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Software Transactional Memory

Concurrency control is notoriously difficult:
m interaction between unrelated threads
m additional structural code

m deadlocks, livelocks, priority inversion

synchronized{aLock} {
synchronized{bLock} {
a=>o

}
b=b+1

2/26



Software Transactional Memory

Concurrency control is notoriously difficult:
m interaction between unrelated threads
m additional structural code

m deadlocks, livelocks, priority inversion

synchronized{aLock} {

synchronized{bLock} { transaction.start()
a=b> a=b

} b=b+1

b=b+ 1 transaction.commit ()

2/26



Software Transactional Memory

Concurrency control is notoriously difficult:
m interaction between unrelated threads
m additional structural code

m deadlocks, livelocks, priority inversion

synchronized{aLock} {

synchronized{bLock} { transaction.start()
a=b> a=b

} b=b+1

b=b+ 1 transaction.commit ()

}

Transactional Memory:
m ease of use on top

m efficient concurrency control under the hood
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Transaction Abstraction

Transaction:
T; [0p17 op2, .-, Opnﬂ

where op = { r(z)v, w(x)v, ... }
and x is some shared object

Commitment:
{fz=1} T, [w@)?2] {z=2}

Rollback:
fz=1} T, [w@?2 © {z=1}

{fz=1} T, [w®)?2 © - T/ [wx?2] {z=2}
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{fz=1} T, [w@)?2] {z=2}
Rollback:
fz=1} T, [w@?2 © {z=1}
{fz=1} T, [w®)?2 © - T/ [wx?2] {z=2}

Conflict resolution:
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Distributed Transactional Memory
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Problems with Optimistic TM

Optimistic TM relies on aborts:
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Problems with Optimistic TM

Optimistic TM relies on aborts:
m low performance in high contention

Ty [[ r(z)l, w(x)2 ]]
| To [r(@)Lw@)?2 ©... [r(x)2,wx)3 ]
| Ts [r(@)lw@)?2 ©... [r@)2,w@)3 ©... [r(@)3,wx)4]

m problems with irrevocable operations: ﬂ[[ ey AT ]]
m do not operate on shared data
m have visible effects on the system
m effects cannot be withdrawn (must be compensated)
m examples: network communication, locks, system calls, |/0
operations

Ty [ r(z)l, w(@)2 |
| T [[ r(x)l,ir,w(x)2 O... [[ r(x)2,ir, w(x)3 ]] {x =3}
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Some Solutions (a very incomplete list)

Aborts in high contentions:

m contention managers
W. N. Scherer Ill, M. L. Scott. Advanced Contention Management

for Dynamic Software Transactional Memory. PODC'05.

m collision avoidance
S. Dolev, D. Hendler, A. Suissa. CAR-STM: scheduling-based
collision avoidance and resolution for software transactional
memory. PODC'08.

Irrevocable operations:

m forbid irrevocable operations (Haskell)

m buffer irrevocable operations and execute them on commit

m run irrevocable transactions one-at-a-time

A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable
transactions and their applications. SPAA’08.

m multiple versions of objects
R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software
transactional memory for large scale clusters. PPoPP’08.
H. Attiya and E. Hillel Single-version STMs can be multi-version

permissive ICDCD’'11.
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Pessimistic TM

Optimistic TM:
m run simultaneously in case there are no conflicts

m rollback and retry if there are conflicts
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Pessimistic TM

Optimistic M- Pessimistic TM:
. - . I "
defer execution to prevent conflict
m rollback-and-retry-if there-are conflicts

avoid (most) forced aborts

Ty [[ r(z)1, w(x)2 ]]
| T2 [ ~ ()2, w(z)3 |
| Ts | ~ r(z)3, w(z)4 |

m perform better in high contention

m easy handling irrevocable operations

P. T. Wojciechowski. Isolation-only Transactions by Typing and
Versioning. PPDP’'05.

A. Matveev, N. Shavit. Towards a Fully Pessimistic STM Model.

TRANSACT "12.
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Supremum Versioning Algorithm (SVA)

Pessimistic approach
Ty [[ r{z)l, w(z)2 ]]
| T2 | ~Sr(x)2,w(z)3 |
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| T2 | Sr(@)2,w(z)3 ]
Manual rollback
Ty [ r{z)1, w(z)2, r(y)1, w(y)2, O
| T2 | ~Sr(z)2,w(z)3 SO
| 75 [ r(z)2, w(z)3 |
Completely distributed (no leader, dispatcher, etc.)
K. Siek, P. T. Wojciechowski. Brief announcement: Towards a
Fully-Articulated Pessimistic Distributed Transactional Memory.

