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Abstract. This paper presents a formal design of a tool for statically
establishing the upper bound on the number of executions of objects’
methods in a fragment of object-oriented code. The algorithm that our
tool employs is a multi-pass interprocedural analysis consisting of data
flow and region-based analyses. We describe the formalization of each
of stage of the algorithm. This rigorous specification greatly aids the
implementation of the tool by removing ambiguities of textual descrip-
tions. There are many applications for information obtained through
this method including reasoning about concurrent code, scheduling, code
optimization, compositing services, etc.We concentrate on using upper
bounds to instrument transactional code that uses a synchronization
mechanism based on versioning, and therefore benefits from a priori
knowledge about the usage of shared objects within each transaction.
To this end we implement a precompiler for Java that analyzes transac-
tions, and injects generated source code to initialize each transaction.
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1 Introduction

In this paper we present a tool for estimating the maximum of how many times
methods of objects will be called within a fragment of object-oriented code. We
report the tool’s formalization and discuss its implementation. We see the formal-
ization as one of the main contributions of this paper. The described algorithm is
relatively simple: it is based on data flow analysis to establish information about
values and paths and region analysis to tally method calls. We expand regions
with additional properties so that the final, vital part of the analysis becomes
straightforward. We also describe a use of a natural positive set extended by
an absorbing value to count uncertain executions. In effect we manage to infer
upper bounds (either concrete or infinite) that provide safety.

There are several possible applications for information about the upper bound
on the number of objects’ method calls obtained through our analysis. Among
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others, such upper bounds may be used to analyze concurrent code to find rela-
tionships between threads: a thread accessing a shared object once, several times,
or not at all may impact safety guarantees like isolation or performance in differ-
ent ways. With this information prior to execution it can be treated differently,
i.e., applied proper synchronization, delayed, or executed as-is without breaking
guarantees. The upper bounds can also be applied in compile-time resource op-
timization. For instance, the amount of memory used by a given program or its
influence on network traffic may be estimated from calls to particular objects if
the interface is known and used to configure the environment appropriately or
to optimize the analyzed program. Other uses may be found in code rewriting,
automatic refactoring, etc. Apart from the work of [15] these applications seem
largely unexplored.

Our particular interest lays with algorithms that require this type of in-
formation up front for efficient operation, e.g., those found in scheduling and
synchronization via transactions. One such application is Atomic RMI [26, 27].
It is a distributed transactional memory extension to Java RMI, an API for dis-
tributed programming using remote procedure calls that is well-established in
business and industry. Atomic RMI uses versioning algorithms that need a priori
information about shared object accesses to figure out whether an object may be
released before a transaction commits (or aborts). Releasing objects early gives
Atomic RMI a performance edge, so a precompiler that provides upper bounds
automatically and precisely has significant practical value. We see the paper as
contributing the application and the implementation of the precompiler as well
as the analysis and its formalization. The technical documentation of the tool is
available on the project web page [19].

The paper has the following structure. In Section 2 we present work similar
to ours. We formalize the static analysis in Section 3— each subsection describs
an individual constituent part of the analysis. Then, in Section 4 we discuss the
precompiler implementation. Finally, we conclude with Section 5.

2 Related Work

There is a large body of research related to analysis of programs that aims at
deriving information about execution patterns statically (we sketch out some of
these below). However, we do not know examples of using this information for op-
timizing the execution of distributed transactions in the way we do. The largest
body of work to which our static analysis bears resemblance has been done with
regard to the Worst Case Execution Time (WCET) problem [24]—establishing
upper bounds on the time code takes to run. However, most of this work is aimed
at real-time systems, not transactional concurrency control which is the main
concern of our work. A number of frameworks are available for WCET analysis,
like aiT [4], Bound-T [10], SWEET [7], and SymTA/P [20]. A comprehensive sur-
vey of these tools and methods was done in [25]. Whereas our approach is based
on region analysis, some work in WCET use symbolic analysis [13], path analysis
[8], and abstract interpretation [10, 5]. We also use the latter type of analysis for



our value analysis algorithm (Section 3.2). In WCET emphasis is placed on the
problem of evaluating loops in general and bounding loop iterations in particu-
lar. This is done, among others, by the use of Presburger arithmetic [17], path
analysis (using integer linear programming) [21], or a combination of methods
involving abstract interpretation [3]. Our work touches on those concerns in Sec-
tion 3.2 where we use loop unfolding to establish their bounds roughly similar to
that of SWEET [7] but simpler. WCET tools additionally often use the Implicit
Path Enumeration technique [12] or single feasible paths [28] to establish worst-
case paths and perform final timing analyses. While our application presents
no need for the latter, we use region-based analysis (described in Section 3.4)
to conservatively deduce worst-case paths. WCET tools also allow for manual
declaration or correction of difficult-to-deduce information (e.g., loop bounds).

