
Having Your Cake and Eating it Too: Combining
Strong and Eventual Consistency

Paweł T. Wojciechowski
Institute of Computing Science

Poznań University of Technology
60-965 Poznań, Poland

pawel.t.wojciechowski@cs.put.edu.pl

Konrad Siek
Institute of Computing Science

Poznań University of Technology
60-965 Poznań, Poland

konrad.siek@cs.put.edu.pl

Abstract
Given the limitations imposed on distributed systems that are
necessary to maintain strong consistency guarantees there is
a growing interest in relaxed consistency models. Such mod-
els are often sufficient for particular applications, but allow
more freedom to improve scalability and availability. Even-
tual consistency is a particularly useful approach, where the
correct state spreads throughout the system over time, so that
at any point any element of the system may be inconsistent,
but all elements will eventually converge upon a consistent
state. On the other hand relaxing properties may be unac-
ceptable in the general case: a slightly stale shopping cart is
one thing, but inconsistent payment processing is quite an-
other.

In this paper we try to balance strong and eventual con-
sistency by proposing a general-purpose pessimistic dis-
tributed transactional memory that allows eventually con-
sistent transactions to run alongside consistent ones. While
the former maintain read-isolation (i.e., read from a consis-
tent snapshot), they do not interfere with the latter’s safety
properties. The relaxed-consistency transactions are later
followed by their consistent counterpart so that the user
view and global state eventually agree. Our contribution is to
show that we can significantly relax synchronization (to the
point of eliminating it completely from eventually consistent
transactions) while retaining useful properties, but without
imposing additional constraints about system architecture or
data operations, common to other relaxed consistency ap-
proaches. All this, without affecting those transactions that
execute in consistent mode.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PaPEC ’14, April 13–16, 2014, Amsterdam, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2716-9/14/04. . . $15.00.
http://dx.doi.org/10.1145/2596631.2596637

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed pro-
gramming

Keywords Transactional memory, Eventual consistency

1. Introduction
Transactional Memory (TM) [8] is an increasingly popular
approach to concurrent programming that aims to make it
more intuitive as well as efficient by employing and refining
the transaction abstraction known from database systems.
TM also found a use in distributed systems, from universal
applications [5, 14] to specialized ones, like geo-distributed
key-value stores [4]. While the distributed setting requires
a consideration of new problems like partial failures, it also
provides an opportunity to use eventual consistency in trade
for availability or scalability.

A distributed e-commerce system is one example where
a TM application could use eventually consistent transac-
tions to perform stock inquiries and sales data analyses while
consistent transactions finalized purchases. The efficiency
gain (in terms of response time) should be particularly vis-
ible when operating in high-contention environment where
a strongly consistent transaction accessing a wide scope of
variables is likely to be forced to repeatedly abort and retry
(optimistic TM) or wait a long time (pessimistic TM). If the
consistency requirement can be temporarily suspended, such
a transaction can execute out of order and receive an esti-
mated, and often sufficient result much sooner.

In this paper, we propose a distributed TM that allows
eventually consistent transactions within the framework of
versioning algorithms [11, 15, 16]—a family of general-
purpose pessimistic concurrency control algorithms with
strong consistency guarantees. Eventually consistent trans-
actions are designated by the programmer to execute with-
out waiting. They maintain read-isolation (i.e., read from a
consistent snapshot) and are prevented from modifying the
global system state. They are followed by their "proper" con-
sistent counterparts which provide convergence of the final
result.

x “ 0
(

T1

q
rpxq0,wpxq1

y

T2

q
Œrpxq1,wpxq2

y

x “ 2
(

(a) Conflicting transactions—pessimistic execution.

x “ 0
(

T1

q
rpxq0,wpxq1 ý

T2

q
Œrpxq0,wpxq1

y

x “ 1
(

(b) Aborting transaction.

x “ 0, y “ 0
(

T1

q
rpxq0,wpxq1, rpyq0, wpyq1

y

T2

q
Œrpxq1,wpxq2 Œ

y

x “ 2, y “ 1
(

(c) Conflicting transactions—early release.