SPAA'13.
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Supremum Versioning Algoritm (SVA)

start:
lock all used objects
assign object’s next version to transaction
release locks
access z:
wait until x is released by transaction with the previous version of x
access T
if last use of x: release x
rollback:
wait until transaction with the previous version of x commits
restore all objects from copies and release them
commit:

wait until transaction with the previous version of x commits
if previous transaction rolls back: also roll back
release all objects

manual release x:

wait until x is released by transaction with the previous version of =
release x
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Atomic RMI

Java RMI TM framework implementing SVA

completely distributed
rollback support

early release
irrevocable operations
fault tolerance
support for recurrency

limited support for nesting
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Atomic RMI API

Transaction t = new Transaction(...);

a = t.accesses(registry.lookup("”4"), 2);
b = t.accesses(registry.lookup("B"), 1);
t.start();

a.withdraw(100);
b.deposit (100);

if (a.getBalance() > 0)
t.commit () ;

else
t.rollback();
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Atomic RMI architecture

JERNERAN

-

\

4 N\

obj3 b3
proxy J
obj4 obj4
pProxy
jvm2
. J
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Effecting Early Release

Early release:
m manual early release (release)

m automatic release from upper bounds (accesses)

Upper bounds can be derived by static analysis (and by other
methods)

K. Siek, P. T. Wojciechowski. A Formal Design of a Tool for Static
Analysis of Upper Bounds on Object Calls in Java. FMICS'12.
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Why Use Upper Bounds?

t = new Transaction(...)
t.start();

for (i = 0; i < n; i++) {
a.run();
b.run();

}

// local operations
t.commit();
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& T ® o
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for (i = 0; i < n; i++) {
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b.run();
}
t.release(a);
t.release(b);

// local operations
t.commit();

new Transaction(...)
t.accesses(a);

= t.accesses(b);
.start();

¢ T @ o

for (i = 0; 1 < n; i++) {

a.run();

if (i == n)
a.release();

b.run()

}
t.release(b);

// local operations
t.commit();
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Why Use Upper Bounds?

= new Transaction(...)
t.accesses(a, n);
t.accesses(b, n);
.start();

¢ T @ o
]

for (i = 0; i < n; i++) {

a.run(); // nth call: release
b.run(); // nth call: release

}

// local operations
t.commit();

16
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Why Use Manual Release?

t = new Transaction(...)
for (h : hotels)

h = t.accesses(h, 2);
t.start();

for (h : hotels) {
if (h.hasVacancies())
h.bookRoom() ;
else
t.release(h);
}

t.commit();
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Fault Tolerance

/
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Fault Tolerance
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Fault Tolerance

Shared object crash:
m timeout
m throw exception

m abort
(or compensate)
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Fault Tolerance
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Fault Tolerance

Transaction crash:
m heartbeat
m revert object state

m update object
version
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Evaluation

Frameworks: Benchmarks:
m Atomic RMI (SVA) m Distributed Hash Table (DHT)
m Fine grained locking: m Bank
m exclusion locks = Loan
m R/W locks i
m Vacation

m HyFlow (DTL2)

M. M. Saad, B Ravindran. HyFlow: A High Performance Distributed
Transactional Memory Framework. HPDC'11.

Environment:
m 10 x 2 x quad-core Intel Xeon L3260 (2.83 GHz), 4 GB RAM
m OpenSUSE 13.1
m JREs (64 bit):
m Open-JDK 1.7.0 51, IcedTea 2.4.4

m Oracle 1.7.0.55-b13, Hotspot 24.55-b03
m Oracle 1.8.0_.05-b13, Hotspot 25.5-b02
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DHT Benchmark
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Bank Benchmark
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Loan Benchmark
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Vacation Benchmark
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Conclusions

In comparison to primitives, Atomic RMI
m performs better than exclusive locks

m performs as well or better than R/W locks
(without read-only transaction support)

In comparison to HyFlow, performance of Atomic RMI depends on

m contention
m good performance in high contention: early release, no aborts
m higher overhead than HyFlow
m read/write operation ratio
m no optimization of read-only transactions
m early release parallelizes any operation
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