Our work has significant similarities to work on lock inference. Lock inference
aims to determine which memory locations or shared objects in a program must
be protected by locks and where these locks should be located. Thus, our work
and lock inference share the same ultimate goal of providing concurrency control
via static analysis albeit by different mechanisms. The authors of [2] employ
backward data flow analysis to transform a program’s control flow graph into
a path graph which is then used to derive locks. In [9] the authors present
a method for identifying shared memory locations using type-based analysis,
points-to analysis, and label flow analysis [16]. In Autolocker [14] pessimistic
atomic sections are converted into lock-guarded critical sections by analyzing
dependencies among annotated locks based on a computation history derived
from a transformation of the code using a type system.

In [15] the authors propose a tool for the automatic inference of upper bounds
on the usage of user-specified resources. Rather than memory or execution time,
these may be the number of open files, accesses to database, sent text messages,
etc.This work and ours share the set of tools they use (Soot and Jimple [22])
and they both try to solve a similar problem. The tool presented by the authors
performs a data flow analysis to derive data dependencies, then creates a set of
equations from input-output parameter size relationships. Finally the equations
are solved using a recurrence solver. Our approach differs most in that we per-
form region analysis to determine maximum paths and resource use where they
construct and solve equations.

3 Upper Bound Prediction Analysis

In this section we describe an algorithm for deriving upper bounds (or suprema)
on the number of method calls to objects via static analysis. The upper bounds
for some specific objects—remote objects used in a transaction—are used for con-
currency control by Atomic RMI. To derive the suprema the algorithm performs
multiple passes over the input code in the form of an intermediate language
(see Section 3.1). Three passes correspond to the three phases that form our
algorithm: value analysis, region analysis, and call count analysis. In addition
another pass is performed before value analysis to identify loops. Value analysis



Identifiers j ∈ Ident

Constants c ∈ Const

Labels l ∈ Lab

Types t ∈ Type

Fields f ∈ Field ::= j : t

Immediates i ∈ Imed ::= j
∣∣ c

Right-hand values r ∈ Rval ::= i
∣∣ i[i] ∣∣ i.[f ]

∣∣ [f ]

Methods m ∈ Meth ::= invoke i.[j(j1, ..., jn)](i1, ..., in){b1, ..., bn, }
Conditions p ∈ Cond ::= i == i

∣∣ i ≥ i
∣∣ i > i

∣∣ i ≤ i
∣∣ i < i

∣∣ i 6= i

Expressions e ∈ Expr ::= i + i
∣∣ i / i

∣∣ i ∗ i
∣∣ i%i

∣∣ − i
∣∣ i− i

∣∣ i | i ∣∣ i & i∣∣ i xor i
∣∣ i� i

∣∣ i� i
∣∣ (t)i

∣∣ i instanceof t∣∣ new t
∣∣ new t[i1]...[in]

∣∣ length i
∣∣ p

Statements s ∈ Stmt ::= switch(i){case c1 : l1; ...; case cn : ln; default : l0}∣∣ if p goto l1 else l2
∣∣ l ∣∣ j = m

∣∣ j = r
∣∣ m∣∣ goto l

∣∣ return i

Blocks b ∈ Bloc ::= l : b1; ...; bn;
∣∣ b1; ...; bn;

∣∣ s
Fig. 1: Jimple syntax (altered).

predicts possible values of variables in the code. It also identifies unfeasible or
dead code, and unfolds loops. Region analysis uses the results of value analysis
to convert the input code into regions. Finally, call count analysis examines these
regions to produce the upper bounds on method call counts. We describe our use
of Jimple and the phases of the algorithm in detail in the following subsections.

3.1 Translation to Jimple

In order to analyze a program in Java with Atomic RMI transactions we translate
it into an intermediate representation called Jimple [23] using the Soot frame-
work [22]. We use Jimple as an intermediate language because it is much better
suited for analysis than either Java source code or bytecode. The reason for this
is that Jimple is a 3-address code representation with a very limited instruction
set consisting of 17 statements. In our earlier attempts to perform similar analy-
ses using Java source code [18] we learned that such analyses become convoluted
and the implementation costly in effort due to the number of constructs needing
handling and the complexity of their semantics.

