which also contradicts the assumption of case a)). In the latter case, since Tj is
neither committed in 7 nor decided on z in 7, then neither is it committed in
Sy nor decided on z in Sp. Therefore, by definition of LVis(S’H,TZ—), S'H\ij: ¢
LVis(Sg, T;). Thus for any such T}, w;(x)0— ok; ¢ LVis(Sg,T;) and v = 0.

b) v# 0 and Je, = osj(z)v € F for some T; € T s.t. e, <7 e,.

Since e,, is consonant, then Jop; = w;(z)v— ok; € T |T; s.t. op; is non-local and
consonant, and op; <os;(z)v. Thus, since e, < g e,, T;<5T;, then, by construction,
Ty <5, T

If T; is not committed in 7, since T;<~T}, and since .7 is decisive, then Tj is
decided on z in 7. Thus, from Def. 61, Sg|Tj|lz C LVis(Sy,T;), and therefore
0Pj = pLvis($u.1) OPi- Alternatively, if T; is committed in .7, then, from commit
accord, Tj is also committed in .7. Then, by definition of LVis(Sw,Ti), Su|Tj C
LVZ’S(S’H, T;), and thus op; = LVis(8u.,T3) OPi- Then, from Lemma 117, 0P < Lyis(81.13)
op;. Thus, w;(z)v— 0k;j <py; 5, 7, op; and v # 0.

¢) el = usj(z)v € T|T; st. el <z e,.
Since .7 is consonant, then e is consonant, so e/ is conservative, and thus JeJ =
gj(z)v € T|T}.
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From Corollary 24 VT, € ¢ 5 (T;, z) (n # i) T,,<%5T;. So, by construction, for every
such T, Tn is aborted in S’H and therefore not included as a whole in LVis(S’H, T;).
In addition, since e? is needed there is a preceding routine update €' = os, (z)v'.
Because of unique writes, v' # v. Therefore, it is not true that T;<~T),. Furthermore,
since e <7 e and e <7 el and e} <7 e,, then, e <7 €? <7 e,, 50, from chain
isolation, 3¢(.7, Ty, Tr,). Thus, from Def. 61 SHTTW is not included in LVis(gH, T;).
Thus for any T}, € 7 (T;, z) (n # i), Yop,, = wy(z)v— €T | Ty, op,, & LVis(Sw,T;).
Given ¢ & (T}, z), from Lemma 118, 3e¥ = g (z)v € T|Ty s.t. T}, is the first element
of ¥z (T;, ) that is initial and non-local, and either of the following is true:

i) v=0and AT} € T s.t. e}, = s;(x)T € F|T; and €}, <7 ek.
Then, either Elel =s(z)v € §|Tl and e’C <7 el or ﬂel =s(z )D e J\T,.
If Jel, = s;(x)0 € F|Tj and eF <7 el , then from Lemma 118, €}, = os;(2)0 €
T |T;. Thus, by definition of isolation order7 Tp=<5T.
Thus, if Tl%”}Tl, then, from Lemma 120, Tl is aborted or live in 7, so, by
construction, Tl is aborted in Sp. Since Tl is not committed in SH, then
Tl|S H is not included as a whole in Lst(S 1, T;). Furthermore, S H|Tl can
be omitted from Lst(S 1, T;). From unique routine updates, there cannot be
T, € £&(7,1,,T;) s.t. 3o s,(2)0, so smce v = 0 and from self-containment,
3¢(7,Ty,T;). Thus, from Def. 61, SH|Tk ¢ LVis( SH, 3). Then, for any write
operation execution op; = wy(z)v' — ok; in any such Ty, op, & LVis(Sg,T;) (and v = 0).

Alternatively, if T;<%7j, then since e, <z e,, then e, <z €., so T;<%Tj,
and thus T; <g 7T, which means that S’HTTk ¢ LVis(S‘H,E). In either
case for any write operation execution op;, = w(z)v' — ok; in any such Ty,
op, & Vis(Sw,Ty) (and v = 0).

