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Transactional Memory

Locks, barriers, semaphores, monitors, etc.:
interactions among disparate threads
additional, invasive structural code
error prone: deadlocks, livelocks, race conditions, ...

void move(Stack a, Stack b) {
if (a.count() >= 1) {

obj = a.pop();
b.push(obj);

}
}

void move(Stack a, Stack b) {
a.lock.lock();
b.lock.lock();
if (a.count() >= 1) {

obj = a.pop();
a.lock.unlock();
b.push(obj);

} else
a.lock.unlock();

b.lock.unlock();
}

void move(Stack a, Stack b) {
transaction.start();
if (a.count() >= 1) {

obj = a.pop();
b.push(obj);

}
transaction.commit();

}

Transactional memory (TM):
transaction abstraction for general-purpose computing
easy to use (automation) and understand (properties)
efficient implementation under the hood
applicable to distributed systems

Herlihy, Moss. Transactional Memory: Architectural
Support for Lock-free Data Structures. ISCA’93.
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Optimistic Concurrency Control

Speculative execution with abort capability

transaction_i.start();
int value = x.read();
x.write(value + 1);
transaction_i.commit();

Ti

start i ripx qÑ0 wipx qÑok tryC iÑC

Tj

start j rjpx qÑ0 wjpx q1ÑA

(conflict) Tj1

start j1 rj1px qÑ1 wj1px q2Ñok tryC j1ÑC
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Problems with Optimistic TM

Speculative execution of irrevocable operations

Irrevocable operations:
have visible side effects
effects cannot be withdrawn (must be compensated)
examples: network communication, locks, system calls, I/O
occur often in complex and distributed applications

transaction_i.start();
int value = x.read();
System.out.println("incrementing");
x.write(value + 1);
transaction_i.commit();

transaction_j.start();
int value = x.read();
System.out.println("incrementing");
x.write(value + 1);
transaction_j.commit();

Ti

start i ripx qÑ0 irr

"incrementing"

wipx q1Ñok tryC iÑC

Tj

start j rjpx qÑ0 irr

"incrementing"

wjpx q1ÑA

Tj1

start j1 rj1px qÑ1 irr

"incrementing"

wj1px q2Ñok tryC j1ÑC
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Problems with Optimistic TM

Speculative execution of irrevocable operations (2)

transaction_i.start();

FileChannel channel = /* ... */ ;
FileLock lock = channel.lock();
/* File I/O */

int value = x.read();
x.write(value + 1);

/* File I/O */
lock.unlock();

transaction_i.commit();

transaction_j.start();

FileChannel channel = /* ... */ ;
FileLock lock = channel.lock();
/* File I/O */

int value = x.read();
x.write(value + 1);

/* File I/O */
lock.unlock();

transaction_j.commit();

Ti

start i irr

(locked)

ripx qÑ0 wipx q1Ñok irr

(released)

tryC iÑC

Tj

start j irr

(locked)

rjpx qÑ0 wjpx q1ÑA

Tj1

start j1 irr

(wait for lock)
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Solutions

Welc, Saha, Adl-Tabatabai. Irrevocable Transactions and their Applications.
SPAA’08.

Bocchino, Adve, Chamberlain. Software Transactional Memory for Large Scale
Clusters. PPoPP’08.

Attiya, Hillel. Single-version STMs can be multi-version permissive. ICDCS’11.

Harris. Marlow. Jones. Herlihy. Composable Memory Transactions. PPoPP’05.
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Pessimistic Concurrency Control

Pessimistic TM:

defer execution to prevent conflicts in place of speculation
do not rely on aborting transactions
6 possible to avoid aborts altogether

6 solves irrevocable operation problem (and others)

Ti

start i ripx qÑ0 wipx q1Ñok tryC iÑC

Tj

start j rjpx q Ñ1 wjpx q2Ñok tryC jÑC

Inferior performance to optimistic TM (serial execution of writers).
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Thesis

It is possible to propose a pessimistic TM concurrency control
algorithm that:

is safe
is practical
works in distributed systems
executes irrevocable operations correctly
and achieves high performance
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Related Work

Wojciechowski. Isolation-only Transactions by Typing and Versioning. PPDP’05.

Matveev, Shavit. Towards a Fully Pessimistic STM Model. TRANSACT’12.

Afek, Matveev, Shavit. Pessimistic Software Lock-Elision. DISC’12.

Crain, Imbs, Raynal. Towards a Universal Construction for Transaction-based
Multiprocessor Programs. TCS vol. 496, 2013.

