
Towards a Fully-articulated Pessimistic
Distributed Transacitonal Memory

Konrad Siek
konrad.siek@cs.put.edu.pl

14 V 2013

dsg.cs.put.poznan.pl



Software Transactional Memory

def thread:

lock_a.acquire()

lock_b.acquire()

a = b

lock_a.release()

b = b + 1

lock_b.release()

def thread:

transaction.start()

a = b

b = b + 1

transaction.commit()

Advantages:

ease of use on top

efficient concurrency control under the hood



Software Transactional Memory

def thread:

lock_a.acquire()

lock_b.acquire()

a = b

lock_a.release()

b = b + 1

lock_b.release()

def thread:

transaction.start()

a = b

b = b + 1

transaction.commit()

Advantages:

ease of use on top

efficient concurrency control under the hood



Software Transactional Memory

def thread:

lock_a.acquire()

lock_b.acquire()

a = b

lock_a.release()

b = b + 1

lock_b.release()

def thread:

transaction.start()

a = b

b = b + 1

transaction.commit()

Advantages:

ease of use on top

efficient concurrency control under the hood



Transaction Abstraction

Transaction:

Ti

[
op1, op2, ..., opn

]
where op = { r(x)v, w(x)v, ... }

and x is some shared object

Commitment:

{x = 1} Ti

[
w(x)2

]
{x = 2}

Rollback:

{x = 1} Ti

[
w(x)2, abort {x = 1}

{x = 1} Ti

[
w(x)2, retry → T ′

i

[
w(x)2

]
{x = 2}



Transaction Abstraction

Transaction:

Ti

[
op1, op2, ..., opn

]
where op = { r(x)v, w(x)v, ... }

and x is some shared object

Commitment:

{x = 1} Ti

[
w(x)2

]
{x = 2}

Rollback:

{x = 1} Ti

[
w(x)2, abort {x = 1}

{x = 1} Ti

[
w(x)2, retry → T ′

i

[
w(x)2

]
{x = 2}



Transaction Abstraction

Transaction:

Ti

[
op1, op2, ..., opn

]
where op = { r(x)v, w(x)v, ... }

and x is some shared object

Commitment:

{x = 1} Ti

[
w(x)2

]
{x = 2}

Rollback:

{x = 1} Ti

[
w(x)2, abort {x = 1}

{x = 1} Ti

[
w(x)2, retry → T ′

i

[
w(x)2

]
{x = 2}



Distributed TM

x,y,z

x,y,z

x,y,z
T1 y,z

T2 x,y

Replicated TM

x

y

z
T1 y,z

T2 x,y

Distributed TM



Optimistic Approach

Run simultaneously in case there are no conflicts

{x = 1} T1

[
r(x)1, w(x)2

] ∣∣ T2

[
r(x)2, w(x)3

]
{x = 3}

In case of conflicts, rollback and retry

{x = 1} T1

[
r(x)1, w(x)2

]
| T2

[
r(x)1, w(x)2, retry → T ′

2

[
r(x)2, w(x)3

]
{x = 3}

Conflict: two or more transactions access x and at least one of
them writes to x.



Optimistic Approach

Run simultaneously in case there are no conflicts

{x = 1} T1

[
r(x)1, w(x)2

] ∣∣ T2

[
r(x)2, w(x)3

]
{x = 3}

In case of conflicts, rollback and retry

{x = 1} T1

[
r(x)1, w(x)2

]
| T2

[
r(x)1, w(x)2, retry → T ′

2

[
r(x)2, w(x)3

]
{x = 3}

Conflict: two or more transactions access x and at least one of
them writes to x.



Optimistic Approach

Run simultaneously in case there are no conflicts

{x = 1} T1

[
r(x)1, w(x)2

] ∣∣ T2

[
r(x)2, w(x)3

]
{x = 3}

In case of conflicts, rollback and retry

{x = 1} T1

[
r(x)1, w(x)2

]
| T2

[
r(x)1, w(x)2, retry → T ′

2

[
r(x)2, w(x)3

]
{x = 3}

Conflict: two or more transactions access x and at least one of
them writes to x.