The part of Jimple syntax that is pertinent to our further discussion is pre-
sented in Fig. 1. The semantics are mostly straightforward, the reader is referred
to [23] for details and the complete language. The constructs most important
to us are the conditional statements, switch statements, method invocations, as-
signments, and labeled blocks. We introduce superficial alterations to the syntax
to suit further description of the algorithm. We treat labels as statements and



1 Transact ion k = new Transact ion ( reg ) ;
2 a = k . a c c e s s e s ( a , 2 ) ; // generated , upper bound = 2
3 b = k . a c c e s s e s (b , 1 ) ; // generated , upper bound = 1
4 k . s t a r t ( ) ;
5 int balance = a . getBalance ( ) ;
6 i f ( balance >= sum) {
7 a . withdraw (sum ) ; b . depos i t (sum ) ;
8 k . commit ( ) ;
9 } else

10 k . r o l l b a ck ( ) ;

Fig. 2: Example Java code for a distributed transaction using Atomic RMI.

1 k = new soa . atomicrmi . Transact ion ;
2 invoke k .[< i n i t >(@parameter0 ) ] ( reg ){ $b0 } ;
3 invoke k . [ s t a r t ( ) ] ( ) { $b1 } ;
4 balance = invoke a . [ getBalance ( ) ] ( ) { $b4 } ;
5 i f balance < sum goto l a b e l 1 else l a b e l 0 ;
6 l a b e l 0 :
7 invoke a . [ withdraw (@parameter0 ) ] ( sum){ $b5 } ;
8 invoke b . [ d epos i t ( @parameter0 ) ] ( sum){ $b6 } ;
9 invoke k . [ commit ( ) ] ( ) { $b2 } ; return null ;

10 l a b e l 1 :
11 invoke k . [ r o l l b a ck ( ) ] ( ) { $b3 } ;

Fig. 3: Java code translated to altered Jimple.

place them at the beginning of labeled blocks. We modify the conditional state-
ment to define target labels for both outcomes instead of having a succeeding
block of code called if the condition is false. We do not distinguish among differ-
ent sorts of method invocations—interface, special, virtual, and static—and we
remove type information from invocations while adding a direct definition of the
methods’ arguments and a set of possible bodies. We also fix method invocations
nested in other statements by defining a separate assignment statement instead
where the results of the invocation are assigned to an identifier. We show an
example Java program using our Atomic RMI distributed transactions Fig. 2
translated to the altered form of Jimple in Fig. 3 (lines 2, 3 are omitted because
they are generated from Jimple later—see Section 4.2 for details).

For the purposes of analysis the input program is represented as Control Flow
Graphs (CFGs) and each method’s body is a separate graph. Most statements in
Jimple will have one incoming and outgoing edge. The conditional statement will
have 2 outgoing edges, and the switch statement will have one more outgoing
edge than it has conditions. Loop headers and labeled blocks will have more
incoming edges. Invoke statements point to CFGs of other method bodies.

3.2 Value Analysis

As a preliminary to the value analysis we find loops in code. A loop consists
of a head and a body. A loop head is a statement s that dominates any other
statement s′ (all paths from the start to s′ lead through s [1], denoted s dom s′)



G(s) , S , (SV , SP , SD, SI)

G(s) = eval(join({G(p) | s succ p}), s)
eval(S, j = r) , (SV [j 7→ {val(r, SV )}], SP , SD, SI)

eval(S, j = m) , S′ = eval(S,m), (SV ⊕ S′V [j 7→ {val(m, SV )}], SP , SD, SI)

eval(S, invoke i.[j(j1, ..., jn)](i1, ..., in){b1, ..., bm}) ,
case depth(i.j)→ SV [k 7→ ωk ∈ defs(b1) ∪ ... ∪ defs(bm)], SP , SD, SI)

otherwise→ S′ = (SV [j1 7→ val(i1, SV ), ..., jn 7→ val(in, SV )], SP , SD, SI),

join(eval(S′, b1), ..., eval(S′, bm))

eval(S, l) , (SV ⊕ SP (l), SP , SD, SI)

eval(S, s : return i) , (SV , SP , SD ∪ {(s, s′) | s pdom s′, s′ ∈ Stmts)}, SI)

eval(S, s : if p goto l1 else l2) ,

case pred(p, S) = true→ (SV , SP

[
l1 7→ SP [p 7→ true]