Figure 1: Versioning algorithm examples.

2. Versioning Algorithms
The general idea behind versioning algorithms is that they
are pessimistic, so transactions avoid conflicts and never roll
back (rather than aborting and retrying when one occurs, as
in optimistic TM). This approach is capable of dealing with
high contention and has an easier time with issues like irre-
vocable operations (that cannot be aborted or re-executed)
than the optimistic approach. As soon as transactions start,
they get a version number for each variable they will access
(some prior knowledge obtained via static analysis [10] or
typing [15] is needed). Then, the versions are used in con-
junction with a local counter (also per variable) to defer the
transaction’s accesses to each variable until preceding trans-
actions finish accessing them. Broadly, a transaction can ac-
cess a variable if it has a version number equal to the lo-
cal counter for that variable. Once a transaction commits,
aborts, or releases a variable, local counters are incremented.
(We present only a rudimentary algorithm since delving into
the complexities of a more refined mechanisms introduces
no new insights towards the work presented here.) Our sys-
tem model is one where clients run transactions that access
shared variables, each of which is located on one of several,
independent remote servers (as opposed to being replicated
on multiple nodes of a single "logical" server).

We elaborate on the modus operandi, using the examples
in Fig. 1. In Fig. 1a transactions T1 and T2 both try to
update a variable x (execute a read rpxqv and a write wpxqu).
Since T1 starts (denoted

q
) before T2, it has a lower version

number for x than T2 (since they are consecutive, they differ
by one). T1 can access x once its local counter is equal to
the transaction’s version of x. Once T1 finishes (commits,y

), the local counter is incremented, so T2 can then start
accessing x. In effect T2 defers access until T1 completes.
Note then, that transactions are synchronized per variable,
so that if transactions do not access the same variables, they
will execute in parallel. In Fig. 1b, a similar situation occurs,
except T1 does not commit, but aborts (denoted ý). Since T2

waits for T1 to complete, T2 observes the state after T1 rolls
back. A similar case is shown in Fig. 1c, except that here
T1 accesses two variables x and y. Versioning algorithms

 0
x “ 0

(

T1

q
rp

0
xq0,wp

1
xq1

y

T2

#

T c
2

T ec
2

q
Œrp

1
xq1,wp

2
xq2

y

“

rp
0
xq0,wpxq1

‰

 2
x “ 2

(

Figure 2: Eventually consistent execution of T2.

allow early release, so the algorithm may determine which
operation on x is last (see [11]) or the programmer can
use a release operation. In such a case, T1 increases the
local counter for x after the last operation on x (wpxq1)
instead of on commit. In effect T2 can access x while T1

is still running. This allows some versioning algorithms to
increase their efficiency. However, since it is possible for T1

to rollback after releasing x, T2 may be required to defer
committing until T1 commits. If T1 aborts, T2 can also be
forced to abort.

Versioning algorithms are distributed and are capable of
delivering strong safety and consistency guarantees.

3. Eventual Consistency Extension
We propose to extend the versioning algorithms with a
mechanism that allows certain eventually consistent transac-
tions to execute quickly, without waiting for currently run-
ning transactions. When they commence, such transactions
grab the most recent consistent snapshot of all the variables
they need of those snapshots that can be obtained without
waiting. Once the snapshot is buffered, these transactions
operate only on the buffers, to avoid waiting during reads
and invalidating the global state on writes. Thus, this mode
relaxes safety—the client may initially see an inconsistent
view (although one generated using read-consistent data)
and, since his updates are not propagated, has a different
impression of the global state. Thus, the state must even-
tually be converged, and so, the transaction is concurrently
re-executed in consistent mode to fix the client’s view and
apply modifications. Note that other clients only see the ex-
ecution of the consistent transaction.

