Having Your Cake and Eating it Too: Combining
Strong and Eventual Consistency

Konrad Siek and Pawet T. Wojciechowski

Poznan University of Technology
{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

13 IV 2014

http://dsg.cs.put.poznan.pl

Software Transactional Memory

def thread:
lock_a.acquire()
lock_b.acquire()

a=>o
lock_a.release()
b=Db+ 1

lock_b.release()

)

23

Software Transactional Memory

def thread:
lock_a.acquire() def thread:
lock_b.acquire() transaction.start ()
a=>o a=>o
lock_a.release() b=b+ 1
b=>b+ 1 transaction.commit ()

lock_b.release()

)

23

Software Transactional Memory

def thread:
lock_a.acquire() def thread:
lock_b.acquire() transaction.start ()
a=>o a=>o
lock_a.release() b=b+ 1
b=>b+ 1 transaction.commit ()

lock_b.release()

Advantages:
m ease of use on top

m efficient concurrency control under the hood

)

23

Transaction Abstraction

Transaction:
T; [op1, opa, .., opy |
where op = { r(z)v, w(x)v, ... }

and z is some shared object

Commitment:

=1 T [w@2] {o=2
Rollback:

{z=1} T; [w(© {z=1}

{fz=1} T [w@?2 © — T/ [wx

2] fo-2)

23

Distributed Transactional Memory

N <

Replicated TM

N <

Distributed Transactional Memory

X X a a

y y b b

z z C C
| | | |
\ 1 \ 1
\\\ X 7 \\ a /

\\\ y //,’ \\\ b -
z C

Distributed Transactions

Distributed Transactional Memory

N <
T Q

Distributed Transactions

6/23

Supremum Versioning Algorithm

Pessimistic approach

{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3 |

23

Supremum Versioning Algorithm

Pessimistic approach

{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}

m Defer execution to prevent conflicts

Supremum Versioning Algorithm

Pessimistic approach

{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}

m Defer execution to prevent conflicts (tolerate high contention)

~

23

Supremum Versioning Algorithm

Pessimistic approach

{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}

m Defer execution to prevent conflicts (tolerate high contention)

m Avoid (most) forced aborts

~

23

Supremum Versioning Algorithm

Pessimistic approach

{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}

m Defer execution to prevent conflicts (tolerate high contention)

m Avoid (most) forced aborts (safe irrevocable operations)

~

23

Supremum Versioning Algorithm

Pessimistic approach
{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}
m Defer execution to prevent conflicts (tolerate high contention)

m Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

{e=1y=1} Ty [r(x)l,w(x)2,r(y)l,w(y)2 ﬂ
| To [~r(2)2,w(z)3] {z=3y=2}

<
~

23

Supremum Versioning Algorithm

Pessimistic approach
{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}
m Defer execution to prevent conflicts (tolerate high contention)

m Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

{e=1y=1} Ty [r(x)l,w(x)2,r(y)l,w(y)2 ﬂ
| To [~r(2)2,w(z)3] {z=3y=2}

<
~

23

Supremum Versioning Algorithm

Pessimistic approach
{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}
m Defer execution to prevent conflicts (tolerate high contention)

m Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

{(L‘ = 1vy =]-} T H 7"(35)17’“7(17)277"(?/)1,w(y)2 ﬂ
| To [~r(2)2,w(z)3] {z=3y=2}

Completely distributed (no leader, dispatcher, etc.)

23

Supremum Versioning Algorithm

Pessimistic approach
{fz=1y=1} T [r(z)l,wx)?2]
| To ~r(2)2,w(z)3] {z=3y=2}
m Defer execution to prevent conflicts (tolerate high contention)

m Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use
{e=1y=1} Ty [r(x)l,w(x)2,r(y)l,w(y)2 ﬂ
| To [[~r(x)2, w(x)3 ﬂ {z =3,y =2}
Completely distributed (no leader, dispatcher, etc.)
Strong consistency

23

Bank Application

23

Bank Application

def deposit:
account.deposit (sum)

23

Bank Application

def deposit:
account.deposit (sum)

def withdraw:
account .withdraw(sum)

23

Bank Application

def deposit:
account.deposit (sum)

def balance:
print account.getBalance()

def withdraw:
account .withdraw(sum)

23

Bank Application

def deposit: def withdraw:
account.deposit (sum) account .withdraw(sum)

def transfer:
accountl.withdraw(sum)
account2.deposit (sum)

def balance:
print account.getBalance()

Bank Application

def

def

def

deposit: def withdraw:

account .deposit (sum) account.withdraw(sum)
def transfer:

balance:

print account.getBalance() accountl.w1thd?aw(sum)
account2.deposit (sum)
audit:
for a in accounts:
sum += a.getBalance()
value = bank.getCapital()
bank.setCapital (sum)
print "Accumulated capital", sum - value

