Atomic RMI 2: Distributed Transactions for Java

Pawet T. Wojciechowski and Konrad Siek

Poznar University of Technology

{pawel.t.wojciechowski,konrad.siek } @cs.put.edu.pl

30 X 2016

IO

http://dsg.cs.put.poznan.pl

39

Transactional memory

Concurrency control is notoriously difficult:

m interaction between unrelated threads
m additional structural code

m deadlocks, livelocks, priority inversion

synchronized{aLock} {
synchronized{bLock} {
a = b;

}
b=b+ 1;

)

39

Transactional memory

Concurrency control is notoriously difficult:
m interaction between unrelated threads
m additional structural code

m deadlocks, livelocks, priority inversion

synchronized{aLock} {

synchronized{bLock} { transaction.start();
a=b; a = b;

} b=b+ 1;

b=b+ 1; transaction.commit () ;

}

Transactional memory (TM):
m ease of use on top

m efficient concurrency control under the hood

)

39

Transaction abstraction

Transaction:

T;

opy
op;
0Py,

Execution:

i1

i O

[0p17 0Poy -evy Opn]
start;

ri(x)—>v | wi(z)v—ok | ..
tryC,— C | tryC, —> A | tryd, — A |
ri(x)> A wi(z)v—>A] ..

start; ri(z)—wv w;i(z)u — ok tryC;— C

(instantaneous) (delayed)

3/39

Transaction abstraction

Transaction:

E = [0p17 0Py -oeny Opn]

op; = start;

op; = ri(z)>v]| w(z)v—ook]|..

op, = tryC,—C |tryC,—>A | tryd,— A |

ri(x)> A wi(z)v—>A] ..

Execution:

start; ri(z)—wv w;i(z)u — ok tryC;— C
;o R ——o0
(instantaneous) (delayed)

Conflict resolution (optimistic TM, increment of z):

start; ri(z)—0 wi(z)l—ok tryC;—C
O O

i

start; rj(x)—0 wj(z)1— A
J© © °

Transaction abstraction

Transaction:

E = [0p17 0Py -oeny Opn]

op; = start;

op; = ri(z)>v]| w(z)v—ook]|..

op, = tryC,—C |tryC,—>A | tryd,— A |

ri(x)> A wi(z)v—>A] ..

Execution:

start; ri(z)—wv w;i(z)u — ok tryC;— C
;o R ——o0
(instantaneous) (delayed)

Conflict resolution (optimistic TM, increment of z):

start; ri(z)—0 wi(z)l—ok tryC;—C
O O

i

start rj(z)—0 wi(z)l—>A starty rp(z)—1 wjr(x)2— ok tryCj—C
j o————O0———O0 0 Yol

T,

Problems with optimistic TM

Optimistic TM relies on aborts:

m low performance in high contention

wn(2)3— ok tryCra—C

start; 7i(x) =0 w(z)l ok tryCyi—C
start; () =0 wi(z)l—>A startj (o) =1 wp(z)2—ok tryCy—C
Ty
start; n(r) =0 w(a)l—A starty ne(@) =1 wp(n)2— A starty () —2
Tk o o o KA
Ty Tor

39

Problems with optimistic TM

Optimistic TM relies on aborts:

m low performance in high contention

start; n@) =0 w(@)l—ok tryCi—C
start; ri(z)—0 wi(x)l—A starty rye(x)—1 wy(z)2— ok tryCy—C
Ty
start. n@)—=0 wle)l—A starty me(@) =1 wp(n)2—A starty no(e) =2 wp(@)3—ok tryCra—C
Ty Ao o g
Ty Tor

m problems with irrevocable operations:

m do not operate on shared data
m have visible side effects
m effects cannot be withdrawn (must be compensated)
m examples: network communication, locks, system calls, |/0
I start; () —0 wi(z)l— ok tryC,—C
7, start; i(2)—0 irr l\t?\[{\)/}\if/\/;lv’&hu?lr rp(z)—1 e wp(w)2— 0k tryCu—C
J