Eventually consistent transactions are meant to operate
on a consistent snapshot and are specified as follows. Let
i
x denote shared variable x in version i and let Vk be an
access-set of transaction Tk containing a set of variables in
versions accessed by Tk. Then, let us distinguish two modes
of executing Tk: an eventually consistent mode (as T ec

k)
and the regular mode (as T c

k). Let T ec
k be any eventually

consistent transaction from the set of all such transactions
Tec and let T c

k be any consistent transaction from Tc. Let
S Tk
ÝÑ S1 be a transition from system state S to system state

S1 caused by an atomic execution of Tk where a state is

a set of all shared variables in current versions t
i
x,

j
y, ...u.

Finally, let S0 be the initial state. Then, given any T ec
k , these

conditions must be met:

 0
x “ 0,

0
y “ 0,

0
z “ 0

(

T1

q
rp

0
xq0,wp

1
xq1, rp

0
yq0,wp

1
yq1

y

T2

q
Œrp

1
xq1,wp

2
xq2, Œrp

1
yq1,wp

2
yq2

y

T3

#

T c
3

T ec
3

q
rp

2
xq2,wp

3
xq3, rp

2
yq2,wp

3
yq3

y

“

rp
0
xq0,wpxq1, rp

0
yq0,wpyq1

‰

T4

#

T c
4

T ec
4

q
rp

3
xq3,wp

4
xq4, rp

0
zq0,wp

1
zq1

y

“

rp
1
xq1,wpxq2, rp

0
zq0,wpzq1

‰

 4
x “ 4,

3
y “ 3,

1
z “ 1

(

Figure 3: Eventually consistent execution of T3 and T4.

1. For any
i
x P Vk, i is a version of x such that, if for some

(non–eventually-consistent) Tq it is true that
i
x P Vq , then

Tq released
i
x or Tq is committed.

2. Given Vk, there exists state S (either S0 or one resulting
from a transition S1 Tq

ÝÑ S) such that Vk Ď S.
3. There is no

i
x P Vk such that T ec

k writes to
i
x (instead T ec

k

writes to a non-shared buffer x).
In addition, any

i
x P Vk is the most recent (i.e., the largest)

version of x that meets conditions 1–3 when T ec
k starts and

T ec
k does not increment the version of x or its local counter.

The gist of this idea is shown in Fig. 2, where transaction
T1 executes normally and T2 is eventually consistent. Thus
T2 is executed concurrently in two modes as T ec

2 and T c
2 .

T ec
2 is the relaxed version of the transaction, which takes

a consistent snapshot of its access set and begins without
waiting for T1 to finish working on x. Therefore, instead of
reading from version

1
x, T2 reads from the earlier

0
x. In effect,

the client first sees a read-consistent result of execution of
T2, but one that may be outdated in reference to the global
state. Since any writes on the basis of this data likely would
be globally inconsistent, the write to x in T ec

2 is done only to
a local buffer (x). Thus, it is not visible to other transactions
outside of T2, so the inconsistent state does not propagate
or affect other transactions. Simultaneously, T c

2 executes
in accordance to some original versioning algorithm and
produces the final result after a delay and performs all the
write operations required by T2. In effect, the client’s final
view becomes consistent.

Fig. 3 contains a more involved example of early-release–
capable transactions operating on multiple variables. Trans-
actions T1 and T2 increment x and y and both release x be-
fore committing. Transaction T3 increments x and y. It is
eventually consistent, so it is split into T ec

3 and T c
3 . T ec

3 ex-
ecutes instantly and uses versions

0
x and

0
y. T ec

3 does not use
1
x even though it is available to T3, because the snapshot of
t
1
x,

0
yu would not be internally consistent (see Condition 2).

