Combining Strong and Eventual Consistency in
Distributed TM

Konrad Siek and Pawet T. Wojciechowski

Poznan University of Technology
{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

10 IX 2014

http://dsg.cs.put.poznan.pl

19

Distributed Transactional Memory

X X
y y
z z
i |
| |
X
y
z

T

Replicated TM

SRDS'12, ICDCS'13, WTTM'14, SRDS'14

19

Distributed Transactional Memory

T T, LE

Distributed Transactions

SPAA'13, WTTM'14, HLPP'14 (to appear in 1JSS), DISC'14

19

Pessimistic vs Optimistic TM

Optimistic approach

Ty [r(z)1,w(z)2]
L[r@)l, >Sw)2 © - T5[r@)?2w)3]

Pessimistic approach

T, [[r(z)l,w(zx)2]]
T | ~r(2)2,w(z)3 |

19

Pessimistic vs Optimistic TM

Optimistic approach

Ty [r(z)1,w(z)2]
L[r@)l, >Sw)2 © - T5[r@)?2w)3]

Pessimistic approach

T [[r(z)l,w(zx)2]]
T | ~r(2)2,w(z)3 |

m Retain the transaction abstraction
m Tolerate high contention

m Safe for irrevocable operations (prevent aborts)

19

Supremum Versioning Algorithm

SVA in a nutshell:

T; starts: it gets a version ticket for each resource z,y, z

T; can access x once T;'s ticket matches x's version counter,
otherwise T; must wait

T; commits: x,y, 2's version counters are incremented
(transaction with next ticket can access z,y, 2)

Once T; accesses x for the last time (check supremum) x's
version counter is incremented

Wojciechowski. Isolation-only Transactions by Typing and Versioning. PPDP'05.

Siek, Wojciechowski. A Formal Design of a Tool for Static Analysis of Upper Bounds on Object Calls. FMICS'12.

Siek, Wojciechowski. Atomic RMI: a Distributed Transactional Memory Framework. HLPP'14.

19

The joys of early release

Early release on last use

T [[r(x)1, w(x)2,r(y)1,w(y)2 ﬂ
T | ~Sr(2)2,w(z)3]

6 /19

The joys of early release

Early release on last use

Ty [r(2)1,w(z)2,7(y)1, w(y)2 |
T | ~Sr(2)2,w(z)3]

Performance boost:

10 180 200 20

roughput (%]
w0 800

Th
20 a0
Throughput [%]
0

00 120
s

! an reads
8l on o on o s o
S B T glT sy
& /;7—/ “ / 7\//\/

Throughput [%]
1000 1500

6

19

The joys of early release

Early release on last use

Ty [r(2)1,w(z)2,7(y)1, w(y)2 |
T | ~Sr(2)2,w(z)3]

Performance boost:

8le sw

S aa /
.

10 180 200 20

Throughput (%]

140

Not opaque, but no inconsistent views, because no aborts.

6/19

Manual aborts

The case for manual aborts:
m More powerful syntax
m Difficult to implement well in distributed systems

m Necessary for fault tolerance

Siek, Wojciechowski. Brief Announcement: Towards a Fully-Articulated Pessimistic Distributed Transactional
Memory. SPAA'13.

7/19

Manual aborts

The case for manual aborts:
m More powerful syntax
m Difficult to implement well in distributed systems

m Necessary for fault tolerance

Siek, Wojciechowski. Brief Announcement: Towards a Fully-Articulated Pessimistic Distributed Transactional
Memory. SPAA'13.

Cascading abort
Ty [(@)1, w(@)2,r(y)1, w(y)2, ©
T | ~r(z)2,w(r)3 SO,

Manual aborts

The case for manual aborts:
m More powerful syntax
m Difficult to implement well in distributed systems

m Necessary for fault tolerance

Siek, Wojciechowski. Brief Announcement: Towards a Fully-Articulated Pessimistic Distributed Transactional
Memory. SPAA'13.

Cascading abort
Ty [(@)1, w(@)2,r(y)1, w(y)2, ©
T | ~r(z)2,w(r)3 SO,

Not opaque and it matters now.

19

Inconsistent views

Precludes overwriting:

T [w (x)1]

T [[\r)0 SO T [r(z)l, w(z)2 |

Allowed inconsistent view:
T; [w(=)0, w(z)l (o)
Ty [>Sr(@)0 > Tj[r(z)1,w(z)2]

19

Safety properties for TMs with early release

m Serializability
m Elastic Opacity

m Virtual World Consistency
m TMS1 & TMS2

Recoverability
Avoiding Cascading Aborts
Strictness

Rigorousness

19

Safety properties for TMs with early release

m Serializability
m Elastic Opacity

m Virtual World Consistency
m TMS1 & TMS2

m Recoverability
m Avoiding Cascading Aborts
m Strictness

m Rigorousness

serializability + recoverability serializability + ACA

\ 1
serializability

Siek, Wojciechowski. Zen and the Art of Concurrency Control: An Exploration of TM Safety Property Space with

Early Release in Mind. WTTM'14.

Safety properties for TMs with early release

m Serializability m Recoverability

m Elastic Opacity m Avoiding Cascading Aborts
m Virtual World Consistency m Strictness

m TMS1 & TMS2 m Rigorousness

serializability + recoverability serializability + ACA

serializability s + r + last-use consistency

Siek, Wojciechowski. Zen and the Art of Concurrency Control: An Exploration of TM Safety Property Space with
Early Release in Mind. WTTM'14.

