
Safety of Pessimistic Distributed Transactional
Memory

Konrad Siek and Pawe l T. Wojciechowski

Poznań University of Technology
{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

19 XI 2013

http://dsg.cs.put.poznan.pl



Software Transactional Memory

def thread:

lock_a.acquire()

lock_b.acquire()

a = b

lock_a.release()

b = b + 1

lock_b.release()

def thread:

transaction.start()

a = b

b = b + 1

transaction.commit()

Advantages:

ease of use on top

efficient concurrency control under the hood



Optimistic Approach

Run simultaneously in case there are no conflicts

tx � 1u T1

�
rpxq1, wpxq2

� �
� T2

�
rpxq2, wpxq3

�
tx � 3u

In case of conflicts, rollback and retry

tx � 1u T1

�
rpxq1, wpxq2

�

| T2

�
rpxq1, wpxq2ý . . . T 1

2

�
rpxq2, wpxq3

�
tx � 3u



Optimistic Approach

Run simultaneously in case there are no conflicts

tx � 1u T1

�
rpxq1, wpxq2

� �
� T2

�
rpxq2, wpxq3

�
tx � 3u

In case of conflicts, rollback and retry

tx � 1u T1

�
rpxq1, wpxq2

�

| T2

�
rpxq1, wpxq2ý . . . T 1

2

�
rpxq2, wpxq3

�
tx � 3u



Distributed TM

Distributed Transactions



The Problem of Irrevocable Operations

Irrevocable operations Ti

�
..., ir, ...

�

do not operate on shared data

visible effects on the system

effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, I/O operations

tx � 1u T1

�
rpxq1, wpxq2

�

| T2

�
rpxq1, ir, wpxq2ý . . . T 1

2

�
rpxq2, ir, wpxq3

�
tx � 3u



The Problem of Irrevocable Operations

Irrevocable operations Ti

�
..., ir, ...

�

do not operate on shared data

visible effects on the system

effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, I/O operations

tx � 1u T1

�
rpxq1, wpxq2

�

| T2

�
rpxq1, ir, wpxq2ý . . . T 1

2

�
rpxq2, ir, wpxq3

�
tx � 3u



The Problem of Irrevocable Operations

Some workarounds

forbid irrevocable operations

buffer irrevocable operations and execute them on commit

run irrevocable transactions one-at-a-time

multiple versions of objects

ignore the problem



Pessimistic Approach

Defer execution to prevent conflicts

tx � 1u T1

�
rpxq1, wpxq2

�

×
| T2

�
rpxq2, wpxq3

�
tx � 3u

No rollbacks/aborts, irrevocable operations are not re-run

tx � 1u T1

�
rpxq1, wpxq2

�

×
| T2

�
rpxq2, ir, wpxq3

�
tx � 3u

There are pros and cons to both approaches:

high/low contention

predictability of read sets and write sets



Pessimistic Approach

Defer execution to prevent conflicts

tx � 1u T1

�
rpxq1, wpxq2

�

×
| T2

�
rpxq2, wpxq3

�
tx � 3u

No rollbacks/aborts, irrevocable operations are not re-run

tx � 1u T1

�
rpxq1, wpxq2

�

×
| T2

�
rpxq2, ir, wpxq3

�
tx � 3u

There are pros and cons to both approaches:

high/low contention

predictability of read sets and write sets



Pessimistic Approach

Defer execution to prevent conflicts

tx � 1u T1

�
rpxq1, wpxq2

�

×
| T2

�
rpxq2, wpxq3

�
tx � 3u

No rollbacks/aborts, irrevocable operations are not re-run

tx � 1u T1

�
rpxq1, wpxq2

�

×
| T2

�
rpxq2, ir, wpxq3

�
tx � 3u

There are pros and cons to both approaches:

high/low contention

predictability of read sets and write sets



Rollbacks

However, rollback is still needed for

expressiveness

efficiency (i.e. limiting network traffic)

necessary for fault tolerance



Rollbacks

However, rollback is still needed for

expressiveness

efficiency (i.e. limiting network traffic)

necessary for fault tolerance



Supremum Versioning Algorithm

Transactions know which objects they use and how many times (suprema)

start:

lock all used variables
assign variable’s next version to transaction release locks

access x:

wait until x is released by transaction with the previous version of x
access x
if last use of x: release x

commit:

release all variables



SVA Characteristics

Early release on last use

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2

�

×
| T2

�
rpxq2, wpxq3

�
tx � 3, y � 2u

No aborts, no issues with irrevocable operations



SVA + Rollback

start:

lock all used variables
assign variables’s next version to transaction
release locks

access x:

wait until x is released by transaction with the previous version of x
if first use of x: make copy of x
access x
if last use of x: release x

commit:

wait until transaction with the previous version of x commits
if previous transaction rolls back: also roll back
release all variables

rollback:

wait until transaction with the previous version of x commits
restore all variables from copies and release them