39

Pessimistic TM

Optimistic TM:
m run simultaneously in case there are no conflicts

m abort and retry if there are conflicts

39

Pessimistic TM

Optimistic M= Pessimistic TM:

m run simultaneously in case there are no conflicts

m abort and retry if there are conflicts

5/39

Pessimistic TM

Optimistic M= Pessimistic TM:

m defer execution to prevent conflict

m abort and retry if there are conflicts

39

Pessimistic TM

Optimistic M= Pessimistic TM:

m defer execution to prevent conflict

m avoid (most) forced aborts

start; ry(z) >0 wi(z)l—ok tryC;—C

start; () [-1 wj(x)2— ok tryC;—C
P—o0———=Q

m less waste of CPU (more waiting)
m performs better in high contention

m easy handling of irrevocable operations

we(w)3—> ok

tryCy,

> C

39

Atomic RMI 2

A Java framework implementing distributed pessimistic TM

Implements the Optimized Supremum Versioning Algorithm

completely distributed

early release
OptSVA

[
[
m irrevocable operations
m rollback support

[

fault tolerance

Backend: Java RMI

6/39

Atomic RMI 2 architecture

JAANERN

N

%

e\

/—‘

async
request
executor

jvml

async
request
executor

39

Remote object definition

interface Resource extends Remote {
OAccess (Mode .READ)
int get() throws RemoteException;

@Access (Mode . WRITE)
void set(int value) throws RemoteException;

@Access(Mode.ANY)
void increment() throws RemoteException;

}

class Resourcelmpl implements Resource extends TransactionalUnicastRemoteObject {
private int value = 0;

void set(int value) {
this.value = value;

int get() {
return this.value;
¥
void increment() {
this.value += 1;

}

class Server {
public static void main(String[] args) throws Exception {
Registry registry = LocateRegistry.createRegistry(9001);
registry.bind("x", new ResourceImpl());
registry.bind("y", new ResourceImpl());

/39

Transaction example

Registry registry = LocateRegistry.getRegistry(9001);
Transaction transaction = new Transaction();

Resource x = transaction.accesses(registry.lookup("x"));
Resource y = transaction.accesses(registry.lookup("y"));

transaction.start();
int xv = x.get();
int yv = y.get();
x.set(xv + 2);

y.set(yv + 2);

transaction.commit () ;

39

Transaction example (Transactional)

Registry registry = LocateRegistry.getRegistry(9001);
Transaction transaction = new Transaction();

Resource x = transaction.accesses(registry.lookup("x"));
Resource y = transaction.accesses(registry.lookup("y"));

transaction.start(
new Transactional() {
void atomic (Transaction transaction) {
int xv = x.get();
int yv = y.getO;
x.set(xv + 2);
y.set(yv + 2);

10/39

OptSVA: basic versioning

T; starts:

- atomically get the next free version ticket for each object

T; executes a method on z:
- wait until T;'s ticket matches z's version counter
- execute the method

T; commits:

- wait until all transactions with lower versions for x, y, 2 commit
- release each object by incrementing version counter

11/39

Transaction execution: basic versioning

start; ri(z)—0 ri(y) —0 w;(z)2— ok
T: o

i

w;(y)2— ok tryC;— C
O
get version for z: 0 wait until counter

wait until counter
get version for y: 0 at z is set to 0

release x, y:
at y is set to 0 set counter at z to 1
set counter at y to 1

Transaction execution:

i

O

basic versioning

start; ri(z)—0 ri(y) —0 w;(z)2— ok w;(y)2— ok tryC; — C

get version for z: 0 wait until counter

wait until counter
get version for y: 0 at z is set to 0

| release x, y:
at y is set to 0 | set counter at z to 1
set counter at y to 1

start; rj(x) L —2
— B
J
get version for z: 1 wait until counter at z is set to 1

get version for y: 1

Transaction execution: basic versioning

start; ri(z)—0 ri(y) —0 w;(z)2— ok w;(y)2— ok
T; o

get version for z: 0 wait until counter

get version for y: 0 at z is set to 0

tryC; — C

wait until counter | release x, y:
at y is set to 0 | set counter at z to 1
| set counter at y to 1

start; rj(x) =2
—]]
J
get version for z: 1 wait until counter at z is set to 1

get version for y: 1

starty, re(z)—0 wi(2)2— ok tryCp— C
Ty, o o

get version for z: 0 wait until counter

release z:
at z is set to 0

set counter at z to 1

12/39

Transaction example: upper bounds

Transaction transaction = new Transaction();

Resource x = transaction.accesses(registry.lookup("x"), 2);
Resource y = transaction.accesses(registry.lookup("y"), 2);

transaction.start();

int xv = x.get();
int yv = y.get(Q;
x.set(xv + 2);
y.set(yv + 2);

transaction.commit () ;

39

OptSVA: early release

T, starts:
- atomically get the next unclaimed version ticket for each object

T; executes a method on z:

- wait until T;'s ticket matches z's version counter
- execute the method

- if execution counter reached declared upper bound, release = by
incrementing its version counter