23

Bank Application

def

def

def

deposit: def
transaction.start()
account.deposit (sum)
transaction.commit ()

def
balance: ¢

transaction.start ()
print account.getBalance()
transaction.commit ()

audit:
transaction.start()
for a in accounts:

sum += a.getBalance()
value = bank.getCapital()
bank.setCapital (sum)
print "Accumulated capital",
transaction.commit ()

withdraw:
transaction.start ()
account .withdraw(sum)
transaction.commit ()

transfer:
transaction.start ()
accountl.withdraw(sum)
account2.deposit (sum)
transaction.commit ()

sum - value

23

Bank Application

def deposit:
transaction.start ()
account.deposit (sum)
transaction.commit ()

def balance:
transaction.start ()
print account.getBalance()
transaction.commit ()

def audit:
transaction.start()
for a in accounts:
sum += a.getBalance()
value = bank.getCapital()
bank.setCapital (sum)

def

def

withdraw:
transaction.start ()
account .withdraw(sum)
transaction.commit ()

transfer:
transaction.start ()
accountl.withdraw(sum)
account2.deposit (sum)
transaction.commit ()

print "Accumulated capital", sum - value

transaction.commit ()

weaken consistency — improve efficiency

Eventually Consistent Extension

X X a
y y b
Z Z C
| ! |
\ N \
\ / \
\ 7 \
\\ / ‘\
\ X ’ \
NS Yy » N
Z

o o

23

Eventually Consistent Extension

X X a
y y b
z z C
l ,‘ |
\ | \
\ i \
\ / \
\\ / ‘\
. X / N
oy L .
z
X1
Y1 a

o o

What we require from weak transactions

m do not wait for variables

11/23

What we require from weak transactions

m do not wait for variables

m do not block other transactions

11/23

What we require from weak transactions

m do not wait for variables
m do not block other transactions

m internal consistency

11/23

What we require from weak transactions

do not wait for variables
do not block other transactions

internal consistency

do not disturb consistent transactions

11/23

What we require from weak transactions

do not wait for variables

do not block other transactions

|

|

m internal consistency

m do not disturb consistent transactions
|

converge

11/23

Transaction Modes

Transaction T3

T, [[r(ac)vc, w(z)ue]]

12 /23

Transaction Modes
Transaction T3

T, [[r(ac)vc, w(z)ue]]

Consitent mode

Tf [r(x)vc, w(z)ue]]

12 /23

Transaction Modes
Transaction T3

Ty [r(z)ve, w(z)ue |

Consitent mode

Tf [r(x)vc, w(z)ue]]

Eventually consistent mode

ch[T(I)Uecv w(x)uec]

12 /23

Transaction Modes

Transaction T3

Ty [r(z)ve, w(z)ue |

Consitent mode

Tf [r(x)vc, w(z)ue]]

Eventually consistent mode

ch[T(I)Uecv w(x)uec]

Execute consistent and inconsistent modes simultaneously

12/23

What we require from weak transactions

do not wait for variables

do not block other transactions

|

|

m internal consistency

m do not disturb consistent transactions
|

converge

13/23

What we require from weak transactions

do not wait for variables

do not block other transactions

|

|

m internal consistency

m do not disturb consistent transactions
|

converge v~

13/23

Variable Modification Versions

{z=1y=1} T\ [[r(z)l,w(x)2,r(y)l, w(y)2 ﬂ
| To [~r(z)2,w(z)3] {z=3,y=2}

14 /23

Variable Modification Versions

(F=1,9=1} T [r(@)1,w(@)2,r@)1,w@)?2]
E3 Sr(@)2,w(@)3] {F=3y=2)

14 /23

Variable Modification Versions

@=1y=1) T [@)1 w@)2,r ()1, w)?]
3 ~r@)2,w@)3] {F=3y=2)
Snapshot Read Consitency

Ty [r(@)1 w(@)2,r()1w(y)2, w(y)3]

Ty [~r(2)2,w(1)3]

| 75 ()3, w(@)4, ()3, w4 |
| Ty [[\r(%)4,w(a:)5]]

14 /23

Variable Modification Versions

E=1y=1} 75 [r@1w@)2rH)1w@m?]
3 ~r@)2,w@)3] {F=3y=2)
Snapshot Read Consitency

Ty [r(@)1, w(@)2,r(G)1, w(y)2, w(y)3 |

Ty [~r(2)2,w(1)3]
|5 [()3, w(@)4, ()3, w4 |
A ~r(#)4, w(z)5 |

{z,7}

14 /23

Variable Modification Versions

E=1y=1} 75 [r@1w@)2rH)1w@m?]
3 ~r@)2,w@)3] {F=3y=2)
Snapshot Read Consitency

Ty [r(@)1, w(@)2,r(G)1, w(y)2, w(y)3 |

Ty [~r(2)2,w(1)3]
|5 [()3, w(@)4, ()3, w4 |
A ~r(#)4, w(z)5 |

{115}, {312/}

14 /23

Variable Modification Versions

E=1y=1} 75 [r@1w@)2rH)1w@m?]
3 ~r@)2,w@)3] {F=3y=2)
Snapshot Read Consitency

Ty [r(2)1w(@)2,r())1, w(y)2, w(@)3]