Avni, Dolev, Fatourou, Kosmas. Abort-free Semantic TM by Dependency Aware
Scheduling of Transactional Instructions. NETYS’14.

Database transactional processing: two-phase locking.
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Related Work Analysis

Algorithm Approach Progress Updates Aborts A priori Objects DL Safety Release Irrevocable

B2PL pessimistic blocking encounter on deadlock ∅ any yes strict serializable yes abortable

C2PL pessimistic blocking encounter abort-free RSet , WSet any no strict serializable yes correct

S2PL pessimistic blocking encounter on deadlock ∅ any yes strict reads abortable

R2PL pessimistic blocking encounter on deadlock ∅ any yes rigorous no abortable

CS2PL pessimistic blocking encounter abort-free RSet , WSet any no opaque reads correct

CR2PL pessimistic blocking encounter abort-free RSet , WSet any no opaque no correct

CAS2PL pessimistic blocking encounter arbitrary abort RSet , WSet any no opaque reads user abortable

CAR2PL pessimistic blocking encounter arbitrary abort RSet , WSet any no opaque no user abortable

BVA pessimistic blocking encounter abort-free ASet heterogeneous no opaque no correct

SVA pessimistic blocking encounter abort-free ASet , suprema heterogeneous no strict serializable yes correct

TL2/DTL2 optimistic blocking commit on conflict ∅ variable no opaque no abortable

TFA optimistic blocking commit on conflict ∅ homogeneous no opaque no abortable

MS-PTM pessimistic blocking commit abort-free ∅ variable no opaque no correct

PLE pessimistic blocking encounter abort-free ∅ variable no opaque no correct

SemanticTM pessimistic wait-free* encounter abort-free ASet , deps. variable no opaque no repeatable

DATM optimistic blocking commit on overwriting, ∅ variable yes conflict yes abortable
deadlock, and serializable
cascade
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OptSVA

Optimized Supremum Versioning Algorithm

Based on SVA:
version-based concurrency control
early release based on a priori knowledge
decentralized, disjoint access parallel

Key ideas:
discern reads and writes
delay blocking as much as possible
expedite release as much as possible

Key mechanisms:
specific operations delegated to helper threads
heavy use of buffering
fine-grained locking
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Basic Versioning

Ti starts:
- atomically get the next free version ticket for each object

Ti executes operation on x :

- wait until Ti’s ticket matches x ’s version counter
- execute operation

Ti commits:
- wait until all transactions with lower versions for x , y, z commit
- release each object by incrementing version counter

Ti

start i

get version for x : 0
get version for y : 0

ripx qÑ0

wait until counter
at x is set to 0

ripyqÑ0

wait until counter
at y is set to 0

wipx q2Ñok wipyq2Ñok tryC iÑC

release x , y :
set counter at x to 1
set counter at y to 1

Tj

start j

get version for x : 1
get version for y : 1

rjpx q

wait until counter at x is set to 1

Ñ2
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Early Release

Ti starts:
- atomically get the next unclaimed version ticket for each variable

Ti executes operation on x :
- wait until Ti’s ticket matches x ’s version counter
- execute operation
- if execution counter reached declared upper bound, release x by
incrementing its version counter

Ti commits:
- wait until all transactions with lower versions for x , y, z commit
- release each variable by incrementing its version counter
(if necessary)

Ti

start i

get version for x : 0
get version for y : 0
UBs for x : 1 read, 1 write
UBs for y : 1 read, 1 write

ripx qÑ0 ripyqÑ0 wipx q2Ñok

UB for x reached
release x :
set counter at y to 1

wipyq2Ñok

UB for y reached
release y :
set counter at y to 1

tryC iÑC

Tj

start j

get version for x : 1
get version for y : 1

rjpx q

wait until counter
at x is set to 1

Ñ2 rjpyqÑ2

wait until counter
at y is set to 1
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Deriving a priori upper bounds

Static analysis:

value analysis and control flow prediction on control flow graph
region finding and region analysis to count method calls
generate upper bound values in source code
implemented in Java using Soot/Jimple
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Read-only Variable Optimization

Ti starts:
- (atomically) get the next unclaimed version ticket for each variable
- cache all read-only variables in separate threads:

- wait until Ti’s ticket matches x ’s version counter
- make a local copy of x
- release x

Ti executes operation on x and x is read-only:
- wait until x finished caching
- execute operation on local copy

Ti

start i

start caching x

ripx qÑ0

wait until x
is cached

wait for x cache x
release x

Tj

start j rjpx q Ñ0
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Initial Write Optimization