On the other hand, if fe!, = s;(z)0 € Z|T;, either T;< 7T}, or TnéyTz In
the latter case, if T;< T, then, trivially, no subset of S H|Tl is contained
in LVis(S’H7Tl) If Tﬁng, then there does not exist £(7,1;,T;), so, from
Def. 61, no subset of SH|Tl is contained in LVZS(SH, T)). If T}< 7 T;, then either
J|T, contains some write operation op; = w;(z)v' — ok; or it does not. How-
ever, from view write obbligato, since T;< T}, there must be s;(z)0 € J|T;,
so, there is no such op;. Then vacuously, for any write operation execution
op; = wy(z)d— ok; in any such T}, op; & LVis(Sg,T;) (and v = 0).

i) v#0and 3T} € 7 s.t. e, = osi(z)v € F|T; and €], <7 €.

Since .7 is consonant, then e, is consonant, so Jop, = w;(z)v— ok; s.t op; ~
!

-
Let us first assume that 7} is committed in 7. Then since T;<%5T; (so T, < G
T;), op; € LVis(Su,T;).

If, on the other hand, 7j is not committed in .7, then, since e is conso-
nant, then e!, is the ultimate routine update event in .7|T;. Therefore, from

decisiveness, €.,

(&

is either the closing routine update event on z in J|T;, or
el, <7 res[Ci] <7 e,. Since T} is not committed in Sy, €l is the closing rou-
tine update event, S0 op; is the closing write on x in 7;. Because of this, and
since 1} <4y Ty, SH|T5 can be included in LVZS(SH, 7). Then, since T;<AT,

then there exists £(.7,T;,T;), so accordlng to Def. 61, SH\TZ is included in

LVis(Sy,T;), and therefore op, € LVis(Sy, T;).
From minimalism, e!, is not followed in .7 |T; by another os;(x)J. Since op, ~
e, fop; = w(z)O— ok s.t. op, =7|1, °P;-

Let T,, be any transaction in .7 s.t. T} <7 T}, <7 T;. If Pw,, ()0 — ok, €

T | Ty, then trivially, for any such T}, Pw, (z)v— ok, € LVZS(SH7 i). Thus,
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let there be op,, = wp(z)v — ok, € T|Ty,.

If T,, € 7 (T, x)i, then, as shown above, Sg|T;, ¢ LVis(Sy,T;) and there-
fore op,, ¢ LVis(Sw,T;). Hence, let Ty, & ¢ (T, x)i.

Either tr,<oT; or trm% 7715 In the latter case, if T}, is not committed,
T, can be excluded from LVis(Sy,T;). Since in that case there doe not
exist £(.7, Ty, T;), then, by Def. 61, Sy|T;, ¢ LVis(Sy,T;) and therefore
op,, & LVis(S’H, T;). If T,,, is committed, then if w,, (z)v' — ok, € T |Tp,, then
by commit write obbligato, there would have to exist e = os,,(z)v" € T |Tin,
which would imply that 7,,<%7;, which contradicts the assumption that
trm% 7T;. Therefore, there is no such transaction.

If T,,< 7T}, then, if T),,< T}, then T}, =<4y T, and therefore op,, = LVis(8x.T5)
op;, which has no bearing on whether op; is preceded by a corresponding write
operation. Hence, let T)< #T},<5T;. Then, T, is either committed in .7 or
not.

If T, is committed, then from commit write obbligato Jell' = os,,(z)v €
T |T,,. From isolation, it is impossible that T; <5 T, or T, <51}, then T; <5 T,, <5 T;.
Then, if T;<%T,,<%T;, since e, is consonant, it is is needed, so Jel =
si(2)0 € F|Tj s.t. e, <7 e,. In addition, since T;<%57T,,<5T;, then by
definition of isolation, Je = s,,(2)0 € J|I,,, or egn(x)0 € T|T,,, so
el <7 e <7 e,. Since e, <z e,, then eJ, <7 e <z e,. Thus, by defini-
tion of abort accord, T, cannot be in .7, thus there is no such T,,.

If T)<%T,, <5 T}, then, since T, € 5 (T, )i, then, from Lemma 120, T,
cannot be committed in .7, thus, there is also no such T,,.

Since there is no such T;, that is both committed and contains an operation
execution such as op,,, then for any such Tj,, S H|Tm ¢ LVis(SH,Ti) and
therefore op,, & LVis(Sy,T;).