Ty [~r(2)2,w(1)3]
|5 [()3, w(@)4, ()3, w4 |
A ~r(#)4, w(z)5 |

1 2, (22, 33 43
{z, 9} {2, 0} {2,) {2y}

14 /23

Variable Modification Versions

E=1y=1} 75 [r@1w@)2rH)1w@m?]
3 ~r@)2,w@)3] {F=3y=2)
Snapshot Read Consitency

Ty [r(2)1w(@)2,r())1, w(y)2, w(@)3]

Ty [~r(2)2,w(1)3]
|5 [()3, w(@)4, ()3, w4 |
A ~r(#)4, w(z)5 |

1 2 2 2 3 3 4 3 3 2
{z,y}, {z, 4}, {z, v}, {z, v}, {z, ¥}

14 /23

Variable Modification Versions

E=1y=1} 75 [r@1w@)2rH)1w@m?]
3 ~r@)2,w@)3] {F=3y=2)
Snapshot Read Consitency

Ty [r(2)1w(@)2,r())1, w(y)2, w(@)3]

Ty [~r(2)2,w(1)3]
|5 [()3, w(@)4, ()3, w4 |
A ~r(#)4, w(z)5 |

* 1

{2, {2, 0% {0 {2, o), {80 {3, 0

14 /23

What we require from weak transactions

do not wait for variables

do not block other transactions

|

|

m internal consistency

m do not disturb consistent transactions
|

converge v~

15/23

What we require from weak transactions

do not wait for variables

do not block other transactions

|

|

m internal consistency v/

m do not disturb consistent transactions
|

converge v~

15/23

Consistent Snapshot in Practice

Transactions:

m record the latest committed version of variable

16 /23

Consistent Snapshot in Practice

Transactions:
m record the latest committed version of variable

m record the latest released version of variable (early release)

16 /23

Consistent Snapshot in Practice

Transactions:
m record the latest committed version of variable
m record the latest released version of variable (early release)

m when releasing a variable early: record variables that were not
released early

16

23

What we require from weak transactions

do not wait for variables

do not block other transactions

|

|

m internal consistency v/

m do not disturb consistent transactions
|

converge v~

17/23

What we require from weak transactions

do not wait for variables v~

do not block other transactions v~

|

|

m internal consistency v/

m do not disturb consistent transactions
|

converge v~

17/23

Write Bufferring

(=19=1T [r@1,w@)2,r@)1,wy)?2w@)3] {z =2y =3}

18 /23

Write Bufferring

{T=1y=1T7 [r(@1Lw@)?2r@)Lwy)2wy)3] {z=1y=1)

{x =2

e ©°

18 /23

Write Bufferring

(F=1,9=10T [r@1,w)2rm1,wy)2,wy)3] {&

Consistent mode either:

m applies the bufferred writes

18 /23

Write Bufferring

(F=1,9=10T [r@1,w)2rm1,wy)2,wy)3] {&

Consistent mode either:

m applies the bufferred writes (if consistency condition allows)

18 /23

Write Bufferring

(T=1y=1T [r@1,w@)2r@)1,wy)2wy)3] {#=1y=1}

Consistent mode either:
m applies the bufferred writes (if consistency condition allows)

m re-executes from scratch

18/23

What we require from weak transactions

do not wait for variables v~

do not block other transactions v~

|

|

m internal consistency v/

m do not disturb consistent transactions
|

converge v~

19/23

What we require from weak transactions

do not wait for variables v~

do not block other transactions v~

|

|

m internal consistency v/

m do not disturb consistent transactions v~
|

converge v~

19/23

Eventually Consistent SVA

20/23

Eventually Consistent SVA

(Z=1,9=1} T [r@1,w@)2,r)1,w)?2]
| T5 [~r(@)2,w(@)3] {#=3y=2}
| Ts [r(m)l,w(a)Z .
| T [[r(x)3, w(x)4 ﬂ

Summary

eventual consistency extension for pessimistic distributed TM
minimal extra cost

eventually consistent transactions read consistent snapshots

strongly consistent transactions are unaffected

21/23

Related Papers:

Konrad Siek, Pawet T. Wojciechowski. Brief Announcement:

Towards a Fully-Articulated Pessimistic Distributed
Transactional Memory. In Proceedings of SPAA 2013: the
25th ACM Symposium on Parallelism in Algorithms and
Architectures. July 2013.

Pawet T. Wojciechowski, Olivier Riitti and André Schiper.
SAMOA: A Framework for a Synchronisation-Augmented

Microprotocol Approach. In the Proceedings of IPDPS 2004:

the 18th IEEE Parallel and Distributed Processing
Symposium. April 2004.

23 /23

	Transactional Memory
	Supremum Versioning Algorithm
	SVA + Eventual Consistency