SVA+R Characteristics

Cascading rollback

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

× ×
| T2

�
rpxq2, wpxq3 ý . . .

Cascading rollback with irrevocable operations

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

× ×
| T2

�
rpxq2, ir, wpxq3 ý . . .



SVA+R Characteristics

Cascading rollback

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

× ×
| T2

�
rpxq2, wpxq3 ý . . .

Cascading rollback with irrevocable operations

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

× ×
| T2

�
rpxq2, ir, wpxq3 ý . . .



Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:

There are two or more transactions that access some variable
x

The first of those transactions releases x early

Some younger transaction accesses x

The first transaction aborts

Transactions containing irrevocable operations cannot access
variables that were released early (by transactions which may
abort)

T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

×
| T2

�
rpxq2, ir, wpxq2 s



Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:

There are two or more transactions that access some variable
x

The first of those transactions releases x early

Some younger transaction accesses x

The first transaction aborts

Transactions containing irrevocable operations cannot access
variables that were released early (by transactions which may
abort)

T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

×
| T2

�
rpxq2, ir, wpxq2 s



Properties

Serializability (Safety)
There exists some equivalent sequential history.

Exclusive access between first and last access to variable from
version order.

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom (under some assumptions)

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Serializability (Safety)
There exists some equivalent sequential history.

Exclusive access between first and last access to variable from
version order.

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom (under some assumptions)

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Serializability (Safety)
There exists some equivalent sequential history.

Exclusive access between first and last access to variable from
version order.

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom (under some assumptions)

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from access to committed variables
or to uncommitted variables which are equivalent to
committed variables

invariant: x � 0

T1

�
rpxq1, wpxq0, rpyq1, wpyq0, abort

×
| T2

�
rpxq0, ...

Oops... Sorry SPAA’13.



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order

Legality from access to committed variables
or to uncommitted variables which are equivalent to
committed variables

invariant: x � 0

T1

�
rpxq1, wpxq0, rpyq1, wpyq0, abort

×
| T2

�
rpxq0, ...

Oops... Sorry SPAA’13.



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from access to committed variables

or to uncommitted variables which are equivalent to
committed variables

invariant: x � 0

T1

�
rpxq1, wpxq0, rpyq1, wpyq0, abort

×
| T2

�
rpxq0, ...

Oops... Sorry SPAA’13.



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from access to committed variables
or to uncommitted variables which are equivalent to
committed variables

invariant: x � 0

T1

�
rpxq1, wpxq0, rpyq1, wpyq0, abort

×
| T2

�
rpxq0, ...

Oops... Sorry SPAA’13.



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from access to committed variables
or to uncommitted variables which are equivalent to
committed variables

invariant: x � 0

T1

�
rpxq1, wpxq0, rpyq1, wpyq0, abort

×
| T2

�
rpxq0, ...

Oops... Sorry SPAA’13.



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from access to committed variables
or to uncommitted variables which are equivalent to
committed variables

invariant: x � 0

T1

�
rpxq1, wpxq0, rpyq1, wpyq0, abort

×
| T2

�
rpxq0, ...

Oops... Sorry SPAA’13.



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from access to committed variables
or to uncommitted variables which are equivalent to
committed variables

invariant: x � 0

T1

�
rpxq1, wpxq0, rpyq1, wpyq0, abort

×
| T2

�
rpxq0, ...

Oops... Sorry SPAA’13.



