Atomic RMI: a Distributed Transactional Memory
Framework

Konrad Siek and Pawet T. Wojciechowski
Poznan University of Technology

{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

3 VII 2014

http://dsg.cs.put.poznan.pl

1/26

Software Transactional Memory

Concurrency control is notoriously difficult:
m interaction between unrelated threads
m additional structural code

m deadlocks, livelocks, priority inversion

synchronized{aLock} {
synchronized{bLock} {
a=>o

}
b=b+1

2/26

Software Transactional Memory

Concurrency control is notoriously difficult:
m interaction between unrelated threads
m additional structural code

m deadlocks, livelocks, priority inversion

synchronized{aLock} {

synchronized{bLock} { transaction.start()
a=b> a=b

} b=b+1

b=b+ 1 transaction.commit ()

2/26

Software Transactional Memory

Concurrency control is notoriously difficult:
m interaction between unrelated threads
m additional structural code

m deadlocks, livelocks, priority inversion

synchronized{aLock} {

synchronized{bLock} { transaction.start()
a=b> a=b

} b=b+1

b=b+ 1 transaction.commit ()

}

Transactional Memory:
m ease of use on top

m efficient concurrency control under the hood

2/26

Transaction Abstraction

Transaction:
T; [0p17 op2, .-, Opnﬂ

where op = { r(z)v, w(x)v, ... }
and x is some shared object

Commitment:
{fz=1} T, [w@)?2] {z=2}

Rollback:
fz=1} T, [w@?2 © {z=1}

{fz=1} T, [w®)?2 © - T/ [wx?2] {z=2}

3/26

Transaction Abstraction

Transaction:
Ti [0p17 op2, ..., Opnﬂ
where op = { r(z)v, w(x)v, ... }

and x is some shared object

Commitment:
{fz=1} T, [w@)?2] {z=2}
Rollback:
fz=1} T, [w@?2 © {z=1}
{fz=1} T, [w®)?2 © - T/ [wx?2] {z=2}

Conflict resolution:

{z=1}T1 [r(z)l,w(z)2]
| o [r(o)l,w(@)29 ... T4 [r(z)2,w(z)3 | {x =3}

3/26

Distributed Transactional Memory

/

X

e

Distributed Transactions

26

Problems with Optimistic TM

Optimistic TM relies on aborts:

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [r(z)l, w(@)2 |

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [[r(z)l, w(x)2]]
| To [r(z)1,w(z)2

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [[r(z)l, w(x)2]]
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3]

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [r(z)l, w(@)2 |
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3]
| Ts [r(z)1,w(z)2

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [r(z)l, w(@)2 |
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3]
| s [r@)lw@)?2 ©... [r()2,w()3

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [[r(z)l, w(x)2]]
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3]

| s [r(@)Lw@)?2 ©... [r(@)2w@)3 O...

[r(2)3, w(z)4]

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [[r(z)l, w(x)2]]
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3]
| Ts [r(@)lw@)?2 ©... [r@)2,w@)3 ©... [r(@)3,wx)4]

m problems with irrevocable operations

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [[r(z)l, w(x)2]]
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3]
| Ts [r(@)lw@)?2 ©... [r@)2,w@)3 ©... [r(@)3,wx)4]

m problems with irrevocable operations: ﬂ[[ey AT]]

m do not operate on shared data
have visible effects on the system
effects cannot be withdrawn (must be compensated)
examples: network communication, locks, system calls, 1/0
operations

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [[r(z)l, w(x)2]]
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3]
| Ts [r(@)lw@)?2 ©... [r@)2,w@)3 ©... [r(@)3,wx)4]

m problems with irrevocable operations: ﬂ[[ey AT]]
m do not operate on shared data
m have visible effects on the system
m effects cannot be withdrawn (must be compensated)
m examples: network communication, locks, system calls, |/0
operations

T [[r(z)l, w(x)2]]
| T [r(x)1,ir, w(z)2

5/26

Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [[r(z)l, w(x)2]]
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3]
| Ts [r(@)lw@)?2 ©... [r@)2,w@)3 ©... [r(@)3,wx)4]

m problems with irrevocable operations: ﬂ[[ey AT]]
m do not operate on shared data
m have visible effects on the system
m effects cannot be withdrawn (must be compensated)
m examples: network communication, locks, system calls, |/0
operations

Ty [r(z)l, w(@)2 |
| T [[r(x)l,ir,w(x)2 O... [[r(x)2,ir, w(x)3]] {x =3}

5/26

Some Solutions (a very incomplete list)

Aborts in high contentions:

m contention managers
W. N. Scherer Ill, M. L. Scott. Advanced Contention Management

for Dynamic Software Transactional Memory. PODC'05.

m collision avoidance
S. Dolev, D. Hendler, A. Suissa. CAR-STM: scheduling-based
collision avoidance and resolution for software transactional
memory. PODC'08.

