
Having Your Cake and Eating it Too: Combining
Strong and Eventual Consistency

Konrad Siek and Pawe l T. Wojciechowski
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Software Transactional Memory

def thread:

lock_a.acquire()

lock_b.acquire()

a = b

lock_a.release()

b = b + 1

lock_b.release()

def thread:

transaction.start()

a = b

b = b + 1

transaction.commit()

Advantages:

ease of use on top

efficient concurrency control under the hood
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Transaction Abstraction

Transaction:

Ti

q
op1, op2, ..., opn

y

where op “ t rpxqv, wpxqv, ... u

and x is some shared object

Commitment:

tx “ 1u Ti

q
wpxq2

y
tx “ 2u

Rollback:

tx “ 1u Ti

q
wpxq2, ý tx “ 1u

tx “ 1u Ti

q
wpxq2, ý Ñ T 1i

q
wpxq2

y
tx “ 2u
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Distributed Transactional Memory

x
y
z

x
y
z

x
y
z

T1

Replicated TM

4 / 23



Distributed Transactional Memory

x
y
z

x
y
z

x
y
z

T1

a
b
c

a
b
c

a
b
c

T2

Distributed Transactions

5 / 23



Distributed Transactional Memory

x
y
z

T1

a
b
c

T2

Distributed Transactions

6 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency
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Bank Application
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transaction.start()
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print account.getBalance()
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def transfer:

transaction.start()

account1.withdraw(sum)

account2.deposit(sum)

transaction.commit()

def audit:

transaction.start()

for a in accounts:

sum += a.getBalance()

value = bank.getCapital()

bank.setCapital(sum)

print "Accumulated capital", sum - value
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weaken consistency Ñ improve efficiency
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Eventually Consistent Extension
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What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge
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Transaction Modes

Transaction T1

T1

q
rpxqvc, wpxquc

y

Consitent mode

T c
1

q
rpxqvc, wpxquc

y

Eventually consistent mode

T ec
1

“

rpxqvec, wpxquec

‰

Execute consistent and inconsistent modes simultaneously
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Variable Modification Versions

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu, t

2
x,

2
yu, t

3
x,

3
yu, t

4
x,

3
yu, t

3
x,

2
yu, t

˚
x,

1
yu
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What we require from weak transactions
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do not disturb consistent transactions
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Consistent Snapshot in Practice

Transactions:

record the latest committed version of variable

record the latest released version of variable (early release)

when releasing a variable early: record variables that were not
released early
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Write Bufferring
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2
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Consistent mode either:

applies the bufferred writes (if consistency condition allows)

re-executes from scratch
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What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge
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Eventually Consistent SVA
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Summary

eventual consistency extension for pessimistic distributed TM

minimal extra cost

eventually consistent transactions read consistent snapshots

strongly consistent transactions are unaffected
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