Opaque SVA

start:

lock all used variables
assign variables’s next version to transaction
release locks

access x:

wait until x is released by transaction with the previous version of x
if first use of x: make copy of x
access x
if last use of x and transaction does not abort: release x

commit:

release all variables

rollback:

restore all variables from copies and release them



OSVA Characteristics

Early release by non-aborting transactions

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2

�

×
| T2

�
rpxq2, wpxq3

�

No early release by aborting transactions

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

×
| T2

�
rpxq1, wpxq2

�

No cascading rollback or issues with irrevocable operations



OSVA Characteristics

Early release by non-aborting transactions

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2

�

×
| T2

�
rpxq2, wpxq3

�

No early release by aborting transactions

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

×
| T2

�
rpxq1, wpxq2

�

No cascading rollback or issues with irrevocable operations



OSVA Characteristics

Early release by non-aborting transactions

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2

�

×
| T2

�
rpxq2, wpxq3

�

No early release by aborting transactions

tx � 1, y � 1u T1

�
rpxq1, wpxq2, rpyq1, wpyq2, abort

×
| T2

�
rpxq1, wpxq2

�

No cascading rollback or issues with irrevocable operations



Opacity ¡ what SVA guarantees

¡ Serializability

What does SVA guarantee?

serializability + real-time order

transaction accesses a variable only after the preceding
transaction used it for the last time

if transaction accesses a variable which is later aborted,
transaction aborts



Opacity ¡ what SVA guarantees ¡ Serializability

What does SVA guarantee?

serializability + real-time order

transaction accesses a variable only after the preceding
transaction used it for the last time

if transaction accesses a variable which is later aborted,
transaction aborts



Opacity ¡ what SVA guarantees ¡ Serializability

What does SVA guarantee?

serializability + real-time order

transaction accesses a variable only after the preceding
transaction used it for the last time

if transaction accesses a variable which is later aborted,
transaction aborts



Opacity ¡ what SVA guarantees ¡ Serializability

What does SVA guarantee?

serializability + real-time order

transaction accesses a variable only after the preceding
transaction used it for the last time

if transaction accesses a variable which is later aborted,
transaction aborts



Opacity ¡ what SVA guarantees ¡ Serializability

What does SVA guarantee?

serializability + real-time order

transaction accesses a variable only after the preceding
transaction used it for the last time

if transaction accesses a variable which is later aborted,
transaction aborts



Opacity ¡ what SVA guarantees ¡ Serializability

What does SVA guarantee?

serializability + real-time order

transaction accesses a variable only after the preceding
transaction used it for the last time

if transaction accesses a variable which is later aborted,
transaction aborts



Last-use Opacity

Opacity ¡ Last-use Opacity ¡ Serializability

Last-use Opacity

serializability + real-time order

transaction accesses a variable only after the preceding
transaction used it for the last time

if transaction accesses a variable which is later aborted,
transaction aborts



Last-use Opacity

How is it useful?

more than just serializability

better parallelization than opacity

problematic case not common in practice

easy workaround

@invariant(x!=0)

x := x - 1

if x == 0: # last use of x

rollback()

commit()

@invariant(x!=0)

tmp := x - 1

if tmp == 0:

rollback()

x := tmp # last use of x

commit()



Last-use Opacity

How is it useful?

more than just serializability

better parallelization than opacity

problematic case not common in practice

easy workaround

@invariant(x!=0)

x := x - 1

if x == 0: # last use of x

rollback()

commit()

@invariant(x!=0)

tmp := x - 1

if tmp == 0:

rollback()

x := tmp # last use of x

commit()



Last-use Opacity

How is it useful?

more than just serializability

better parallelization than opacity

problematic case not common in practice

easy workaround

@invariant(x!=0)

x := x - 1

if x == 0: # last use of x

rollback()

commit()

@invariant(x!=0)

tmp := x - 1

if tmp == 0:

rollback()

x := tmp # last use of x

commit()



Optimized SVA

SVA with the following optimizations:

discriminate between reads and writes

bufferred accesses

buffer and release read-only variables

defer writes in write-only transactions



OptSVA Buffered Access

if first operation is a write, write to a buffer

after last write operation on variable, release variable

whenever a buffer is available, access buffer instead of variable

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3, rpxq3

�

×
T3

�
rpxq3,wpxq4

�

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3, tx Ð xu, rpxq3

�

×
T3

�
rpxq3,wpxq4

�



OptSVA Buffered Access

if first operation is a write, write to a buffer

after last write operation on variable, release variable

whenever a buffer is available, access buffer instead of variable

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3, rpxq3

�

×
T3

�
rpxq3,wpxq4

�

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3, tx Ð xu, rpxq3

�

×
T3

�
rpxq3,wpxq4

�



OptSVA Buffered Access

if first operation is a write, write to a buffer

after last write operation on variable, release variable

whenever a buffer is available, access buffer instead of variable

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3, rpxq3

�

×
T3

�
rpxq3,wpxq4

�

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3, tx Ð xu, rpxq3

�

×
T3

�
rpxq3,wpxq4

�



OptSVA Read-only Variables

if variable is read-only, read to buffer during start and release

subsequently read from buffer instead of variable

T1

�
rpxq0, rpxq0,wpyq0

�

×
T2

�
rpxq0,wpxq1

�

T1

�
tx Ð xu, rpxq0, rpxq0,wpyq0

�

×
T2

�
rpxq0,wpxq1

�



OptSVA Read-only Variables

if variable is read-only, read to buffer during start and release

subsequently read from buffer instead of variable

T1

�
rpxq0, rpxq0,wpyq0

�

×
T2

�
rpxq0,wpxq1

�

T1

�
tx Ð xu, rpxq0, rpxq0,wpyq0

�

×
T2

�
rpxq0,wpxq1

�



OptSVA Read-only Variables

if variable is read-only, read to buffer during start and release

subsequently read from buffer instead of variable

T1

�
rpxq0, rpxq0,wpyq0

�

×
T2

�
rpxq0,wpxq1

�

T1

�
tx Ð xu, rpxq0, rpxq0,wpyq0

�

×
T2

�
rpxq0,wpxq1

�



OptSVA Write-only Transactions

if all variables are write-only, operate on buffer without
synchronization

on commit get versions and update variables from buffer

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3

�

×
T3

�
rpxq3

�

T1

�
rpxq0,wpxq1

�

×
T3

�
rpxq1

�

×
T2 wpxq2,wpxq3

�
tx Ð xu

�



OptSVA Write-only Transactions

if all variables are write-only, operate on buffer without
synchronization

on commit get versions and update variables from buffer

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3

�

×
T3

�
rpxq3

�

T1

�
rpxq0,wpxq1

�

×
T3

�
rpxq1

�

×
T2 wpxq2,wpxq3

�
tx Ð xu

�



OptSVA Write-only Transactions

if all variables are write-only, operate on buffer without
synchronization

on commit get versions and update variables from buffer

T1

�
rpxq0,wpxq1

�

×
T2

�
wpxq2,wpxq3

�

×
T3

�
rpxq3

�

T1

�
rpxq0,wpxq1

�

×
T3

�
rpxq1

�

×
T2 wpxq2,wpxq3

�
tx Ð xu

�



OptSVA Properties

Last-use Opacity (Safety)
Serializability + real-time order + access variable after last-use

SVA is Last-use Opaque
Every OptSVA history is a reduction of an SVA history

Optimality
Is OptSVA an optimal Last-use Opaque algorithm?

Moving any operation would break last-use opacity



OptSVA Properties

Last-use Opacity (Safety)
Serializability + real-time order + access variable after last-use

SVA is Last-use Opaque
Every OptSVA history is a reduction of an SVA history

Optimality
Is OptSVA an optimal Last-use Opaque algorithm?

Moving any operation would break last-use opacity



Conclusions

Progress so far

TM algorithms for distributed systems

irrevocable operations and rollback in pessimistic TM

solution to cascading rollback

Opaque pessimistic TM algorithm

Last-use Opacity

Optimized pessimistic TM algorithm

Future Work

Optimality of OptSVA

Failure detection and fault tolerance

Stronger progress properties



Related Papers:

Konrad Siek, Pawe l T. Wojciechowski. Brief Announcement:
Towards a Fully-Articulated Pessimistic Distributed
Transactional Memory. In Proceedings of SPAA 2013: the
25th ACM Symposium on Parallelism in Algorithms and
Architectures. July 2013.

Pawe l T. Wojciechowski, Olivier Rütti and André Schiper.
SAMOA: A Framework for a Synchronisation-Augmented
Microprotocol Approach. In the Proceedings of IPDPS 2004:
the 18th IEEE Parallel and Distributed Processing
Symposium. April 2004.

Pawe l T. Wojciechowski, Konrad Siek. Pessimistic Distributed
Transactional Memory. Coming soon to a journal near you!



?


	Transactional Memory
	Supremum Versioning Algorithm