Irrevocable operations:

m forbid irrevocable operations (Haskell)

m buffer irrevocable operations and execute them on commit

m run irrevocable transactions one-at-a-time

A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable
transactions and their applications. SPAA’08.

m multiple versions of objects
R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software
transactional memory for large scale clusters. PPoPP’08.
H. Attiya and E. Hillel Single-version STMs can be multi-version

permissive ICDCD’'11.

6

26

Pessimistic TM

Optimistic TM:
m run simultaneously in case there are no conflicts

m rollback and retry if there are conflicts

7/26

Pessimistic TM

Optimistic M- Pessimistic TM:

m run simultaneously in case there are no conflicts

m rollback and retry if there are conflicts

7/26

Pessimistic TM

Optimistiec M- Pessimistic TM:
. -y . I "
defer execution to prevent conflict

m rollback and retry if there are conflicts

7/26

Pessimistic TM

Optimistic M- Pessimistic TM:
. -y : I "
defer execution to prevent conflict
m rollback-and-retry-if there-are conflicts
avoid (most) forced aborts

7/26

Pessimistic TM

Optimistic M- Pessimistic TM:
. -y : I "
defer execution to prevent conflict
m rollback-and-retry-if there-are conflicts
avoid (most) forced aborts

Ty [r(x)l, w(=)2

| T2 [~ ()2, w(z)3 |
| Ts | ~ r(z)3, w(z)4 |

7/26

Pessimistic TM

Optimistic M- Pessimistic TM:
. -y : I "
defer execution to prevent conflict
m rollback-and-retry-if there-are conflicts
avoid (most) forced aborts

Ty [r(x)l, w(=)2
| T2 [~ ()2, w(z)3 |

| Ts | ~ r(z)3, w(z)4 |

m perform better in high contention

m easy handling irrevocable operations

7/26

Pessimistic TM

Optimistic M- Pessimistic TM:
. - . I "
defer execution to prevent conflict
m rollback-and-retry-if there-are conflicts

avoid (most) forced aborts

Ty [[r(z)1, w(x)2]]
| T2 [~ ()2, w(z)3 |
| Ts | ~ r(z)3, w(z)4 |

m perform better in high contention

m easy handling irrevocable operations

P. T. Wojciechowski. Isolation-only Transactions by Typing and
Versioning. PPDP’'05.

A. Matveev, N. Shavit. Towards a Fully Pessimistic STM Model.

TRANSACT "12.

7/26

Supremum Versioning Algorithm (SVA)

Pessimistic approach
Ty [[r{z)l, w(z)2]]
| T2 | ~Sr(x)2,w(z)3 |

8/26

Supremum Versioning Algorithm (SVA)

Pessimistic approach
T [r(2)1, w(=)2]
| T2 [~Sr(x)2,w(z)3 |
Early release on last use
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | “Sr(x)2,w(z)3 |

8/26

Supremum Versioning Algorithm (SVA)

Pessimistic approach
T [[r{z)l, w(z)2]]
| T2 [~Sr(2)2,w(z)3 |
Early release on last use
T [[r(x)1, w(z)2,r(y)1, w(y)2]]
| T2 | “Sr(x)2,w(z)3 |
Wait for commit of previous transactions
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | Sr(@)2,w(z)3]

8/26

Supremum Versioning Algorithm (SVA)

Pessimistic approach
T [r(2)1, w(=)2]
| T2 | ~Sr(x)2,w(z)3 |
Early release on last use
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | “Sr(x)2,w(z)3 |
Wait for commit of previous transactions
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | Sr(@)2,w(z)3]
Manual rollback
Ty [r{z)1, w(z)2, r(y)1, w(y)2, O
| T2 | ~Sr(z)2,w(z)3 SO

8/26

Supremum Versioning Algorithm (SVA)