That is, given a transition S0
T1
ÝÑ S1,

1
x belongs in S1 and

0
y and

0
x are both in S0. Transaction T ec

4 , on the other hand,
accesses x and z, so it is capable of using

1
x, because

1
x and

0
z

do create a consistent snapshot. However, both T ec
3 and T ec

4

work on stale data, so their consistent counterparts T c
3 and

T c
4 are run so that clients’ views eventually converge on a

consistent state.
Since transactions in versioning algorithms know their

write sets in advance, the mechanism can be introduced to
the original versioning algorithms by adding three additional
structures for any variable x: a buffer for storing a copy of
the most recent version of a committed variable Bcpxq, a
similar buffer for a variable that was released early Brpxq,
and a register F pxq for keeping track of the access set of the
transaction that released x early minus any other variables
that this transaction also released early. Then, any Tq needs
to copy the latest version of variables in Vq to Bc during
commit. When releasing x early, Tq needs to copy the latest
version of x to Br and also to register any variables to
F pxq that are in Vq but were not yet released. Then, any
eventually consistent transaction T ec

k must read x from Br

if Vk X F pxq “ ∅. Otherwise T ec
k must read x from Bc. In

effect T ec
k satisfies our specification with respect to its access

set. Tq can clear F pxq on commit.
The extension allows versioning algorithms to improve

client response time where the consistency of the client view
can be estimated. The cost incurred by the modification of
the algorithm is minimal, since in terms of network commu-
nication, only a transmission of the access set is required,
and in terms of space, only three additional structures are
needed (as opposed to copies per transaction). It is also im-
portant to note that, excluding the transactions executing in
inconsistent mode, the system preserves its original prop-
erties. On the other hand, side effects of eventually consis-
tent transactions must be minded by the programmer. Since
an eventually-consistent transaction is re-executed in order
to converge, any non-transactional operations within will be
re-executed. If these are irrevocable operations, re-execution
may be dangerous: e.g., a non-reentrant lock may be re-
acquired and cause a deadlock.

Our future research includes a number of extensions of
the idea presented here. A straightforward one is opportunis-
tically to re-use in consistent mode the effects of the trans-
action’s execution in relaxed mode. Given a transaction Tk

executed as T ec
k and T c

k , if no variable from Tk’s readset
is modified between T ec

k commits and T c
k begins, the latter

could benefit by updating the variables from Tk’s writeset
with the values buffered by T ec

k instead of executing all the
reads and local code.

4. Related Work
Below we compare our approach with related work and ex-
ample systems. The readers should bear in mind, however,
that although we managed to eliminate some restrictions
present in these systems, our model does require some lim-
ited synchronization, that others may not require. Our con-
tribution is to show that we can significantly relax synchro-
nization (but not eliminate it completely) and still be able to
achieve useful properties.

Weaker consistency models are widely used in practice
in replicated systems. For instance, in Bayou [13], a weakly
connected replicated storage system, conflict resolution is
done automatically using user-defined application-specific
merge operations. Amazon’s Dynamo [6] provides eventual
consistency, where updates are propagated to replicas asyn-
chronously, so reads and writes may operate on stale ver-
sions and be reconciled later. It requires the client to resolve
version (or consistency) conflicts whereas in our system the
client can either accept inconsistent data quickly (as returned
by ec-transactions) or may choose to wait and obtain the
globally consistent data returned by the c-transactions that
always give the most accurate version of data. Thus, we sim-
plify the choice. Pileus [12] provides a transactional geo-
replicated key-value store where consistent primary replicas
propagate changes to eventually consistent secondary repli-
cas. Writes are limited to primary replicas and reads can
be done from any replica. Then, much like in our work the
client can select whether consistent or eventually consistent
state is accessed. However, this is done by selecting repli-
cas rather than just switching modes, which means compli-
cating network communication (i.e., if many clients want
to read consistent data a bottleneck is likely). Most impor-
tantly, however, the replicated model used in all three exam-
ples above is different than the one we present here, more
akin to a service-oriented environment or a distributed key-
value store. Here, the purpose of consistency is to preserve
the correctness of client views rather than uniformity of re-
mote resources.