Ti executes first operation on x and operation is a write
- do not wait until Ti’s ticket matches x ’s version counter
- execute write operation on “empty” local copy

Ti executes last write peration on x

- if local copy is available, in separate thread:
- wait until Ti’s ticket matches x ’s version counter
- update x from local copy
- release x

- otherwise: release x

Ti

start i wipyq2Ñok

execute on “empty”
local copy

ripyqÑ2

wait for y update y from local copy
release y

Tj

start j rjpyq Ñ2
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OptSVA+R: programmatic abort capability

Ti executes operation on x :
- wait until Ti’s ticket matches x ’s version counter
- if any declared variable is invalidated: force abort
- if first operation on x : make backup copy
- execute the operation
- if reached declared upper bound for x : release x

Ti commits:
- wait until all transactions with lower versions for x , y, z finish
- if any declared variable is invalidated: force abort
- release each variable (if necessary)

Ti aborts:
- wait until all transactions with lower versions for x , y, z finish
- invalidate modified variable and revert them from backup
- release each variable (if necessary)

Ti

start i ripx qÑ0 ripyqÑ0 wipx q2Ñok

release x

tryAiÑA

invalidate x , y
restore x , y from backup
release y

Tj

start j rjpx q

wait for x

Ñ2 rjpyqÑA

wait until y is released
check if x , y are invalidated
force abort
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OptSVA Variants

OptSVA – variables (reads and writes only)
OptSVA+R – manual abort capability (cascading aborts)
ROptSVA+R – reluctant (irrevocable) transactions

OptSVA-CF – arbitrary objects
OptSVA-CF+R
ROptSVA-CF+R

SVA+R
RSVA+R
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Atomic RMI v2

Implements OptSVA (ROptSVA-CF+R) on top of Java RMI
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Evaluation

Throughput measurement

Frameworks:
Atomic RMI (SVA+R)
Atomic RMI v2(ROptSVA-CF+R)
Fine grained locking (variants of 2PL):

exclusion locks
R/W locks
single global lock

HyFlow2 (TFA) – optimistic distributed TM

Benchmark:
Distributed version of EigenBench
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Results
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Correctness of Transactional Executions

Safety properties define allowed and prohibited behaviors

Opacity:

Serializability:
execution is equivalent to some serial execution

Real-time order:
execution preserves the order of transactions

Consistency:
transactions only view effects of committed transactions

Guerraoui, Kapałka. Principles of Transactional Memory. 2010.

6 Neither SVA nor OptSVA are opaque.
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Decomposition

Abort-free TM algorithms produce executions that are “equivalent”
to opaque ones, but read from uncommitted transactions.

Decomposed execution of a non-aborting TM observationally refines the original
execution

Decomposed execution is opaque ñ original execution observationally refines an
opaque execution

Original execution is opaque by decomposition.

SVA and OptSVA are opaque by decomposition
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Property Applicability for Early Release

Property Application Early Release Support Overwriting Support Aborting Support ĎSerializable

Serializability database, TM � � � �

CO database � � � ˆ

Recoverability database � � � ˆ

Cascadelessness database ˆ ˆ ˆ ˆ

Strictness database ˆ ˆ ˆ �

Rigorousness database ˆ ˆ ˆ �

Opacity TM ˆ ˆ ˆ �

Markability TM ˆ ˆ ˆ �

TMS1 TM ˆ ˆ ˆ �

TMS2 TM ˆ ˆ ˆ �

VWC TM � ˆ ˆ �

Live opacity TM � ˆ ˆ �

Elastic opacity TM � ˆ ˆ ˆ
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Last-use Opacity

Last-use Opacity:

Serializability:
execution is equivalent to some serial execution

Real-time order:
execution preserves the order of transactions

Last-use Consistency:
committed transactions only view effects of committed
transactions

all transactions only view effects of decided transactions

Transaction cannot execute more writes on x ñ decided on x

6 All SVA+R, OptSVA+R, etc. executions are last-use opaque.

All opaque histories are last-use opaque.
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Strong Last-use Opacity

Strong Last-use Opacity:

Serializability:
execution is equivalent to some serial execution

Real-time order:
execution preserves the order of transactions

Strong Last-use Consistency:
committed transactions only view effects of committed
transactions

all transactions only view effects of strongly decided
transactions

Transaction cannot execute more writes on x or abort ñ strongly
decided on x

All opaque executions are strong last-use opaque.
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Contributions

OptSVA and variants for various system models
Pessimistic distributed TM capable of outperforming
state-of-the-art optimistic TM
Analysis of existing safety conditions vs early release
Safety properties for TM with early release
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