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Software Transactional Memory

def thread:
lock_a.acquire()
lock_b.acquire()

a=>o
lock_a.release()
b=Db+ 1

lock_b.release()
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Software Transactional Memory

def thread:
lock_a.acquire() def thread:
lock_b.acquire() transaction.start ()
a=>o a=>o
lock_a.release() b=b+ 1
b=>b+ 1 transaction.commit ()

lock_b.release()

Advantages:
m ease of use on top

m efficient concurrency control under the hood

)
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Transaction Abstraction

Transaction:
T; [ op1, opa, .., opy |
where op = { r(z)v, w(x)v, ... }

and z is some shared object

Commitment:

=1 T [w@2] {o=2
Rollback:

{z=1} T; [ w( © {z=1}

{fz=1} T [w@?2 © — T/ [wx

2] fo-2)
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Distributed Transactional Memory
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Distributed Transactional Memory
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Supremum Versioning Algorithm

Pessimistic approach
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Supremum Versioning Algorithm

Pessimistic approach
{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}
m Defer execution to prevent conflicts (tolerate high contention)

m Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use
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Supremum Versioning Algorithm

Pessimistic approach
{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}
m Defer execution to prevent conflicts (tolerate high contention)

m Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use
{e=1y=1} Ty [ r(x)l,w(x)2,r(y)l,w(y)2 ﬂ
| To [[ ~r(x)2, w(x)3 ﬂ {z =3,y =2}
Completely distributed (no leader, dispatcher, etc.)
Strong consistency
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Bank Application
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Bank Application

def deposit:
account.deposit (sum)

def balance:
print account.getBalance()

def withdraw:
account .withdraw(sum)
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Bank Application

def deposit: def withdraw:
account.deposit (sum) account .withdraw(sum)

def transfer:
accountl.withdraw(sum)
account2.deposit (sum)

def balance:
print account.getBalance()



Bank Application

def

def

def

deposit: def withdraw:

account .deposit (sum) account.withdraw(sum)
def transfer:

balance:

print account.getBalance() accountl.w1thd?aw(sum)
account2.deposit (sum)
audit:
for a in accounts:
sum += a.getBalance()
value = bank.getCapital()
bank.setCapital (sum)
print "Accumulated capital", sum - value

23



Bank Application

def

def

def

deposit: def
transaction.start()
account.deposit (sum)
transaction.commit ()

def
balance: ¢

transaction.start ()
print account.getBalance()
transaction.commit ()

audit:
transaction.start()
for a in accounts:

sum += a.getBalance()
value = bank.getCapital()
bank.setCapital (sum)
print "Accumulated capital",
transaction.commit ()

withdraw:
transaction.start ()
account .withdraw(sum)
transaction.commit ()

transfer:
transaction.start ()
accountl.withdraw(sum)
account2.deposit (sum)
transaction.commit ()

sum - value
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Bank Application

def deposit:
transaction.start ()
account.deposit (sum)
transaction.commit ()

def balance:
transaction.start ()
print account.getBalance()
transaction.commit ()

def audit:
transaction.start()
for a in accounts:
sum += a.getBalance()
value = bank.getCapital()
bank.setCapital (sum)

def

def

withdraw:
transaction.start ()
account .withdraw(sum)
transaction.commit ()

transfer:
transaction.start ()
accountl.withdraw(sum)
account2.deposit (sum)
transaction.commit ()

print "Accumulated capital", sum - value

transaction.commit ()

weaken consistency — improve efficiency



Eventually Consistent Extension
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What we require from weak transactions

m do not wait for variables

11/23



What we require from weak transactions

m do not wait for variables

m do not block other transactions

11/23



What we require from weak transactions

m do not wait for variables
m do not block other transactions

m internal consistency

11/23



What we require from weak transactions

do not wait for variables
do not block other transactions

internal consistency

do not disturb consistent transactions

11/23



What we require from weak transactions

do not wait for variables

do not block other transactions

|

|

m internal consistency

m do not disturb consistent transactions
|
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Transaction Modes

Transaction T3

Ty [r(z)ve, w(z)ue |

Consitent mode

Tf [r(x)vc, w(z)ue ]]

Eventually consistent mode

ch[ T(I)Uecv w(x)uec ]

Execute consistent and inconsistent modes simultaneously

12/23
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Variable Modification Versions
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Variable Modification Versions

E=1y=1} 75 [r@1w@)2rH)1w@m? ]
3 ~r@)2,w@)3] {F=3y=2)
Snapshot Read Consitency

Ty [ r(2)1w(@)2,r())1, w(y)2, w(@)3 ]

Ty [ ~r(2)2,w(1)3 ]
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What we require from weak transactions
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Consistent Snapshot in Practice

Transactions:
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16 /23



Consistent Snapshot in Practice

Transactions:
m record the latest committed version of variable

m record the latest released version of variable (early release)

16 /23



Consistent Snapshot in Practice

Transactions:
m record the latest committed version of variable
m record the latest released version of variable (early release)

m when releasing a variable early: record variables that were not
released early

16
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Write Bufferring
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Write Bufferring
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Write Bufferring

(T=1y=1T [ r@1,w@)2r@)1,wy)2wy)3 ] {#=1y=1}

Consistent mode either:
m applies the bufferred writes (if consistency condition allows)

m re-executes from scratch

18/23
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Eventually Consistent SVA
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Eventually Consistent SVA

(Z=1,9=1} T [r@1,w@)2,r)1,w)?2 ]
| T5 [ ~r(@)2,w(@)3] {#=3y=2}
| Ts [r(m)l,w(a)Z .
| T [[ r(x)3, w(x)4 ﬂ



Summary

eventual consistency extension for pessimistic distributed TM
minimal extra cost

eventually consistent transactions read consistent snapshots

strongly consistent transactions are unaffected
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