The Problem of Irrevocable Operations

Irrevocable operations Ti

[
..., ir, ...

]
do not operate on shared data

visible effects on the system

effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, I/O operations

{x = 1} T1

[
r(x)1, w(x)2

]
| T2

[
r(x)1, ir, w(x)2, retry → T ′

2

[
r(x)2, ir, w(x)3

]
{x = 3}



The Problem of Irrevocable Operations

Irrevocable operations Ti

[
..., ir, ...

]
do not operate on shared data

visible effects on the system

effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, I/O operations

{x = 1} T1

[
r(x)1, w(x)2

]
| T2

[
r(x)1, ir, w(x)2, retry → T ′

2

[
r(x)2, ir, w(x)3

]
{x = 3}



The Problem of Irrevocable Operations

Workarounds

forbid irrevocable operations

Haskell

buffer irrevocable operations and execute them on commit

run irrevocable transactions one-at-a-time

A. Welc, B. Saha, and A.-R. Adl-Tabatabai
Irrevocable transactions and their applications
SPAA’08

multiple versions of objects

H. Attiya and E. Hillel
Single-version STMs can be multi-version permissive
ICDCD’11



The Problem of Irrevocable Operations

Workarounds

forbid irrevocable operations

Haskell

buffer irrevocable operations and execute them on commit

run irrevocable transactions one-at-a-time

A. Welc, B. Saha, and A.-R. Adl-Tabatabai
Irrevocable transactions and their applications
SPAA’08

multiple versions of objects

H. Attiya and E. Hillel
Single-version STMs can be multi-version permissive
ICDCD’11



The Problem of Irrevocable Operations

Workarounds

forbid irrevocable operations

Haskell

buffer irrevocable operations and execute them on commit

run irrevocable transactions one-at-a-time

A. Welc, B. Saha, and A.-R. Adl-Tabatabai
Irrevocable transactions and their applications
SPAA’08

multiple versions of objects

H. Attiya and E. Hillel
Single-version STMs can be multi-version permissive
ICDCD’11



The Problem of Irrevocable Operations

Workarounds

forbid irrevocable operations

Haskell

buffer irrevocable operations and execute them on commit

run irrevocable transactions one-at-a-time

A. Welc, B. Saha, and A.-R. Adl-Tabatabai
Irrevocable transactions and their applications
SPAA’08

multiple versions of objects

H. Attiya and E. Hillel
Single-version STMs can be multi-version permissive
ICDCD’11



Pessimistic Approach

Defer execution to prevent conflicts

{x = 1} T1

[
r(x)1, w(x)2

]
↘

| T2

[
r(x)2, w(x)3

]
{x = 3}

Rollbacks are not forced, irrevocable operations are not re-run

{x = 1} T1

[
r(x)1, w(x)2

]
↘

| T2

[
r(x)2, ir, w(x)3

]
{x = 3}

There are pros and cons to both approaches:

high/low contention

predictability of read sets and write sets



Pessimistic Approach

Defer execution to prevent conflicts

{x = 1} T1

[
r(x)1, w(x)2

]
↘

| T2

[
r(x)2, w(x)3

]
{x = 3}

Rollbacks are not forced, irrevocable operations are not re-run

{x = 1} T1

[
r(x)1, w(x)2

]
↘

| T2

[
r(x)2, ir, w(x)3

]
{x = 3}

There are pros and cons to both approaches:

high/low contention

predictability of read sets and write sets



Pessimistic Approach

Defer execution to prevent conflicts

{x = 1} T1

[
r(x)1, w(x)2

]
↘

| T2

[
r(x)2, w(x)3

]
{x = 3}

Rollbacks are not forced, irrevocable operations are not re-run

{x = 1} T1

[
r(x)1, w(x)2

]
↘

| T2

[
r(x)2, ir, w(x)3

]
{x = 3}

There are pros and cons to both approaches:

high/low contention

predictability of read sets and write sets



Rollbacks

Rollback is still needed for

expressiveness

efficiency (i.e. limiting network traffic)

def thread:

transaction.start()

flight.reserved = MY_ID

if not hotel.reserved:

hotel.reserved = MY_ID

transaction.commit()

else:

transaction.rollback()

def thread:

transaction.start()

flight_copy = copy(flight)

flight.reserved = MY_ID

if not hotel.reserved:

hotel.reserved = MY_ID

transaction.commit()

else:

flight = copy(flight_copy)

del flight_copy

transaction.commit()

necessary for fault tolerance



Rollbacks

Rollback is still needed for

expressiveness

efficiency (i.e. limiting network traffic)

def thread:

transaction.start()

flight.reserved = MY_ID

if not hotel.reserved:

hotel.reserved = MY_ID

transaction.commit()

else:

transaction.rollback()

def thread:

transaction.start()

flight_copy = copy(flight)

flight.reserved = MY_ID

if not hotel.reserved:

hotel.reserved = MY_ID

transaction.commit()

else:

flight = copy(flight_copy)

del flight_copy

transaction.commit()

necessary for fault tolerance



Rollbacks

Rollback is still needed for

expressiveness

efficiency (i.e. limiting network traffic)

def thread:

transaction.start()

flight.reserved = MY_ID

if not hotel.reserved:

hotel.reserved = MY_ID

transaction.commit()

else:

transaction.rollback()

def thread:

transaction.start()

flight_copy = copy(flight)

flight.reserved = MY_ID

if not hotel.reserved:

hotel.reserved = MY_ID

transaction.commit()

else:

flight = copy(flight_copy)

del flight_copy

transaction.commit()

necessary for fault tolerance



Rollbacks

Rollback is still needed for

expressiveness

efficiency (i.e. limiting network traffic)

def thread:

transaction.start()

flight.reserved = MY_ID

if not hotel.reserved:

hotel.reserved = MY_ID

transaction.commit()

else:

transaction.rollback()

def thread:

transaction.start()

flight_copy = copy(flight)

flight.reserved = MY_ID

if not hotel.reserved:

hotel.reserved = MY_ID

transaction.commit()

else:

flight = copy(flight_copy)

del flight_copy

transaction.commit()

necessary for fault tolerance



Rollback and Pessimistic TM

Balancing correctness and rollback capability

programmer-induced rollback

never abort transactions with irrevocable operations

Maintaining efficiency and distribution



Supremum Versioning Algorithm

Transactions know which objects they use and how many times (suprema)

start:

lock all used objects
assign object’s next version to transaction
release locks

access x:

wait until x is released by transaction with the previous version of x
access x
if last use of x: release x

commit:

release all objects



SVA Characteristics

Transactions only block objects they use

{x = 1, y = 1} T1

[
w(x)2

] ∣∣ T2

[
w(y)2

]
{x = 2, y = 2}

Exclusive access (in order of versions)

{x = 1} T1

[
w(x)2

]
↘

| T2

[
w(x)3

]
{x = 3}

Early release on last use

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2

]
↘

| T2

[
r(x)2, w(x)3

]
{x = 3, y = 2}

No rollbacks, no issues with irrevocable operations



SVA Characteristics

Transactions only block objects they use

{x = 1, y = 1} T1

[
w(x)2

] ∣∣ T2

[
w(y)2

]
{x = 2, y = 2}

Exclusive access (in order of versions)

{x = 1} T1

[
w(x)2

]
↘

| T2

[
w(x)3

]
{x = 3}

Early release on last use

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2

]
↘

| T2

[
r(x)2, w(x)3

]
{x = 3, y = 2}

No rollbacks, no issues with irrevocable operations



SVA Characteristics

Transactions only block objects they use

{x = 1, y = 1} T1

[
w(x)2

] ∣∣ T2

[
w(y)2

]
{x = 2, y = 2}

Exclusive access (in order of versions)