]
, SD ∪ {(s, l2)}, SI)

case pred(p, S) = false→ (SV , SP

[
l2 7→ SP [p 7→ false]

]
, SD ∪ {(s, l1)}, SI)

case pred(p, S) = ω → (SV , SP

[
l1 7→ SP [p 7→ true], l2 7→ SP [p 7→ false]

]
, SD, SI)

eval(S, s : switch(i){case c1 : l1; ...; case cn : ln; default : l0}) , (SV ,

SP

[
l1 7→ SP (l1)[j = val(c1)], ..., ln 7→ SP (ln)[j = val(cn)]

]
, SD

∪{(s, lk) | pred(ck = j, S) = false ∨ pred(cr = j, S) = true, k = 1, ..., n, r = 1, ..., k, }
∪{l0 | pred(∃k, ck = j, S) = true, k = 1, ..., n}, SI)

eval(S, s ∈ H) , evalloop(s,G,L(id(s)), 1, L)

eval(S, s ∈ B ∧ s 6∈ H) , S
join(S1, ..., Sn) ,

(
{k 7→ S1

V (k) ∪ ... ∪ Sn
V (k) | k ∈ (dom S1

V ∪ dom Sn
V )}, {l 7→

{k 7→ S1
P (l)(k) ∪ ... ∪ Sn

P (l)(k)} | l ∈ dom S1
P ∪ ... ∪ Sn

P , k ∈ dom S1
P (l) ∪ ... ∪ Sn

P (l)},
S1
D ∪ ... ∪ Sn

D, {k 7→ max
i=1,...,n

(Si
I(k)) | k ∈ (dom S1

I ∪ dom Sn
I )}
)

S′V ⊕ S′′V , {k 7→ S′V (k) ∪ S′′V (k) | k ∈ (dom S′V (k) ∪ dom S′′V (k))}

Fig. 4: Value analysis.

while simultaneously being the successor of s′ (there is a path from s′ to s). A
loop body is a sequence of statements all of which are dominated by a loop head
and have that loop head as their successor. We gather the heads in set H and
create map L which contains a unique identifier of each statement h from H as
a key mapped to a set of statements whose elements are all dominated by h.

The first phase of the analysis is a forward data flow analysis performed on the
CFG. Its main purpose is threefold: to establish the possible values of variables
at each node of the CFG representing the program, to count the maximum
number of loop iterations through loop unfolding, and to establish which nodes
of the CFG are dead or unfeasible (will not be executed). There are two principal
functions in value analysis, eval and join. These functions are used to compute
members of global state G, a data structure that results from the analysis. We
present all of those elements in Fig. 4 and describe them below.



Global state G maps Jimple statements to states which apply to them. Global
state is constructed during value analysis by constructing a state for each state-
ment using a transfer function eval and an aggregation of states for the predeces-
sors of a given statement using join. We designate individual states S, such that
S is a quadruple consisting of a value map SV , an inferred value map SP , a dead
edge set SD, and a loop iteration map SI . SV is a map of locals (identifiers and
constants) to sets of values—it indicates what values a given variable or con-
stant may take at this point in the program. SP maps labels (names of blocks)
to value maps and indicates assumptions about values of variables and constants
inferred from conditions that will apply at a particular succeeding statement. SD
contains pairs of statements indicating edges that will definitely not be used in
the execution of the program. SI is a map of loop heads to numbers indicating
the maximum estimated iteration count of the loop, or an unknown value. All
components of the state are initially empty.

Transfer function eval is the key function of the analysis. It analyzes each
Jimple statement and establishes the state of the program that holds after the
statement is evaluated. The resulting state depends on the type of statement
and the state before that statement.

When encountering an assignment of a right-hand side expression r to an
identifier j, a new mapping is added to SV that maps j to the set of possible
values of expression r. When eval encounters an assignment of the results of
method invocation m to identifier j, first m is evaluated separately and state
after its evaluation S′ is extended by the mapping of j to the result of m. A
method invocation itself is analyzed by first extending the value map by param-
eter identifiers mapped to the values of arguments. Then all possible bodies are
evaluated and the results are joined (the particular bodies are identified from the
type hierarchy and arguments but we leave the details to Soot). But if recursion
exceeds a depth L all the values defined within possible method bodies are set
to unknown (this degrades precision but maintains safety). L must be tuned to
a given application. A label l extends the value map with predictions from the
inferred map. A return statement adds all other statements it dominates to SD.