On the other hand, if T}, is not committed in .7, then, since op,, is consonant,
either op,, ~ e where e = 08,,(2)v' € T |T},, or Pos,, ()0 € T |T,. Since,
from view write obbligato the latter case is impossible, then Jell* = os,,(z)v’ €
T |T,,. Then, from the definition of isolation order, T}<% T, <% T;. Since T,,, is
not committed, then 7}, can be omitted in LVis(S‘ 1, T;). Due to unique routine
updates, there cannot be any T,, € 7 s.t. 0s,(z)v” where v = v. Therefore,
given any £(.7, T, T;) and there is no transaction to satisfy self-containment.
Thus, there is no such £(.7,T,,,T;). Thus, by Def. 61, §H|Tm ¢ LVis(gH,Ti)
and therefore op,, & LVis(Sy,T;).

Because there is no T}, s.t. Sg|T, € LVis(Sy,T;) and op,, € LVis(Sw,T;),
then there is no write operation execution op’ on z s.t. op, = LVis($u,T})
op’ < LVis(3n,1) OPi- Therefore wy(z)v— ok <y;y5,, 7, op; and v # 0.

O

Lemma 130 (All Non-local Read Last-use Consistency). If for some sequential history
S, Syltr; € Vis(S,T;), for any op; € T|Tj s.t. op; = ri(op;) — v either:

1. v # 0 and Jopy, € Vis(Sy, Tx) for some Ty, s.t. op;, = wy(x)v— ok;, 0Pk <vis($y 1)
op;, or

2. v=0 and Pop, € Vis(S’H,Ti) s.t. opy, = wi(z)v' — oky and op,, = Vis(Sm,T1) OPj-
Proof. Either v # 0 or v = 0.
1. If v # 0,from Lemma 129, since v # 0 then Jop, = wi(z)v — oky € T|T} s.t.

0Pk < Lvis($5.1;) OPj-
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A O A A < N N
From Lemma 122, VT; if T} C LVis(Sg,T;) then T; C LVis(Sy,T;) and LVis(Swy, T;)|T; =
N < N N
LVis(Su,T;)|T;. Hence, T, € LVis(Sy,T;) and op,, € LVis(Su,T;). Furthermore,
<o A
if Ty, © LVis(Sy, Tj), then Ty <5, Tj, 80 0P, <pyigs,.10) OP;
For the sake of contradiction, let us assume there exists op; = w(z)v— ok; € T|T;
St 0Pk <pLvis($u.T) OPt =Lvis($u,m) OPj Since from Lemma 129, there is no
A ~ < N
such transaction in LVis(Sy,T;), then T; is such that 7; C LVis(Sy,T;) s.t. and
<
Ty ¢ LVis(Sy, T;) (and Tj =g, Tj).
Lo N
If T; C LVis(Sw,T;), then, by definition, 7 is not committed in 7.
If T;<z.7T}, then this is a contradiction by analogy to Lemma 129.
If T; 2.7 T, then, from Def. 60, T} =<4, Ty, which implies that OD; = Lvis(3.1;) OP1>
which is a contradiction. '
If T, 427 Tj, then fek = os;(2)0 € F|T. Hence, from Def. 60 , T} =<4, Tj, which
imp‘lies that op; = Lvis($u,1;) P> which, again, is a contradiction.
Thus, there is no such 7;, and, therefore, op, <Lvis($u,Ts) OP; (and v # 0).
2. If v =0, let us assume by contradiction, that there exists such T}, and op,. From
Lemma 129, since v = 0 then Bop, = w;(z)0— ok; € T|T; s.t. op, = Lvis(8u,1;) OPj-
A © ~ A~ © N
Hence, T}, must be such that Ty, C LVis(Sy,T;) s.t. and Ty, € LVis(Sy,T;) (and
Tk <SH 7})
A ° N P N
From Lemma 123, VT if T} € LVis(Sy,T;) and 3¢(7, T, T;) then T; C LVis(Su, T;).
A <O ~ A~ < ~
Thus, if T}, is such that Ty, C LVis(Sg,Tj) and T}, C LVis(Sy, T;), then 4¢(F, Ty, Tj).
~ © ~
If Ty, C LVis(Sy,T;), then, by definition, T}, is not committed in 7.
If Ty, <27 T;, then this is a contradiction by analogy to Lemma 129.
If Tj<xJ Ty, then, from Def. 60, Tj =<4, T}, which implies that 0Pj = Lvis($1.T;)
opy, which is a contradiction.
If Tk%xyTj, then fef = osy,(2)0 € F|T. Hence, from Def. 60, Tj <5y Ty, which
implies that op; < LVis(8.1;) Pk which, again, is a contradiction.
Thus, there is no such Ty, and, therefore, Bop,, € LVis(SH, ﬁ) s.t. opy, = wi(z)v' —
okr and opy <pvigs,, ) op; (and v=0).