{x = 1} T1

[
w(x)2

]
↘

| T2

[
w(x)3

]
{x = 3}

Early release on last use

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2

]
↘

| T2

[
r(x)2, w(x)3

]
{x = 3, y = 2}

No rollbacks, no issues with irrevocable operations



SVA Characteristics

Transactions only block objects they use

{x = 1, y = 1} T1

[
w(x)2

] ∣∣ T2

[
w(y)2

]
{x = 2, y = 2}

Exclusive access (in order of versions)

{x = 1} T1

[
w(x)2

]
↘

| T2

[
w(x)3

]
{x = 3}

Early release on last use

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2

]
↘

| T2

[
r(x)2, w(x)3

]
{x = 3, y = 2}

No rollbacks, no issues with irrevocable operations



SVA + Rollback

start:

lock all used objects
assign object’s next version to transaction
release locks

access x:

wait until x is released by transaction with the previous version of x
if first use of x: make copy of x
access x
if last use of x: release x

commit:

wait until transaction with the previous version of x commits
if previous transaction rolls back: also roll back
release all objects

rollback:

wait until transaction with the previous version of x commits
restore all objects from copies and release them



SVA+R Characteristics

Wait for commit of previous transactions

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2

]
↘ ↘

| T2

[
r(x)2, w(x)3

]
{x = 3, y = 2}

Cascading rollback

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘ ↘
| T2

[
r(x)2, w(x)3 retry → ...

Cascading rollback with irrevocable operations

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘ ↘
| T2

[
r(x)2, ir, w(x)3 retry → ...



SVA+R Characteristics

Wait for commit of previous transactions

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2

]
↘ ↘

| T2

[
r(x)2, w(x)3

]
{x = 3, y = 2}

Cascading rollback

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘ ↘
| T2

[
r(x)2, w(x)3 retry → ...

Cascading rollback with irrevocable operations

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘ ↘
| T2

[
r(x)2, ir, w(x)3 retry → ...



SVA+R Characteristics

Wait for commit of previous transactions

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2

]
↘ ↘

| T2

[
r(x)2, w(x)3

]
{x = 3, y = 2}

Cascading rollback

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘ ↘
| T2

[
r(x)2, w(x)3 retry → ...

Cascading rollback with irrevocable operations

{x = 1, y = 1} T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘ ↘
| T2

[
r(x)2, ir, w(x)3 retry → ...



Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:

There are two or more transactions that access some object x

The first of those transactions releases x early

Some younger transaction accesses x

The first transaction rolls back

Transactions containing irrevocable operations cannot access
objects that were released early (by transactions which may abort)

T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘
| T2

[
r(x)1, ir, w(x)2 ]



Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:

There are two or more transactions that access some object x

The first of those transactions releases x early

Some younger transaction accesses x

The first transaction rolls back

Transactions containing irrevocable operations cannot access
objects that were released early

(by transactions which may abort)

T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘
| T2

[
r(x)1, ir, w(x)2 ]



Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:

There are two or more transactions that access some object x

The first of those transactions releases x early

Some younger transaction accesses x

The first transaction rolls back

Transactions containing irrevocable operations cannot access
objects that were released early (by transactions which may abort)

T1

[
r(x)1, w(x)2, r(y)1, w(y)2 abort

↘
| T2

[
r(x)1, ir, w(x)2 ]



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects
... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibility of all transactions rolling back from cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects

... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibility of all transactions rolling back from cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects
... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibility of all transactions rolling back from cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects
... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibility of all transactions rolling back from cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects
... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibility of all transactions rolling back from cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects
... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibility of all transactions rolling back from cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



?


	Transactional Memory
	Supremum Versioning Algorithm