When analyzing an if statement the expression that is the condition is
checked. If the condition yields true then the edge in the CFG from the current
statement to label l2 is added to dead edges, and predictions about variables
are made under the assumption that the condition will be true at label l1. Con-
versely, if the condition yields false the edge from the statement to l1 will be dead
and predictions will be made for l2 under the assumption that the condition is
false. If the condition yields an unknown, no edges will be added to the dead
edge set, but predictions for both l1 and l2 will be made. A switch statement is
analyzed by creating a prediction for each constant c1, ..., cn that the local i is
equal to it at an appropriate label l1, ..., ln. Furthermore, if any of the constants
ck is definitely equal to i, edges from this statement to labels subsequent to that
constant lk+1, ..., ln and the default label l0 are added to the dead edge set SD.

Function join (Fig. 4) is responsible for joining states and is used when a
statement has two or more incoming edges. Each component of the state is



evalloop(s,G′,U, i, L) ,

G′′ = G′, G′′(u) = eval(join({G′′(u) | u succ p ∧ u ∈ U})),
E = {e | s succ e ∧ s 6∈ U ∧ e ∈ U},
E′ = E \ {d | G′′(d) = S′, unpredecessed(S′D, d) ∧ d ∈ E},
Se = join({G′′(e) | e ∈ E′}),
Z = {(b, h) | h dom b ∧ h succ b ∧ @s ∈ U, h succ s succ b}
Sz = join({G′′(b) | (b, h) ∈ Z}),
case Z ⊆ Sz

D ∨ (∀(b, h) ∈ Z, unpredecessed(Sz
D, b))→ (Se

V , Se
P , Se

D, Se
I [h 7→ i])

case i > L→ (Se
V [k 7→ ω, k ∈ defs(U)], Se

P , Se
D, Se

I [h 7→ ω])

case i ≤ L→ evalloop(h,G′′,U, i + 1, L)

unpredecessed(SD, s) , ∀s succ p, (p, s) ∈ SD ∨ unpredecessed(p)

defs(U) ,
{
j | s ∈ {j = m, j = r} ∧ s ∈ U

}
Fig. 5: Loop unfolding within value analysis.

joined with its counterpart in the second state. Sets SD are added together. The
keys and values are copied to a new map, and if a key is present in both maps,
the values are added (SV , SP ) or the higher one is selected (SI).

We use the following helper functions within eval. Function val substitutes
values from a value map for identifiers and constants (where possible) in a given
expression and evaluates it to establish a set of values that the expression may
yield. The returned set may consist of a single value, any number of elements
or contain the unknown value ω. We use the function pred in a similar manner,
except that only conditional expressions are evaluated and a single ternary value
is returned—true, false, or ω. We use depth to find out the depth of a method’s
recursion. Function id produces a unique identifier of a statement. Operators
succ, dom and pdom denote the succession, domination and post-domination
relation of two statements in the CFG.

When encountering a statement that was identified as a head of a loop,
function evalloop is used where the statements that form the body of the loop
are taken from L and evaluated. During evaluation a collection of states G′ is
created and used to find those exit statements E′ and back edges Z that may be
executed during this iteration. If no back edge could be used during this iteration
we know the loop exits, so we aggregate the states after all exit statements and
finish evaluating the loop. It can also be deduced at this point that the loop will
be executed at most as many times as we performed iterations. Otherwise, if we
have not reached an arbitrary limit of iterations we conduct another iteration
using evalloop. If the limit was reached we do not proceed but assume that this
loop will continue indefinitely and set all the values that are defined within its
body to unknown ω. Upon evaluation exit statements from the loop body are
derived from the dead edge set of the resulting state. If there is only one exit
from the loop then the loop exits in the current iteration and both the state of



Unit regions U ∈ Units ::= unit

Statement regions S ∈ Statements ::= statement s

Invocation regions I ∈ Invocations ::= invoke j, R1, ..., Rm, s

Block regions B ∈ Blocks ::= block [R1, ..., Rn]

Condition regions C ∈ Conditions ::= condition p,R1, R2

Loop regions L ∈ Loops ::= loop h,R

Regions R ∈ Regions ::= U
∣∣ S ∣∣ I ∣∣ B ∣∣ C ∣∣ L

Fig. 6: The region-based intermediate representation.

the variables and the number of iterations are added to S. Otherwise another
iteration is required and the evaluation is repeated. In order to manage infinite
loops or those where the conditions of exiting are uncertain, an iteration limit L
is given which, when reached, will cause the evaluation to cease and set all effects
of the loop to unknown value ω. Setting values to ω preserves safety. We use two
additional helper functions within evalloop. We define predicate unpredecessed
which checks whether a statement’s predecessors are all dead or the edge from
them to it are unused. We also define function defs which returns the names of
variables defined in a given statement.