O

Lemma 131 (Local Read Last-use Consistency). For any op, € JI|T; s.t. op; =
r;(op;) — v and op; is local, then Jop} € LVZ’S(S'H,Ti) s.t. op}, = wi(z)v— ok;, op§<st(SH )
op; .

Proof. From local read consonance it follows that for any op, € Z|T; s.t. op; is local,
then Jop; € J|T; and op] <71, op;. Thus, op; g1 OPi- Since op; and op; operate
on the same variable, then trivially, op, € LVis(Sy,T;) <= op,LVis(Su,T;). Hence,
0P} <vig($y,17) OPi- 0
Corollary 27 (Total Local Read Last-use Consistency). For any op, € Z|T; s.t. op;, =
r;(op;) —v and op; is local, then for any T, Jop, € LVis(Sy,Tj) s.t. op; = wi(x)v— ok,

/
OPi <pVis($y,1;) OPi-

Lemma 132 (Total Write Consistency). For any Ty, Tj, Yop; € LVis(Sw,Tj) s.t. op; =
w;(op;)v— ok; € T|T;, v is in the domain of .

Proof. Follows from write consonance. O
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Proof for Theorem 9

Proof for Theorem 9: Trace Last-use Opacity. For every transaction T; € 7, given Sy
constructed by Def. 60,

i) If T; is committed in H, from Corollary 25, Yop; € H|T} s.t. op; = ri(z) — v and
op; is non-local, either:
a) v #0and Jop, € Vis(Sw,T)) for some Ty, s.t. opy, = wy(2)v— okj, 0pj,< Vis(Sx.T3)
opj, or
b) v =0 and fop, € Vis(Sy,T;) s.t. op, = wy(z)v— ok and op,, = Vis(S,T3)
0p;-
In addition, from Corollary 26, Vop; € H|T}; s.t. op; = r;(op;) — v and op; is local,
Jop; € Vis(Swu,Tj) s.t. opg = w;(z)v— ok;, op;. <Vis(S,Th) OPj
Furthermore, from Lemma 132, Vop); € H|T} s.t. op; = w;(op;)v— ok;, v is in the
domain of z.
Thus, st(S’ 1, T;) is legal, and therefore T; is legal.
i) If T; is not committed in H, from Lemma 130, Vop; € H|T} s.t. op; = ri(z) — v
and op; is non-local, either:
a) v # 0 and Jop, € LVis(Sw,T)) for some Ty s.t. op, = wg(z)v — okj,
0Pk <LVis($y,T;) OPj» OF
b) v =0 and fBop, € LVis(Sy,Ti) s.t. opy = wy(z)v— oky, and op,, = LVis(S,T5)
op;-
In addition, from Corollary 27, Yop; € H|T} s.t. op; = ri(z) — v and op; is local,
Jop; € LVis(Su,Tj) s.t. op;- = wj(z)v— ok;, op;- < Vis(Sn.,Ty) OPj
Furthermore, from Lemma 132, Yop) € H|T} s.t. op; = w;(z)v— ok;, v is in the
domain of z.
Thus, LVis(Sy,T;) is legal, and therefore T} is last-use legal.
Since every committed transaction T; € H is legal if it is committed and last-use legal
if it is not committed, then H is final-state last-use opaque.

Since a prefix of a harmonious .7 is trivially also harmonious, then for every prefix .7’
of 7, H' = Hist(7') is also final-state last-use opaque. Thus, H is last-use opaque. [

Miscellaneous

A History with Early Release is not Opaque

Let H., represent the history in Fig. 7.1:
H,, = [ start; — ok, start; — ok;, wi(z)1— ok;, rj(x) = 1, tryC; — Ci, tryC; — C; ]

Lemma 133. H,, is final-state opaque.

