Towards a Fully-articulated Pessimistic
Distributed Transacitonal Memory

Konrad Siek
konrad.siek@cs.put.edu.pl

14 V 2013

O

dsg.cs.put.poznan.pl

Software Transactional Memory

def thread:
lock_a.acquire()
lock_b.acquire()

a=>b
lock_a.release()
b=Db+1

lock_b.release()

Software Transactional Memory

def thread:
lock_a.acquire() def thread:
lock_b.acquire() transaction.start()
a=> a=">
lock_a.release() b=b+1
b=b+1 transaction.commit ()

lock_b.release()

Software Transactional Memory

def thread:
lock_a.acquire() def thread:
lock_b.acquire() transaction.start()
a=> a=">
lock_a.release() b=b+1
b=b+1 transaction.commit ()

lock_b.release()

Advantages:
m ease of use on top

m efficient concurrency control under the hood

Transaction Abstraction

Transaction:
T; [opl, op2, ..., opn]

where op = { r(z)v, w(z)v, ...

and x is some shared object

Transaction Abstraction

Transaction:
T; [opl, op2, ..., opn]
where op = { r(z)v, w(z)v, ... }

and x is some shared object

Commitment:

{z=1} T, [wx)2] {z=2}
Rollback:

{r=1} T; [w(®)2, abort {z =1}

Transaction Abstraction

Transaction:
T; [opl, op2, ..., opn]
where op = { r(z)v, w(z)v, ... }

and x is some shared object

Commitment:
{z=1} T, [wx)2] {z=2}

Rollback:
{r=1} T; [w(®)2, abort {z =1}

{r=1} T; [w()2, retry = T/ [w(@)2] {z

2}

Distributed TM

Replicated TM

y’z

Distributed TM

Optimistic Approach

Run simultaneously in case there are no conflicts

{fe=1} Ty [r(@)lw@)?2] | T [r(@)2,w@)3] {z=3}

Optimistic Approach

Run simultaneously in case there are no conflicts

{fe=1} Ty [r(@)lw@)?2] | T [r@@)2w@)3] {z

In case of conflicts, rollback and retry

{z=1} T [r(@)l,wx)2]
| To [7(2)1, w(z)2,retry — T4 [r(x)2,w(x)3]

Optimistic Approach

Run simultaneously in case there are no conflicts
{fe=1} Ty [r(@)lw@)?2] | T [r(@)2,w@)3] {z=3}

In case of conflicts, rollback and retry

{z=1} T1[r(x)l,w)2]
| To [7(2)1, w(z)2,retry — T4 [r(x)2,w(z)3] {z =3}

Conflict: two or more transactions access x and at least one of
them writes to x.

The Problem of Irrevocable Operations

Irrevocable operations E[ey O]
m do not operate on shared data
m visible effects on the system

m effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, 1/O operations

The Problem of Irrevocable Operations

Irrevocable operations E[ey O]
m do not operate on shared data
m visible effects on the system

m effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, 1/O operations

{z=1}T1 [r(z)],w(=)2]
| Ty [r(2)1,ir, w(z)2,retry — T3 [r(2)2,ir,w(z)3 | {z =3}

The Problem of Irrevocable Operations

Workarounds
m forbid irrevocable operations
Haskell

The Problem of Irrevocable Operations

Workarounds
m forbid irrevocable operations

Haskell

m buffer irrevocable operations and execute them on commit

The Problem of Irrevocable Operations

Workarounds
m forbid irrevocable operations
Haskell

m buffer irrevocable operations and execute them on commit
m run irrevocable transactions one-at-a-time

A. Welc, B. Saha, and A.-R. Adl-Tabatabai
Irrevocable transactions and their applications
SPAA’08

The Problem of Irrevocable Operations

Workarounds
m forbid irrevocable operations
Haskell

m buffer irrevocable operations and execute them on commit
m run irrevocable transactions one-at-a-time

A. Welc, B. Saha, and A.-R. Adl-Tabatabai

Irrevocable transactions and their applications

SPAA’08
m multiple versions of objects

H. Attiya and E. Hillel
Single-version STMs can be multi-version permissive
ICDCD’'11

Pessimistic Approach

Defer execution to prevent conflicts
{e=1} T [r(@)lwx)?2]
N\

| Ty [r(z)2,w(z)3] {z=3}

Pessimistic Approach

Defer execution to prevent conflicts
{e=1} T [r(@)lwx)?2]
N\

| Ty [r(z)2,w(z)3] {z=3}

Rollbacks are not forced, irrevocable operations are not re-run

{z=1} T [r(z)l,w)2]

hN
| Ty [r(x)2,ir, w(z)3] {z =3}

Pessimistic Approach

Defer execution to prevent conflicts
{e=1} T [r(@)lwx)?2]
N\

| Ty [r(z)2,w(z)3] {z=3}

Rollbacks are not forced, irrevocable operations are not re-run

{z=1} T [r(z)l,w)2]

¢
| Ty [r(x)2,ir, w(z)3] {z =3}

There are pros and cons to both approaches:
m high/low contention

m predictability of read sets and write sets

Rollbacks

Rollback is still needed for
B expressiveness

m efficiency (i.e. limiting network traffic)

Rollbacks

Rollback is still needed for
B expressiveness

m efficiency (i.e. limiting network traffic)

def thread:
transaction.start ()
flight.reserved = MY_ID

if not hotel.reserved:
hotel.reserved = MY_ID
transaction.commit ()

else:
transaction.rollback()