3.3 Regions

The second phase of our analysis is concerned with preparing the input structure
required by the third phase which is conducted using region-like structures. Thus
we introduce a function to convert the CFG into a region graph. Regions [1, 11]
are areas of code with a single entry point, like code blocks. We extend each
region with information about its rôle in the code. We distinguish unit regions,
statement regions, invocation regions, block regions, condition regions, and loop
regions. We show their definitions in Fig. 6.

Regions are converted from Jimple CFG by the analysis defined in Fig. 7.
The analysis is performed on the root of the CFG using regf. The function then
handles each node of the CFG by recursion and returns a tree of regions. It uses
the loop header set H and a map of loop headers to their bodies L from the
previous analysis, and a set of dead statements D whose all incoming edges or
predecessors are dead (according to SD). For convenience, we also define function
block which creates a block region from a sequence of statements by applying
regf to each of them in succession and aggregating them into a single region.

3.4 Call Count Analysis

Call count analysis is performed on the region tree in order to establish the
number of times each object’s methods are called. It is depicted in Fig. 8. The
analysis begins with the application of function ccount at the root of the region
tree and proceeds depth-first through the subregions. In general, method calls



D , {s | S = G(s), unpredecessed(SD, s)}
block(H, [s1, ..., sn]) , block [Ri | 1 < i < n,Ri = regf(H, si) ∧ (i = 1 ∨ ¬si ∈ Ri−1)]

regf(H, l : b1; ...; bn; ) , block(H, [l, b1, ..., bn])

regf(H, b1; ...; bn; ) , block(H, [b1, ..., bn])

regf(H, s ∈ H) , loop s, block(H \ {s}, [s′|s′ ∈ L(s)])

regf(H, s ∈
⋃
∀h∈H

L(h) ∨ s ∈ D) , unit

regf(H, s : if p goto l1 else l2) ,

case @e ∈ Stmt, e pdom s→
condition p, block(H, [s′ | l1 dom s′]), block(H, [s′ | l2 dom s′])

case ∃e ∈ Stmt, @e′ ∈ Stmt, e pdom s ∧ e′ pdom s ∧ e psdom e′ →
condition p, block(H, [s′ | l1 dom s′ ∧ e pdom s′]),

block(H, [s′ | l2 dom s′ ∧ e pdom s′])

regf(H, s : switch(i){case c1 : l1; ...; case cn : ln; default : l0}) ,
case @e ∈ Stmt, e pdom s→

condition (i = c1), block(H, [s′ | l1 dom s′]),
(
, ...,(

condition (i = cn), block(H, [s′ | ln dom s′]), block(H, [s′ | l0 dom s′])
))

case ∃e ∈ Stmt, @e′ ∈ Stmt, e pdom s ∧ e′ pdom s ∧ e psdom e′ →
condition (i = c1), block(H, [s′ | l1 dom s′ ∧ e pdom s′]),

(
, ...,(

condition (i = cn), block(H, [s′ | ln dom s′ ∧ e pdom s′]),

block(H, [s′ | l0 dom s′ ∧ e pdom s′])
))

regf(H, s : invoke i.[j(j1, ..., jn) : t](i1, ..., in){b1, ..., bm}) ,
invoke i, regf(H, b1), ..., regf(H, bm), s

regf(H, s) , statement s

Fig. 7: Region finding analysis.

on objects in the tree’s leafs are counted and the counts are aggregated upwards,
either by adding the call counts (with addjoin) in cases of sequences or by taking
the highest count (using maxjoin) in cases of alternative program paths.