T; commits:

- wait until all transactions with lower versions for x, y, 2 commit

- release each object by incrementing its version counter
(if necessary)

14 /39

Transaction execution: early release

start; ri(z)—0 ri(y)—0 w;(z)2— ok wi(y)2— ok tryC;— C
T; o 0

get version for z: 0 UB for = reached UB for y reached

get version for y: 0 release z: release y:

UB for z: 2 set counter at y to 1 set counter at y to 1

UB for y: 2

Transaction execution: early release

start; ri(z) >0 ri(y) —0 w;(z)2— ok w;(y)2— ok tryC;— C
T; o o
get version for z: 0 T UB for = reached T UB for y reached
get version for y: 0 release x: release y:
UB for z: 2 | set counter at y to 1 | set counter at y to 1
UB for y: 2 |
start;

x ri(y)—2

get version for z: 1 wait until counter wait until counter
get version for y: 1 at z issetto 1 at yissettol

39

Deriving upper bounds

Upper bounds can be derived by static analysis (precompiler)

Supplemented by manual early release

16 /39

Transaction example: manual early release

Transaction transaction = new Transaction();

Resource x = transaction.accesses(registry.lookup("x"));
Resource y = transaction.accesses(registry.lookup("y"));

transaction.start();

int xv = x.get();
int yv = y.get(;

if (xv < 10)
x.set(xv + 2);

else
transaction.release(x);

y.set(yv + 2);

transaction.commit();

17 /39

Transaction example: manual abort

Transaction transaction = new Transaction();

Resource x = transaction.accesses(registry.lookup("x"), 2);
Resource y = transaction.accesses(registry.lookup("y"), 2);

transaction.start();

int xv = x.get();
int yv = y.get(;

if (xv < 10)
x.set(xv + 2);

else
transaction.abort();

y.set(yv + 2);

transaction.commit();

18 /39

OptSVA: abort support

T; executes a method on z:

- wait until T;'s ticket matches z's version counter
if any declared object is invalidated: force abort

- if first operation on z: make backup copy

- execute the method

if reached declared upper bound for z: release z

T, commits:

- wait until all transactions with lower versions for z, ¥, z finish
- if any declared object is invalidated: force abort
- release each object (if necessary)

T; aborts:

- wait until all transactions with lower versions for z, ¥, z finish
- invalidate modified objects and revert them from backup
- release each object (if necessary)

19/39

Transaction execution: abort

start; ri(z)—0 ri(y)—0 w;(z)2— ok tryd; — A
o o

make backup of 2 make backup of y release z invalidate ., y
restore z, y from backup
release y

Transaction

execution: cascading abort

start; ri(z)—0 ri(y)—0 w;(z)2— ok tryd; — A
7 ?
make backup of 2 make backup of y | release z invalidate ., y
restore z, y from backup
| release y
start; rj(x) ‘D—> 2 \ rj(y) —A
io————————— ¢ - - - - ————— === — —
J
wait for check if 2,y wait until y is released
are invalidated check if z, y are invalidated

make backup of = force abort

20/39

Transaction example: prevent cascading aborts

Transaction transaction = new Transaction(true); // reluctant transaction

Resource x
Resource y

transaction.accesses(registry.lookup("x"), 2);
transaction.accesses(registry.lookup("y"), 2);

21/39

OptSVA: reluctant transactions

Reluctant T; executes a method on z:

- wait until all transactions with lower versions for x finish
if any declared object is invalidated: force abort

- if first operation on z: make backup copy

- execute the method

if reached declared upper bound for z: release z

T, commits:

- wait until all transactions with lower versions for z, y, z finish
- if any declared object is invalidated: force abort
- release each object (if necessary)

T, aborts:

- wait until all transactions with lower versions for z, ¥, z finish
- invalidate modified objects and revert them from backup
- release each object (if necessary)

Transaction execution: prevented cascading aborts

start; ri(z)—0 ri(y)—0 w;i(z)2— ok tryd; — A
T; o °
make backup of z make backup of y release = invalidate z, y
restore z, y from backup
| release y
start; rj(z) =0
e e

reluctantly wait for =

23 /39

Example: a transaction treating objects as read-only

Transaction transaction = new Transaction();

Resource x = transaction.reads(registry.lookup("x"), 1);
Resource y = transaction.accesses(registry.lookup("y"));

transaction.start();
int xv = x.get();
y.set(xv + 2);

System.out.println("new value: " + y.get());

transaction.commit () ;