Pessimistic approach
T [r(2)1, w(=)2]
| T2 [~Sr(x)2,w(z)3 |
Early release on last use
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | “Sr(x)2,w(z)3 |
Wait for commit of previous transactions
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 [[~r(z)2, w(x)3 \]
Manual rollback
Ty [r{z)1, w(z)2, r(y)1, w(y)2, O
| T2 | ~Sr(z)2,w(z)3 SO
| 75 [r(z)2, w(z)3 |

8/26

Supremum Versioning Algorithm (SVA)

Pessimistic approach
T [r(2)1, w(=)2]
| T2 | ~Sr(x)2,w(z)3 |
Early release on last use
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | “Sr(x)2,w(z)3 |
Wait for commit of previous transactions
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | Sr(@)2,w(z)3]
Manual rollback
Ty [r{z)1, w(z)2, r(y)1, w(y)2, O
| T2 | ~Sr(z)2,w(z)3 SO
| 75 [r(z)2, w(z)3 |
Completely distributed (no leader, dispatcher, etc.)

8/26

Supremum Versioning Algorithm (SVA)

Pessimistic approach
T [r(2)1, w(=)2]
| T2 [~Sr(x)2,w(z)3 |
Early release on last use
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | “Sr(x)2,w(z)3 |
Wait for commit of previous transactions
Ty [r(2)1, w(=)2, r(y)1, w(y)2 |
| T2 | Sr(@)2,w(z)3]
Manual rollback
Ty [r{z)1, w(z)2, r(y)1, w(y)2, O
| T2 | ~Sr(z)2,w(z)3 SO
| 75 [r(z)2, w(z)3 |
Completely distributed (no leader, dispatcher, etc.)
K. Siek, P. T. Wojciechowski. Brief announcement: Towards a
Fully-Articulated Pessimistic Distributed Transactional Memory.

SPAA'13.

8/26

Supremum Versioning Algoritm (SVA)

start:
lock all used objects
assign object’s next version to transaction
release locks
access z:
wait until x is released by transaction with the previous version of x
access T
if last use of x: release x
rollback:
wait until transaction with the previous version of x commits
restore all objects from copies and release them
commit:

wait until transaction with the previous version of x commits
if previous transaction rolls back: also roll back
release all objects

manual release x:

wait until x is released by transaction with the previous version of =
release x

9/26

Atomic RMI

Java RMI TM framework implementing SVA

completely distributed
rollback support

early release
irrevocable operations
fault tolerance
support for recurrency

limited support for nesting

10/26

Atomic RMI

Java RMI TM framework implementing SVA

completely distributed
rollback support

early release SVA
irrevocable operations

fault tolerance

support for recurrency

limited support for nesting

10/26

Atomic RMI

Java RMI TM framework implementing SVA

completely distributed
rollback support

early release SVA
irrevocable operations

fault tolerance

support for recurrency

limited support for nesting

10/26

Atomic RMI API

Transaction t = new Transaction(...);

a = t.accesses(registry.lookup("”4"), 2);
b = t.accesses(registry.lookup("B"), 1);
t.start();

a.withdraw(100);
b.deposit (100);

if (a.getBalance() > 0)
t.commit () ;

else
t.rollback();

11/26

Atomic RMI architecture

JERNERAN

-

\

4 N\

obj3 b3
proxy J
obj4 obj4
pProxy
jvm2
. J

12/26

Effecting Early Release

Early release:
m manual early release (release)

m automatic release from upper bounds (accesses)

Upper bounds can be derived by static analysis (and by other
methods)

K. Siek, P. T. Wojciechowski. A Formal Design of a Tool for Static
Analysis of Upper Bounds on Object Calls in Java. FMICS'12.

13 /26

Why Use Upper Bounds?

t = new Transaction(...)
t.start();

for (i = 0; i < n; i++) {
a.run();
b.run();

}

// local operations
t.commit();

14 /26

Why Use Upper Bounds?

new Transaction(...)
t.accesses(a);

= t.accesses(b);
.start();

& T ® o

for (i = 0; i < n; i++) {
a.run();
b.run();
}
t.release(a);
t.release(b);

// local operations
t.commit();

15/26

Why Use Upper Bounds?

new Transaction(...)
t.accesses(a);

= t.accesses(b);
.start();

& T ® o

for (i = 0; i < n; i++) {
a.run();
b.run();
}
t.release(a);
t.release(b);

// local operations
t.commit();

new Transaction(...)
t.accesses(a);

= t.accesses(b);
.start();

¢ T @ o

for (i = 0; 1 < n; i++) {

a.run();

if (i == n)
a.release();

b.run()

}
t.release(b);

// local operations
t.commit();

26

Why Use Upper Bounds?