Function ccount takes three arguments—the global state G, the maximum
number of executions of the parent region n, and the region of appropriate type.
The function returns a map of object identifiers to the number of times that
particular object’s method were called. Thus, when the function comes across
statement or unit regions it returns empty sets. When it reaches an invoke region
it notes the object owning the method and creates a mapping of that object to
the number of times the parent region is to be executed; this mapping is then
aggregated using function addjoin to the results of the evaluation of the joined
bodies of the invoked method using ccount. If a block region is encountered its
subregions are evaluated first and the results of these evaluations are aggregated
using addjoin. When ccount encounters a conditional region the condition is



ccount(G, n, unit ) , ∅
ccount(G, n, statement s) , ∅
ccount(G, n, invoke j, R1, ..., Rm, s) , S = G(s),

addjoin({SV (j) 7→ n},maxjoin(ccount(G, n,R1), ..., ccount(G, n,Rm)))

ccount(G, n, block [R1, ..., Rn]) , maxjoin(ccount(SV , n,R1), ..., ccount(G, n,Rn))

ccount(G, n, condition p,R1, R2, s) , S = G(s),

case pred(p, S) = true→ ccount(G, n,R1)

case pred(p, S) = false→ ccount(G, n,R2)

case pred(p, S) = ω → maxjoin(ccount(G, n,R1), ccount(G, n,R2))

ccount(G, n, loop h,R) , S = G(h), ccount(G, n ∗ SI(h), R)

maxjoin(M1, ...,Mn) , {k 7→ max(M1(k), ...,Mn(k)) | k ∈ dom M1 ∪ ... ∪ dom Mn}
addjoin(M1, ...,Mn) , {k 7→ M1(k) + ... + Mn(k) | k ∈ dom M1 ∪ ... ∪ dom Mn}
ω + c = ω, ω ∗ c = ω, max(ω, c) = ω

Fig. 8: Call count analysis.

checked and one of the subregions is evaluated, if the condition is true or false
or both conditions are evaluated and their results are aggregated using maxjoin
if the condition is unknown. Finally, with loop regions the subregion that is the
loop’s body is processed using ccount, but the number of executions of the parent
region is multiplied by the number of loop iterations (obtained from SI).

Function maxjoin is used for joining the results of evaluations of two or more
subregions where it is unknown which ones will execute. It takes n maps of some
keys to numerical values as arguments and returns a similar map. Out of all
values that share a key across the maps the maximum one is inserted into the
resulting map. Function addjoin is used for aggregating the results of evaluations
of a sequence of subregions that will execute one after another. It takes n maps
of some keys to numerical values as arguments and returns a similar map. All
values that share a key across the maps will be added together and the sum will
be inserted into the resulting map under that key.

Functions at this stage of the analysis may need numerical values to be
added or multiplied with the unknown value ω. If this happens, we treat it as an
absorbing element, and the result of such an operation is always unknown. In a
similar vein, the maximum of any set of numbers including ω is also unknown.

4 Precompiler Implementation

We implemented our precompiler as a tool for Atomic RMI using the Soot frame-
work. The precompiler implementation consists of three elements: Jimple cre-
ation, upper bound analysis, and code generation (as shown in Fig. 9). The Jim-
ple creator converts Java source code into the Jimple intermediate language—
this is provided by Soot. The upper bound analysis deduces the information
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Fig. 9: Components and information flow in the precompiler.

about remote object calls within Jimple. It is divided into four analyses, each
responsible for one pass over the code. The code generator instruments the input
source code with instructions based on the information obtained by the analysis.
The two components are described in more detail below.

4.1 Upper Bound Analysis

The upper bound analysis consists of value analysis (VA), region finding (RF),
transaction finding (TF), and object call analysis (OCA). These are forward
flow analyses implemented in Soot. Each of them makes one pass over the input
code in the form of a CFG from a particular starting point (the main method,
for instance). The implementation of each analysis defines a transfer function
applied to each node of the CFG, a join operator for joining result sets, and
initial result sets (see Fig. 4, Fig. 7, and Fig. 8).

Value analysis is the most complex of the analyses. It is the implementation of
the algorithm in Section 3.2 such that the transfer function and join implement
eval and join. The transfer function performs whatever action is needed for a
given statement type (these are recognized via the type system). The result sets
represent SV and SP , SI , and SD are passed via separate fields (for convenience).
The implementation finds loops headers and bodies using Soot’s built-in loop
finder. Loops are processed by running the analysis repeatedly on a pruned copy
of the CFG that contains only the statements from the loop and integrating
the results into the original analysis. Recurrent calls are handled by finding all
applicable method bodies, starting an analysis on each, and joining the results.
A stack of calls keeps track of the depth of recursion and when to bound it.