24

39

OptSVA: a transaction treating objects as read-only

T; starts:

- (atomically) get the next unclaimed version ticket for each object
- cache all read-only objects in parallel
- once object x is cached, release x

T; executes a read method on read-only object z:

- wait until z object finished caching

- if any declared object is invalidated: force abort
- if first operation on z: make backup copy

- execute the method

T, commits:

- wait until all transactions with lower versions for z, i, 2 commit
- if any declared object is invalidated: force abort
- increment version counter for each object (if necessary)

25 /39

Transaction execution: read-only objects

tryC; — C
O

Ty —o—
| release
start; \ ri(z)—0 w;(y)2— ok ri(y)—2
T;
start caching z | wait until z
| is cached
Y
------ D
wait for z cache z

release x

Transaction execution: read-only objects

Ty —o—
| release z
start; \ ri(z)—0 w;(y)2— ok ri(y)—2 tryC; — C
start caching z \ wait until z <r
| is cached
Y
- —————
wait for z | cache = (
| release x \
start; rj(z) S0 ri(y) —2
jo———t - — H—

26

39

Transaction example: write optimizations

Transaction transaction = new Transaction();
Resource x = transaction.reads(registry.lookup("x"), 1);
Resource y = transaction.accesses(registry.lookup("y"),

1 /*writex/, 1 /*read*/);
transaction.start();
int xv = x.get();
y.set(xv + 2);

System.out.println("new value: " + y.get());

transaction.commit () ;

27 /39

OptSVA: first write

T; executes a write method on z:

- if first operation of any kind on z: create log
- execute the method on log (if available)

T; executes other methods on z:

- wait until T;'s ticket matches z's version counter
- if log for = has operations: apply log to = and discard the log
- execute the method

T; commits:

- wait until all transactions with lower versions for x, y, 2 commit
if any declared object is invalidated: force abort

apply log to z (if necessary)

- increment version counter for each object (if necessary)

28 /39

OptSVA: first write, last write

T; executes a write method on z:

- if first operation of any kind on z: create log
- execute the method on log (if available)
- if last write on z:
if log is empty: release x
otherwise: wait for z, apply log, cache x, release z (in parallel)

T; executes other methods on z:

- wait until 7;'s ticket matches z's version counter
- if log for z has operations: apply log to z and discard the log
- execute the method

T; commits:

wait until all transactions with lower versions for z, y, z commit
- if any declared object is invalidated: force abort

- apply log to x (if necessary)

increment version counter for each object (if necessary)

28/39

Transaction execution: write operations

Ty, —

| release z

\

start; \

o—0

| release y

\

w;(y)2— 0/»\ ri(y)—2

ri(z)—0

start caching =

wait for z cache z

release x

wait until z create log

|
is cached execute on log

wait for y apply log to y
cache y

release y

tryC; — C
O

Transaction execution: write operations

Ty —= >
| release z | release y
N\ N\

start; \ ri(z) >0 wi(y)2— ak\\i ri(y)—2 tryC; — C
O

start caching = \ wait until z create log \
| is cached execute on log |
Y Y
¢----—--- ¢----—---
wait for = | cache wait for y | apply log to y
| release x | cache y
\ | release y
start ri(z) . —0 ri(y) 52
J J J
Tjo—t - -] —

29

39

Transactions for Actors?

Actors: aq, as, ...

Transaction:

T; = [0p17 O0P2; «eees Opn]

op, start;

op; send(a;)[ri(z)] — ok | recv[p] — v
send(a;)|w;(x)v] — ok | ...

op, = tryC,—C |tryC,—A | tryd,— A |
send(a;j)[ri(z)] — A | recv[p] = A |
send(a;)[w;(x)v] — A | ...

30/39

Transactions for Actors?

Actors: aq, ao, ...

Transaction:

E = [0p17 OP2y wevy Opn]
op; = start;
op; = send(a;)[ri(z)] — ok | recv[p] — v |

send(a;)|w;(x)v] — ok | ...
op, = tryC,—C |tryC,—A | tryd,— A |
send(a;j)[ri(z)] — A | recv[p] = A |
send(a;)[w;(x)v] — A | ...
Pros and cons:
m allow for consistent behavior on multiple nodes

m introduce dependeces between asynchronous messages

30/39

31/39

TM safety property primer

Serializability:

The outcome of all committed transactions is equivalent to the
outcome of some serial execution of these transactions

Real-time order:

Transactions executing one after another cannot be re-arranged to
justify their correctness