= new Transaction(...)
t.accesses(a, n);
t.accesses(b, n);
.start();

¢ T @ o
]

for (i = 0; i < n; i++) {

a.run(); // nth call: release
b.run(); // nth call: release

}

// local operations
t.commit();

16

26

Why Use Manual Release?

t = new Transaction(...)
for (h : hotels)

h = t.accesses(h, 2);
t.start();

for (h : hotels) {
if (h.hasVacancies())
h.bookRoom() ;
else
t.release(h);
}

t.commit();

17 /26

Fault Tolerance

/

18/26

Fault Tolerance

3OO

18/26

Fault Tolerance

Shared object crash:
m timeout
m throw exception

m abort
(or compensate)

18 /26

Fault Tolerance

19/26

Fault Tolerance

Transaction crash:
m heartbeat
m revert object state

m update object
version

19/26

Evaluation

Frameworks: Benchmarks:
m Atomic RMI (SVA) m Distributed Hash Table (DHT)
m Fine grained locking: m Bank
m exclusion locks = Loan
m R/W locks i
m Vacation

m HyFlow (DTL2)

M. M. Saad, B Ravindran. HyFlow: A High Performance Distributed
Transactional Memory Framework. HPDC'11.

Environment:
m 10 x 2 x quad-core Intel Xeon L3260 (2.83 GHz), 4 GB RAM
m OpenSUSE 13.1
m JREs (64 bit):
m Open-JDK 1.7.0 51, IcedTea 2.4.4

m Oracle 1.7.0.55-b13, Hotspot 24.55-b03
m Oracle 1.8.0_.05-b13, Hotspot 25.5-b02

20/26

DHT Benchmark

Throughput [%)]

1?0

2?0 2?0

1?0

0

DHT 20% reads 3 DHT 80% reads
[—— Atomic RMI 374— Atomic RMI
—4— RMI Locks —&— RMI Locks
—— RMI R/W Locks © [~ RMIR/MW Locks
—— HyFlow DTL2 Q-{—— HyFlow DTL2
S
o
3
(=1
S
3N
=8
58
o
=
o
=3 4
28
=
£
o
s
<
o
8
&
o

8 10

21/26

Bank Benchmark

Bank 20% reads Bank 80% reads
3
&
84
g 3]
™
34
Iy g’ =
= =
= g3
=3 =1
a a®
So */\/Ah‘% 5
=k & 5Q
O |a—a a—" o487
= =
= =
o
24
=1
o
B
—— Atomic RMI "] Atomic RMI
4~ RMI Locks —— RMI Locks
—— RMI RIW Locks —— RMI RIW Locks
O—{—4— HyFlow DTL2 ©——— HyFlow DTL2
T T T T T T T T T
2 4 10 2 10

6
Nodes

22/26

Loan Benchmark

Throughput [%)]

Loan 20% reads Loan 80% reads
S |~ AtomicRMI 8~ Atomic RmI
ST~ RMiLocks [~ RMILocks
—— RMI R/W Locks —— RMI R/W Locks
° —— HyFlow DTL2 —A— HyFlow DTL2
IS
=}
E]
f=3
o —9
87 XS
g
=5 =
© =
<}
<
g Fg
j=3
84
&
A A S A
o o
T T T T T T T T
2 6 10 2 6 10
Nodes Nodes

23 /26

Vacation Benchmark

Vacation

20% reads Vacation 80% reads
8_|—— Atomic RMI —— Atomic RMI
@ [-4— RMI Locks —&— RMI Locks
—— RMI R/W Locks —+— RMI R/W Locks
—— HyFlow DTL2 —A— HyFlow DTL2
o
3
= B
3
5 £
- ==
gg EE
< 34 <9
o< (=2
=] =3
<l <}
< <
= =
o
g | o
S 3
-
o— o
T T T T T T T T T
2 10 2 8 10

24 /26

Conclusions

In comparison to primitives, Atomic RMI
m performs better than exclusive locks

m performs as well or better than R/W locks
(without read-only transaction support)

In comparison to HyFlow, performance of Atomic RMI depends on

m contention
m good performance in high contention: early release, no aborts
m higher overhead than HyFlow
m read/write operation ratio
m no optimization of read-only transactions
m early release parallelizes any operation

25 /26

26 /26

	Transactional Memory
	Pessimistic TM
	Supremum Versioning Algorithm
	Atomic RMI
	Evaluation
	End