Proof. The completion Compl(He,) of He, is identical to He,, because He, contains only
committed transactions (that is: for any transaction T; € H,, it is true that H..|T; =
H - [tryC; — Ci]).
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Note that there exists a sequential history S = He,|T; - He-|T; that is equivalent to
H.,. Since all transactions are concurrent in H,,, the real time order of H., is empty
(<er= @). Then, trivially, <..C<g. So S satisfies Def. 12a.

S contains operations of transactions T = {T;,T;} on objects Var = {z}. Subhistory
Vis(S,T;) = S|T; is legal since Vis(S,T;)|r = [w;(z)1 — ok;] € Seq(z) and the value i is
in the domain of z (Ng). Hence T; in S is legal in S. Subhistory Vis(S,T;) = S|T; - S|T
is legal as well, since Vis(S,T};)|z = [wi(z)1 — ok;, rj(z) — 1], since 4 is in the domain of
¢ and r;(x)—1 is directly preceded by an operation writing i to z. Hence T} in S is legal
in S.

Since every T; in S is legal in .S, then sequential history S satisfies Def. 12b. Therefore,
H,, is final-state opaque. O

Lemma 134. H., is not opaque.

Proof. let history P be a prefix of H., created by removing the last 4 events of H,, i.e.:
P = | start; — ok;, start; — okj, wi(z)1— ok;, rj(z) =1 ].

Furthermore, let P’ = Compl(P) s.t., P'|T; = P|T; - [tryC; — A;] and P'|T; = P|T; -
[tryC; — Aj]. Note that, from definition of completion, P’ is the only possible completion
of P because only case (d) applies to both transactions in P.

There are two possible sequential histories equivalent to P’. The first one is S’ =
P'|T; - P'|T;. Since T; is aborted in P’, then Vis(S’,T;) = P'|T; (that is, operation
executions from P’|T; are excluded from Vis(S’,T;)). However, Vis(S’,T}) is not legal
because it contains operation execution r;(z) —1 that is not preceded by any write and
vp # i. Hence T; in S’ is not legal in S’. So S’ does not bear out Def. 12b.

The second sequential history equivalent to P’ is " = P'|T;-P'|T;. Here, Vis(S",T;) =
P'|T; (because T} is not preceded by any other transaction in S”). Since, Vis(S”,T;) =
Vis(S’,T;), then by analogy to the discussion above Vis(S”,T}) is not legal, so T} in S”
is not legal in S”. Thus, S” does not satisfy Def. 12b either.

In effect, there is no sequential history equivalent to P’ that satisfies Def. 12. There-
fore, P does not satisfy Def. 12, and, since P is a prefix of H,,., then H,, does not satisfy
Def. 13 and so it is not opaque. O
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Algorithms

This chapter contains full pseudocode of the various secondary variants of new algorithms
introduced and discussed in the main text. Where pertinent, we highlight the changes
from the original algorithm. We provide the pseudocode in this way for the sake of
completeness, and for the convenience of any potential implementers.

proc start(Transaction T3;) { 1 proc start(Transaction T3;) {
for [z] € ASet; in order { 2 for [x| € ASet; in order {
R <+ location([z]) 3 R <+ location([z])
if owner(1k(R)) # T; 4 if owner(1k(R)) # T;
lock 1k(R) —» W 5 lock 1k(R) —» W
¥ 6 )
for [z] € ASet; { ¢ for [z] € ASet; {
gv([z)) « gv([z]) + 1 s gv([z)) « gv([z]) + 1
, pv;([z]) « gv([z]) o ) pv;([z]) « gv([z])
10
for [xz] € ASet; { 11 for [xz] € ASet; {
R <+ location([z]) 12 R <+ location([z])
if owner(1k(R)) = T; 13 if owner(1k(R)) = T;
unlock 1k(R) 14 unlock 1k(R)
¥ 5}
+ 16}
proc access(Transaction Tj, Object [z], Method m) { 17 proc access(Transaction T;, Object [z, Method m) {
wait until pv,([z]) - 1 = 1v([z]) 18 wait until pv,([z]) - 1 = 1v([z])
execute m on [z| returning v 19 execute m on [x| returning v
return v 20 aci([z]) + aci([z]) + 1
} 21 if acy([z]) = supr,([z])
proc commit(Transaction Tj) { 22 Lv([z]) « pv,([z])
for [xz] € ASet; { 23 return v
wait until pv,([z]) - 1 = 1v([z]) 24}
Ww([z]) « pv;([z]) 25 proc commit (Transaction T3) {
2% for [z] € ASet; {
return C; 27 wait until pv,([z]) - 1 = 1tv([z])
¥ 28 if pv,([z]) - 1 = W ([z])
s w(fa)) e pv,(fe))

0 , 1tv([z]) «+ pv,([z])

32 return C;

(a) BVA. (b) SVA.