Opacity:

m Serializability and real-time order

m Transactions only view the effects of committed transactions
Last-use opacity:

m Serializability and real-time order

m Committed transactions only view the effects of committed
transactions, but

m Committed and uncommitted transactions only view the effects of
the final modifications in transactions

32/39

Atomic RMI 2 (OptSVA) properties

m Serializable and real-time order
m If transactions don’t invoke manual aborts:

m opaque from programmers’ point of view
m irrevocable operations always correct

m Otherwise:

m last-use opaque
m irrevocable operations in reluctant transactions always correct

33/39

Evaluation

Frameworks:
m Atomic RMI (SVA)

m Atomic RMI 2 (OptSVA)
m Fine grained locking (variants of 2PL):

m exclusion locks
m R/W locks
m single global lock

m HyFlow2 (TFA) — optimistic distributed TM

Environment:
m 10 x 2 x quad-core Intel Xeon L3260 (2.83 GHz), 4 GB RAM
m OpenSUSE 13.1
m JRE (64 bit): Oracle 1.8.0.05-b13, Hotspot 25.5-b02

Benchmark:

m Distributed version of EigenBench

34 /39

Throughput

Short transactions, 5 objects per node:

= Atomic RMi 2
= Atomic A

e

@ 50| = w2

S 7 ||= wwan

S ||mm mutexs2p

S |[mm vueze

2 100] = GLock

£

=)

S

2

£ 50|

£

8 12
Nodes

80% reads

Throughput [op/s]

8 12
Nodes

50% reads

Short transactions, 10 objects per node:

16

20% reads

8

Throughput [op/s]
g &

8 12
Nodes

80% reads

8 12
Nodes

50% reads

16

Throughput [op/s]
g & & 8

o

8 12
Nodes

20% reads

35/39

Throughput

Long transactions, 10 objects per node

3
g

3
8

Throughput [op/s]
g &

“
g

°

8 12
Nodes

20% reads

= Aomic 2
= Aomic i 160)
—_ 300 - Nveﬂn:a
gm = R s2pL 3140
= wwae
S Wirsan Sz
= 200||m= mutex 2Pt =
27 == oo 3109
5, 150| 5, 89
S ES
£ 100 g 9
E i 49
50| 20|
0 4 16 o 4 8 12
Nodes Nodes
80% reads 50% reads
Scalability
700 60
< Atomic RMI 2
— 600K B Atomic RMI -
w Q @ HyFlow2 w
B 2
S 500! | > RWS2PL S
S \<> < RMW 2PL S
= 400 ~¥- Mutex S2PL .
2k —A— Mutex 2PL =
5 < —+ Glock =
5 3004 © S
= 1
o o
<4 2
< <
= =
%428 256 512 768 1024 %a28 256 512

Clients

Clients

80% reads 50% reads

428256 512 768 1024
Clients

20% reads

36/

39

Manual early release vs UB

Transaction transaction = new Transaction();

Resource x = transaction.accesses(registry.lookup("x"));
Resource y = transaction.accesses(registry.lookup("y"));

transaction.start();

for (i = 0; i < mn; i++) {
x.increment () ;
y.increment () ;

}

transaction.release(x);

transaction.release(y) ;

// local operations

transaction.commit () ;

37/39

Manual early release vs UB

Transaction transaction = new Transaction();

Resource x = transaction.accesses(registry.lookup("x"), n);
Resource y = transaction.accesses(registry.lookup("y"), n);

transaction.start();

for (i = 0; i < n; i++) {
x.increment(); // = released before calling y
y.increment();

}

// local operations

transaction.commit () ;

38/

39

Manual early release vs UB

Transaction transaction = new Transaction();

Resource[] resources = new Resource[n];

resources[0] = transaction.accesses(registry.lookup("ri"), 2);
resources[1] = transaction.accesses(registry.lookup("r2"), 2);
/7

resources[n] = transaction.accesses(registry.lookup("rn"), 2);
transaction.start();

for (i = 0; i < n; i++) {

if (resources[i].get() == 0) {
resources[i] .set(1);
break;

} else

transaction.release(resources([il]); // released with no delay

transaction.commit () ;

39/

39

	Transactional Memory
	Problems with Optimistic TM
	Pessimistic TM
	Atomic RMI
	Tool Demo
	Basic Versioning
	Supremum Versioning
	Manual abort
	Reluctant transactions
	OptSVA: treating objects as read-only
	OptSVA: writes

	Conclusions
	Properties
	Evaluation
	Manual early release vs US