Rollbacks

Rollback is still needed for
B expressiveness

m efficiency (i.e. limiting network traffic)

def thread:
transaction.start()
flight_copy = copy(flight)
flight.reserved = MY_ID

def thread:
transaction.start ()
flight.reserved = MY_ID

if not hotel.reserved:
hotel.reserved = MY_ID
transaction.commit ()

else:
flight = copy(flight_copy)
del flight_copy
transaction.commit ()

if not hotel.reserved:
hotel.reserved = MY_ID
transaction.commit ()

else:
transaction.rollback()

Rollbacks

Rollback is still needed for
B expressiveness

m efficiency (i.e. limiting network traffic)

def thread:
transaction.start()
flight_copy = copy(flight)
flight.reserved = MY_ID

def thread:
transaction.start ()
flight.reserved = MY_ID

if not hotel.reserved:
hotel.reserved = MY_ID
transaction.commit ()

else:
flight = copy(flight_copy)
del flight_copy
transaction.commit ()

if not hotel.reserved:
hotel.reserved = MY_ID
transaction.commit ()

else:
transaction.rollback()

m necessary for fault tolerance

Rollback and Pessimistic TM

Balancing correctness and rollback capability
m programmer-induced rollback

m never abort transactions with irrevocable operations

Maintaining efficiency and distribution

Supremum Versioning Algorithm

Transactions know which objects they use and how many times (suprema)
start:

lock all used objects
assign object’s next version to transaction
release locks

access z:
wait until z is released by transaction with the previous version of z
access x
if last use of x: release x

commit:

release all objects

SVA Characteristics

Transactions only block objects they use

SVA Characteristics

Transactions only block objects they use
{r=1Ly=1 T [w@2] | [wy)?2]

Exclusive access (in order of versions)
{r=1} 71 [wx)?]

A
| T» | w(z)3 | {z=3}

{r =2,y

2}

SVA Characteristics

Transactions only block objects they use
{z=1y=1} T [w@)?2] | [wy)2] {z=2y=2}

Exclusive access (in order of versions)
{r=1} 71 [wx)?]

A
| T» | w(z)3 | {z=3}

Early release on last use

{z=1y=1} T [r(2)],w(@)2,r(y)1,w(y)2]
p

| To [()2, w(x)3] {x =3,y =2}

SVA Characteristics

Transactions only block objects they use
{z=1y=1} T [w@)?2] | [wy)2] {z=2y=2}

Exclusive access (in order of versions)
{r=1} 71 [wx)?]
A
| T» | w(z)3 | {z=3}

Early release on last use

{r=1y=1} Tu| T(x)l”w(w)ir(y)l,W(y)Q]
| Ty [r(z)2,w(z)3] {z=3y=2}

No rollbacks, no issues with irrevocable operations

SVA 4+ Rollback

start:

lock all used objects
assign object’s next version to transaction
release locks

access T

wait until z is released by transaction with the previous version of x
if first use of x: make copy of =

access x

if last use of x: release x

commit:

wait until transaction with the previous version of x commits
if previous transaction rolls back: also roll back
release all objects

rollback:

wait until transaction with the previous version of x commits
restore all objects from copies and release them

SVA-+R Characteristics

Wiait for commit of previous transactions

{e=1y=1}T1 [r(2)l,w(2)2,7(y)1, w(y)2 |
hY N\
| T | r(z)2,w(z)3 | {z=3y=2}

SVA-+R Characteristics

Wiait for commit of previous transactions

{e=1y=1}T1 [r(2)l,w(2)2,7(y)1, w(y)2 |
hY N\
| T | r(z)2,w(z)3 | {z=3y=2}

Cascading rollback
{r=1y=1}Ty [r(2)1,w(2)2,7(y)1, w(y)2 abort

N\ N\
| Ty | r(z)2, w(zx)3 retry — ...

SVA-+R Characteristics

Wiait for commit of previous transactions
{z=1y=1T [r(@)1,w(@)2r(y)1,w(y)2]

| To [r(x)2,w(x)3] {zr =3,y

Cascading rollback
{r=1y=1}Ty [r(2)1,w(2)2,7(y)1, w(y)2 abort

N\ N\
| Ty | r(z)2, w(zx)3 retry — ...

Cascading rollback with irrevocable operations
{e=1y=1} T [r(z)1,w(x)2,7(y)1,w(y)2 abort

p pY
| Ty | r(z)2,ir,w(r)3 retry — ...

Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:
m There are two or more transactions that access some object x
m The first of those transactions releases x early
m Some younger transaction accesses x
[

The first transaction rolls back

Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:
m There are two or more transactions that access some object x
m The first of those transactions releases x early
m Some younger transaction accesses x
[

The first transaction rolls back

Transactions containing irrevocable operations cannot access
objects that were released early

Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:
m There are two or more transactions that access some object x
m The first of those transactions releases x early
m Some younger transaction accesses x
[

The first transaction rolls back

Transactions containing irrevocable operations cannot access
objects that were released early (by transactions which may abort)

Ty [r(z)1,w(z)2,7(y)1, w(y)2 abort

N\
| T, [r(x)l,ir, w(x)2 |

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

m ... or uncommitted objects equivalent to committed objects

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

m ... or uncommitted objects equivalent to committed objects

m Strong Progressiveness (Liveness)

When two transactions conflict on some object, one of them
will not be forced to abort.

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

m ... or uncommitted objects equivalent to committed objects

m Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.
m Impossibility of all transactions rolling back from cascading
rollback conditions and version order

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

m ... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)

When two transactions conflict on some object, one of them
will not be forced to abort.

m Impossibility of all transactions rolling back from cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions

	Transactional Memory
	Supremum Versioning Algorithm