Figure B.1: Versioning algorithms with CGL version acquisition.



1 proc start(Transaction Tj) {
2 // Acquire private versions.
3 for [z] € ASet; in order

4 lock 1k([z]) —» W

5 for [x| € ASet; {

o gv([z)) « gv([z]) + 1
o, (Ta)) « gv(la))

8 unlock 1k([z])

9

10 // Asynchronously buffer read—only variables.
11 for [xz| € ASet;: wub;([z]) =0
12 async run :read_buffer(T;, [z])

13 when pv,([z]) - 1 = 1v([z])
14 return ok;
15}

16 proc read(Transaction T;, Object [z], Method m) {
17 // Read—only object.

1 if [z] is read-only {

19 join with :read_buffer(T;,[z])

20 execute m on buf;([x|) returning v
21 rei([z]) « re;(Jx]) + 1

22 return v

23}

24 // Object not previously released.
25 if (wei([z]) < wub;([z])

26 or uc;([z]) < wub;([z])) {

27 if we;([z]) = 0 and uc;([z]) =0 {
28 wait until pv,([z]) - 1 = 1v([z])
29 if (uci([z]) > 0)

- apply log,;([z]) to [=]

32 execute m on [z] returning v

33 rei([z]) + rei([z]) + 1
34 if (rc;([x]) = rubi([z])

35 and wc;([z]) = wub;([z])
36 and uc;([z]) = uub;([z]))
37 release(T;, [z ])

38 return v

a9}

40 // Object previously released.
a1 if (uc;([z]) = wub;([z])

42 and uc;([z]) = uub;([z])) {

43 if write_buffer(T;,[x]) is running
44 join with :write_buffer(T;,[z])
45 execute m on buf;([x|) returning v
46 rc;([z]) + rei([z]) + 1

a7 return v

48 }

49 }

50 proc update(Transaction T;, Object [x|, Method m) {114

51 if rc;([z]) = 0 and uc;([z]) = 0 {
52 wait until pv,([z]) - 1 = 1v([z])
53 if wei([z]) > 0

54 ) apply log,([z]) to [xz]

56 execute m on [z] returning v
57 uci([z]) < uci([z]) + 1
ss if (wub;([z]) = wei([z])

59 and uub;([z]) = uc;([z])) {
60 buf;([z]) « [z]

61 :release(T5;, [z])

62 }

63 return v

64 }

65 proc write(Transaction T;, Object [z, Method m) {

66 // No preceding reads or updates.
67 if rc;([z]) = 0 and uc;([z]) = 0 {
68 execute m on log,([z])

69 wei ([x]) < wei([z]) + 1
70 if we;([z]) = wub;([z])

71 async run :write_buffer(T;,[z])
72 when pv,([z]) - 1 = 1v([z])
73}

74 // Some preceeding reads or updates.
75 if rci([z]) > 0 or uc;([z]) > 0 {
76 execute m on [z]

7 wedfa)) « wei(Tel) + 1

78 if we;([z]) = wub;([z]) {

79 buf;([z]) + [z]
80 :release(T;, [z])
81 }

82 }

83 }

84 proc commit(Transaction T;) {
g5 for([z| € ASet;) {
86 if wub,; ([z]) = 0

87 join with read_comit (T}, [z])

88 else {

89 if (wey([x]) = wubi([z])

90 and rc;([z]) = uc;([z]) = 0)

91 join with write_buffer(T;,[z])

92 else {

93 if we;([z]) + rey([z]) = uci(fx]) = 0
94 wait until pv,([z]) - 1 = 1v([z])
9 , apply log;([z]) to [z]

97 ¥

98 wait until pv,([z]) - 1 = ltv([z])

99 if pv,([z]) - 1 = 1v([=])

100 , w([z]) « pv;([z])

w u(lz))  pi(fa)

104 return ok;

105 }

106 proc :read_buffer(Transaction T;, Object [z]) {
w7 buf;([z]) « [z]