The implementation of value analysis needs to take care of additional sig-
nificant mechanisms that are obvious in the formalization and therefore glossed
over. These include mechanisms for evaluating expressions. Expressions’ argu-
ments’ types are recognized and the semantics appropriate to them is applied
(i.e. a + b is addition if a and b are integers or concatenation if they are strings).
All combinations of basic types (at least primitives and Object) and operators
need to be implemented. We take the approach that operators are defined by
classes and perform argument-dependent operations.



Region finder converts the CFG into a region graph in accordance with the
algorithm in Section 3.3. The algorithm performs numerous graph searches like
finding domination and post-domination relations within the graph (provided
by Soot) and finding if particular paths exist within the CFG (e.g. whether all
paths from a conditional expression leads to the end of the body or to a common
post-dominator). RF creates a region hierarchy, were each region is characterized
by its type and type-specific fields.

Transaction finder is a component that tracks Atomic RMI transactions and
their components: it identifies the start and possible ends of transactions, remote
objects used within, and transactions’ preambles. These information are collected
for use by OCA and marked in Jimple using the Soot tag system.

OCA is responsible for tallying remote objects calls as in Section 3.4. The im-
plementation is straightforward: it accepts the data from the preceding analyses
and uses them to traverse regions and identify those that make calls to remote
objects. The number of executions of these regions is predicted and the counts
are summed up with reference to particular remote objects.

The implementation must take into account the unknown values that may
appear in the course of this analysis. These are implemented as a new type that
allows any positive natural number or a value representing ω. The type also
defines the maximum function and arithmetical operations using the unknown
value (specifically addition and multiplication from Fig. 8).

4.2 Code Generation

The code generator for Atomic RMI modifies code on the lexical level using the
suprema obtained from the execution of the upper bound analysis. Necessarily,
in order for the code generator to modify the existing source code that source
code must be available for analysis. The source is converted into tokens by the
SableCC lexer [6] and then divided into lines.

The generator performs three passes over the collection of lines of tokens. In
the first pass the generator locates transactions in the source code using the in-
formation provided by the transaction finding (TF) phase of code analysis. When
found, all definitions in a transaction’s preamble are marked for removal, with
the exception of those which are followed by a comment string specifying them as
manual overrides. The second pass inserts a line of code into each transaction’s
preamble for each identified remote object pertaining to that transaction (lines
2, 3 in Fig. 2). The insert contains a variable representing the remote object and
a supremum on the number of method calls to that object, and it is built using
on a simple template. All the inserts are marked for prepending to the beginning
of the transaction. The final pass applies all the changes marked by the previous
two passes to the tokens and they can then be written to the output stream.

5 Conclusion

Our work illustrates a static analysis for extracting the maximum number of
times objects will be called in a fragment of code. Such information has a num-



ber of applications (we discuss them in Section 1) but we concentrate on using
the upper bounds as input data for Atomic RMI. We have so far found that the
analysis we implemented solves this problem satisfactorily for our purposes. The
tree-like region-based intermediate representation allows to find all of the method
calls within the code and the use of the absorbing unknown value produces con-
servative results when uncertain values are involved. Both of these guarantee
that the statically derived upper bounds are correct, i.e. not lower than any
actual number of method calls on a particular object. Apart from being conser-
vative, the estimated upper bounds should also be as accurate as possible—as
close to the actual number of executions as possible. For typical Atomic RMI
transaction code, the analysis is able to handle most scenarios adequately.

The formalization of our algorithm and adherence to it simplified the imple-
mentation of the tool. The formalization was a blueprint for the join operators
and transfer function of the individual data flow analyses which it defined their
modi operandi and allowed us to concentrate on the details of the interfaces,
data structures, etc. during implementation. Another advantage is that the cor-
rectness of the created tool is verifiable, extensible, and amendable by inspection
and modification of the underlying algorithm, without an initial need to delve
into the actual source code.

Our future work may include extending the current analysis with some ad-
ditional refined analyses. In particular, there are ways to provide better iden-
tification of particular objects in the code, and more accurate ways to bound
loops and recursion. The current algorithms may have trouble analyzing certain
instances of input code accurately, especially when the depth of recursion or the
number of loop iterations exceeds L. This may be resolved by following some of
the approaches we list in Section 2. We also plan on exploring some elements of
lock inference [2]. In particular, if an object’s method were called an unknown
number of times due to loops or recursion it would be possible to mark the last
use of the remote object and to free it on that basis in run-time. These two
methods could provide complementary mechanisms covering most scenarios. We
also look forward to using our tool in new applications such as scheduling.
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