There were also attempts at relaxing the consistency of
transactions and TM. E.g., view transactions [1] operate on
a consistent snapshot but may commit in a different snap-
shot, if its user-specified subset is valid, i.e., such that had
the transaction operated on the commit-time snapshot, the
visible effect would be the same. Elastic transactions [7] are
each composed of smaller transactions that work on consis-
tent states, but which may be mutually inconsistent. How-
ever, in such systems inconsistent views are not later recon-
ciled, so consistency is relaxed permanently, not temporarily.

Graph revisions [3] allow to obtain eventual consistency
at the central server through loosely synchronized interac-
tion of all distributed clients with the server. Our model is
fully distributed (no central server) with data and clients
located on various nodes and synchronized through ver-
sions. More importantly, regular c-transactions maintain

globally consistent view at all times, regardless of inter-
action between clients and servers that hold data. In [2]
the researchers propose a transactional interface to abstract
query-update data stores with eventual consistency using the
revision diagram model. Unlike the work shown here how-
ever, these transactions must always commit, which limits
their expressiveness and fault-tolerance capability. Plus, our
work aims to have eventually consistent transactions along-
side consistent ones.

Conflict-free Replicated Data Types (CRDTs) [9] al-
low to converge replicated data to be a globally consistent
state without update synchronization, if only data satisfy
the monotonic semi-lattice property (roughly: the order of
updates on different replicas can differ). Our model does
not impose such restrictions on shared data, albeit it does
require some synchronization. Moreover, we target general
distributed transactions, not only replication.

Acknowledgments
The project was funded from National Science Centre funds
granted by decision No. DEC-2012/07/B/ST6/01230.

References
[1] Y. Afek, A. Morrison, and M. Tzafrir. Brief announcement:

View Transactions: Transactional Model with Relaxed Con-
sistency Checks. In Proc. PODC’10, July 2010.

[2] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Even-
tually consistent transactions. In Proc. ESOP’12, Apr. 2012.

[3] S. Burckhardt, M. Manuel Fähndrich, D. Leijen, and B. Wood.
Cloud types for eventual consistency. In Proc. ECOOP’12,
June 2012.

[4] J. C. Corbett and et al. Spanner: Google’s Globally-
Distributed Database. In Proc. OSDI’12, Oct. 2012.

[5] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues.
D2STM: Dependable distributed software transactional mem-
ory. In Proc. PRDC’09, Nov. 2009.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proc. SOSP’07, Oct. 2007.

[7] P. Felber, V. Gramoli, and R. Guerraoui. Elastic Transactions.
In Proc. DISC’09, Sept. 2009.

[8] M. Herlihy and J. E. B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proc.
ISCA’93, May 1993.

[9] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proc. SSS’11, Oct.
2011.

[10] K. Siek and P. T. Wojciechowski. A Formal Design of a Tool
for Static Analysis of Upper Bounds on Object Calls in Java.
In Proc. FMICS’12, Aug. 2012.

[11] K. Siek and P. T. Wojciechowski. Brief announcement: To-
wards a Fully-Articulated Pessimistic Distributed Transac-
tional Memory. In In Proc. SPAA’13, July 2013.

[12] Y. Sovran, R. Power, M. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proc. SOSP’11, Oct.
2011.

[13] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer,
and C. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Proc. SOSP’95, Dec.
1995.

[14] A. Turcu, B. Ravindran, and R. Palmieri. HyFlow2: A High
Performance Distributed Transactional Memory Framework
in Scala. In Proc. PPPJ’13, Sept. 2013.

[15] P. T. Wojciechowski. Isolation-only Transactions by Typing
and Versioning. In Proc. PPDP ’05, July 2005.

[16] P. T. Wojciechowski, O. Rütti, and A. Schiper. SAMOA: A
Framework for a Synchronisation–Augmented Microprotocol
Approach. In Proc. IPDPS ’04, Apr. 2004.