108 release(T;,[x])

100 async run :read_commit (T}, [z])

110 when pv,([z]) - 1 = 1tv([z])

111 }

112 proc :read_commit (Transaction Tj, Object [z]) {
usif 3yl rvi(fy)) > cv(fy))

return abort (T})

us 1tv([z]) « pv;([=])

116

117 proc :write_buffer(Transaction T, Object [z]) {
118 apply log;([z]) to [xz]

119 buf;([z]) « [z]

120 :release(T;,[x])

121 }

122 proc :release(Transaction T;, Object [z]) {

23 1v([x]) < pv;([z])

124 }

Figure B.2: OptSVA-CF (commit-only).



1 proc start(Transaction T;) {

8s proc write(Transaction T;, Object [z, Method m) {

2 // Acquire private versions. 86 // No preceding reads or updates.

3 for [x] € ASet; in order g7 if rc;([z]) = 0 and uc;([z]) = 0 {

4 lock 1k([z]) —» W 88 execute m on log,([x])

5 for [x| € ASet; { 89 wei([z]) + wei([z]) + 1

o gu([z)) « gv(z]) + 1 w it vei([z)) - wi([z)

7 pv,([z]) < gv([z]) 91 if T; € R

8 unlock 1k([z]) 92 async run :write_buffer(T;,[z])
9 93 when pv,([z]) - 1 = 1tv([z])
10 // Asynchronously buffer read—only variables. 94 else

11 for [x| € ASet;: wub;([z]) =0 95 async run :write_buffer(T;,[z])
12 if T; € R 9 when pv,([z]) - 1 = 1v([z])

13 async run :read_buffer(T;, [z]) o7}

14 when pv,([z]) - 1 = 1tv([z]) 98 // Some preceeding reads or updates.
15 else 99 if rci([z]) > 0 or uci([z]) > 0 {
16 async run :read_buffer(T;, [z]) 100 if 3fy]: rvi(Jyl) # cv([y])

17 when pv,([z]) - 1 = 1v([z]) 101 return abort (7T;)

18 return ok; 102 execute m on [z]

19} 103 wei([z]) « wei([z]) + 1

20 proc read(Transaction Tj;, Object [x]|, Method m) { 104 if we;([z]) = wub;([z]) {

21 // Read—only object. 105 buf;([z]) + [z]

22 if [z] is read-only { 106 :release(T;, [z])

23 join with :read_buffer(T;,[z]) 107 ¥

2 if 3yl rvi(y]) # cv(ly)) 108}

25 return abort(7T}) 109 ¥

26 execute m on buf;([x|) returning v 110 proc commit(Transaction T;) {

27 rc;([z]) « rci([z]) + 1 11 for([z] € ASet;) {

28 return v 112 if wub,;([z]) = 0

29 } 113 join with read_comit(73,[z])

0 // Object not previously released. 114 else {

3t if (uei([z]) < wub;([z]) 115 if (wey([z]) = wubi([z])

32 or uc;([z]) < wub;([z])) { 116 and rc;([z]) = uc;([z]) = 0)
33 if we;([z]) = 0 and uc;([z]) =0 { 117 join with write_buffer(T;,[z])
34 if T; € R 118 else {

35 wait until pv,([z]) - 1 = 1tv([z]) 119 if we;([z]) + rei([z]) = uci([x]) = 0
36 else 120 wait until pv,([z]) - 1 = 1v([z])
37 wait until pv,([z]) - 1 = 1v([z]) 121 if (wc;([z]) > 0

38 :checkpoint (T, [z]) 122 and rc;([z]) = uc;([z]) = 00 {
39 if (uci([z]) > 0) 123 :checkpoint (T, [z])

w apply log([z]) to [z] 1t 3y rvily)) # cv(lv))
41 } 125 return abort(T;)

o it Aly): vi(ly)) £ ov([ul) apply log;([z]) to [z]

43 return abort(7;) 127 ¥

44 execute m on [xz] returning v 128 ¥

45 rei([z]) « re;(Jx]) + 1 129 wait until pv,([z]) - 1 = 1tv([z])
46 if (rci([z]) = rub;([z]) 130 if pv,([z]) - 1 = 1v([=])

a7 and we;([z]) = wub;([z]) 131 W([z]) « pv;([z])