Last-use opacity

Components of opacity:

m Serializability
m Real-time order

m Consistency

10/19

Last-use opacity

Components of opacity:
m Serializability
m Real-time order

m Consistency

Components of last-use opacity:
m Serializability
m Real-time order

m Recoverable last-use consistency

Siek, Wojciechowski. Relaxing Opacity in Pessimistic Transactional Memory. DISC'14.

10/19

Throughput [%]
600

00

200

1000 1200

00

DHT

80% reads

Bank

80% reads

Vacation

o v
= e

220

200
i

140
I

120

100
i

180
i

Throughput (%]
160

Throughput %]
1000

2000

1500

[Lsva
= s

80% read:

6
Nodes

11/19

DHT 80% reads Bank 80% reads Vacation 80% read:

8« ww [e Lsva [Lsva
S / gl= s 81 e
£ e & —
/ 22
_ £
gl
H
Egd
U I e
7

6
Nodes

weaken consistency a little — improve efficiency a lot

11/19

DHT 80% reads Bank 80% reads Vacation 80% read:

8= 5w o sw [5w
S by / o gl 5
& e § T
=3 =&
£8 2
35 ~ E
584 58
g° 38
£ £ F
P WD VD VD S U [
T T T T T T T T T y T T T T y
: 1 i o 3 i B 10 2 B 8 m

weaken consistency a little — improve efficiency a lot

weaken consistency a little more — improve efficiency a lot more?

Wojciechowski, Siek. Having Your Cake and Eating it Too: Combining Strong and Eventual Consistency.
PaPEC'14.

19

Eventually Consistent Extension

X X a
y y b
Zz Z C
1 !
\ 1
\ !
\ /
\ / \
\\ X ,/ N\
oy L
Zz

T o

/19

Eventually Consistent Extension

X X
y y
Zz Z
I
1
‘\
\
AY
X ,/
- y
Zz
X1
Y1 a;

T o

Transaction Modes

Transaction T3
Ty [[r(z)v, w(x)u ﬂ

13 /19

Transaction Modes

Transaction 17
Ty [r(z)v, w(z)u |

Consistent mode Eventually consistent mode

Tf [[r(z)v, w(z)u ﬂ Tl r(2)Vee, w(x)ee |

Consistent and EC modes run simultaneously — convergence

13 /19

Internal consistency of weak transactions

Modification versions

{(E = 1vy =]-} T H r(x)l,w(x)2,r(y)1,w(y)2 ﬂ
T | ~Sr(2)2,w(@)3] {z=3y=2}

14 /19

Internal consistency of weak transactions

Modification versions

14 /19

Internal consistency of weak transactions

Modification versions
2
T [[\r(2,w(@)3] {&=3y=2}

Enforce read isolation
Ty [(@)1, w(@)2,r(y)1
T, [~r(z)
Ty [()3, w(@)4, ()3, w4 |

14 /19

Internal consistency of weak transactions

Modification versions

T | ~r(2,w(32:)3 | {325 =3,y =
Enforce read isolation
Ty [r()1, w(@)2,r(H)1, w(y)2, w()3 |
T, | ~r(2)2, w(i)3 |
Ty [()3, w(@)4, ()3, w4 |

Correct: {1, 0}, (129}, (4,1},

Incorrect: {1313} {;,31/}

14 /19

Consistent snapshot in SVA in practice

Maintaining a consistent snapshot in buffers:

T; commits: records the latest version of each variable to B¢

T; release x early:

records the latest released version of to B”

records variables that were not released early to F’

Most recent consistent read snapshot in buffer — EC transactions
do not wait to access objects or block other transactions

15/19

Maintaining consistent state of non-EC transactions

Handling writes:
T [r(@)1,w@)2,r@)Lw@)2,w@3] |

8=
Il
N
NN}
Il
w
——

16 /19

Maintaining consistent state of non-EC transactions

Handling writes:
T [r(@)1,w(@)2,r@),w@)2.w@)3] {2=1,y=1}z=2y=3}

Buffer x only visible to T}

16 /19

Maintaining consistent state of non-EC transactions

Handling writes:
T [r(@)1,w(@)2,r@),w@)2.w@)3] {2=1,y=1}z=2y=3}

Buffer x only visible to T}

Possibility of “recycling” effort:

If consistency allows it, apply the bufferred writes instead of
executing consistent mode from scratch

16

19

Eventually Consistent SVA Execution

{g=1,0=1 T [r@1Lw@)?2r@1,w@)?2]
75| ~r(@)2,w(®)3] {#=3y=2}
T5e[r(2)1, w(z)? | \
Ty [7(#)3, w(@)4]

17 /19

Conclusions and future work

eventual consistency extension for pessimistic distributed TM

minimal extra cost

strongly consistent transactions are unaffected

[
[
m eventually consistent transactions read consistent snapshots
[
m smaller apparent client latency

[

future work:

m implementation and experimental evaluation
m safety guarantees of EC transactions

The work is supported by National Science Centre grant Eventually consistent replication: Algorithms and methods
(30/09/2013-29/09/2016).

18 /19

19/19

	Transactional Memory
	Last-use opacity
	SVA + Eventual Consistency