48 and uc;([z]) = uub;([z])) 132 if (re;([z]) + wei([z]) + uci([z]) > 0
49 :release (T}, [x]) 133 and rv;([z]) = cv([z])

50 return v 134 and pv,([z]) - 1 > 1v([z]))
51} 135 cv([z]) « pv,([z])

52 // Object previously released. 136 b

53 if (we;([z]) = wubi([z]) 137}

54 and uc;([z]) = uub;([z])) { s if Iyl rvi([y)) > ov([y])

55 if write_buffer(T};,[z]) is running 139 return abort(T;)

56 join with :write_buffer(T;,[z]) 190 for [z] € ASet;

o af 3y wvilly)) # ev(ly)) o 1ev(fa)) « pvy(fz])

58 return abort(7};) 142 return ok;

59 execute m on buf;([x|) returning v 143 }

60 rci([z]) « re;(Jx]) + 1 144 proc abort(Transaction T;) {

61 return v 145 for [z] € ASet; {

62 } 146 wait until pv,([z]) - 1 = 1tv([z])
63 } 147 if (rci([z]) + wei([z]) + uci([z]) > 0
64 proc update(Transaction T;, Object [x|, Method m) {1 and pv;([z]) - 1 > 1v([z])

65 if rc;([x]) = 0 and uc;([z]) = 0 { 149 and rv;([z]) = cv([z])

66 if T; € R 150 and wub;([z]) + uub;([z]) > 0) {
67 wait until pv,([z]) - 1 = 1tv([z]) 151 if we;i([z]) = wub;([z])

68 else 152 join with :write_buffer (T}, [z])
69 wait until pv,([z]) - 1 = 1v([z]) 153 :recover (T, [x])

70 :checkpoint (T;, [z]) 154 ¥

71 if we;([z]) > 0 155 if pv,([z]) - 1 = W([z])

» apply log,([z)) to [o] s 1v(fa)) « pv,(fe))

EI 157 1tv([z]) < pv,([z])

w1t 3yl rvilly)) # cv(ly)) e}

75 return abort (7}) 159 return A;

76 execute m on [z| returning v 160 }

7 uci([z]) < uci([z]) + 1

78 if (wub;([z]) = wei([z])

79 and uub;([z]) = uc;([z])) {

80 buf;([z]) « [z]

81 :release(T;, [z])

82}

83 return v

84}

Figure B.3: ROptSVA-CF+R.



161 proc :read_buffer(Transaction 7T;, Object [z]) {
w62 rvi([z]) « cv([z])

163 buf;([z]) + [z]

164 :release(T;,[z])

165 async run :read_commit (7}, [z])

166 when pv,([z]) - 1 = 1tv([z])

167 }

168 proc :read_commit(Transaction Tj, Object [x]) {

wo if Iy rvi([y]) > cv([y])

170 return abort(T;)
o 1ev([z)) < pv,([z])
172 F

173 proc :write_buffer(Transaction T;, Object [z]) {
174 :checkpoint(Ty, [z ])

e apply log,([z)) to [v]

16 bufy([z]) + [z]

177 :release(T;,[x])

178 }

179 proc :checkpoint (Transaction Tj, Object [z]) {

10 sty([z]) « [z]

w1 rvi([z]) + cv([z])

182 }

183 proc :recover (Transaction T;, Object [zJ) {
e [x] < sti([z])

185 cv([z]) « rvi([z])

186 }

187 proc :release(Transaction T;, Object [z]) {
e ov([z]) e pvy([z))

w 1u([e)) « pvi([z])

190 }

Figure B.3: ROptSVA-CF+R.



Copyright © 2016 Konrad Siek

Institute of Computing Science
Faculty of Computing
Poznan University of Technology

Typeset using INTEX.

BibTEX:

@phdthesis{Siel6,
author = "Konrad Siek",
title = "{Distributed Pessimistic Transactional Memory: Algorithms and Properties}",
school = "Pozna{\’n} University of Technology",
address = "Pozna{\’n}, Poland",
year = "2016"
}

TEX source statistics:

files: 129, characters: 1728610,
words: 128950, dollar signs: 24544,
lines: 37268, backslashes: 38575,
comment lines: 10655,  vspaces: 31,
empty lines: 3483, macros: 577,

emphs: 641, expletives: 2.



