
Having Your Cake and Eating it Too: Combining
Strong and Eventual Consistency

Konrad Siek and Pawe l T. Wojciechowski

Poznań University of Technology
{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

13 IV 2014

http://dsg.cs.put.poznan.pl

1 / 23



Software Transactional Memory

def thread:

lock_a.acquire()

lock_b.acquire()

a = b

lock_a.release()

b = b + 1

lock_b.release()

def thread:

transaction.start()

a = b

b = b + 1

transaction.commit()

Advantages:

ease of use on top

efficient concurrency control under the hood

2 / 23



Software Transactional Memory

def thread:

lock_a.acquire()

lock_b.acquire()

a = b

lock_a.release()

b = b + 1

lock_b.release()

def thread:

transaction.start()

a = b

b = b + 1

transaction.commit()

Advantages:

ease of use on top

efficient concurrency control under the hood

2 / 23



Software Transactional Memory

def thread:

lock_a.acquire()

lock_b.acquire()

a = b

lock_a.release()

b = b + 1

lock_b.release()

def thread:

transaction.start()

a = b

b = b + 1

transaction.commit()

Advantages:

ease of use on top

efficient concurrency control under the hood

2 / 23



Transaction Abstraction

Transaction:

Ti

q
op1, op2, ..., opn

y

where op “ t rpxqv, wpxqv, ... u

and x is some shared object

Commitment:

tx “ 1u Ti

q
wpxq2

y
tx “ 2u

Rollback:

tx “ 1u Ti

q
wpxq2, ý tx “ 1u

tx “ 1u Ti

q
wpxq2, ý Ñ T 1i

q
wpxq2

y
tx “ 2u

3 / 23



Distributed Transactional Memory

x
y
z

x
y
z

x
y
z

T1

Replicated TM

4 / 23



Distributed Transactional Memory

x
y
z

x
y
z

x
y
z

T1

a
b
c

a
b
c

a
b
c

T2

Distributed Transactions

5 / 23



Distributed Transactional Memory

x
y
z

T1

a
b
c

T2

Distributed Transactions

6 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency

7 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts

(tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency

7 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency

7 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts

(safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency

7 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency

7 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency

7 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency

7 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)

Strong consistency

7 / 23



Supremum Versioning Algorithm

Pessimistic approach

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Defer execution to prevent conflicts (tolerate high contention)

Avoid (most) forced aborts (safe irrevocable operations)

Early release on last use

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Completely distributed (no leader, dispatcher, etc.)
Strong consistency

7 / 23



Bank Application

8 / 23



Bank Application

def deposit:

account.deposit(sum)

8 / 23



Bank Application

def deposit:

account.deposit(sum)
def withdraw:

account.withdraw(sum)

8 / 23



Bank Application

def deposit:

account.deposit(sum)
def withdraw:

account.withdraw(sum)

def balance:

print account.getBalance()

8 / 23



Bank Application

def deposit:

account.deposit(sum)
def withdraw:

account.withdraw(sum)

def balance:

print account.getBalance()

def transfer:

account1.withdraw(sum)

account2.deposit(sum)

8 / 23



Bank Application

def deposit:

account.deposit(sum)
def withdraw:

account.withdraw(sum)

def balance:

print account.getBalance()

def transfer:

account1.withdraw(sum)

account2.deposit(sum)

def audit:

for a in accounts:

sum += a.getBalance()

value = bank.getCapital()

bank.setCapital(sum)

print "Accumulated capital", sum - value

8 / 23



Bank Application

def deposit:

transaction.start()

account.deposit(sum)

transaction.commit()

def withdraw:

transaction.start()

account.withdraw(sum)

transaction.commit()

def balance:

transaction.start()

print account.getBalance()

transaction.commit()

def transfer:

transaction.start()

account1.withdraw(sum)

account2.deposit(sum)

transaction.commit()

def audit:

transaction.start()

for a in accounts:

sum += a.getBalance()

value = bank.getCapital()

bank.setCapital(sum)

print "Accumulated capital", sum - value

transaction.commit()

8 / 23



Bank Application

def deposit:

transaction.start()

account.deposit(sum)

transaction.commit()

def withdraw:

transaction.start()

account.withdraw(sum)

transaction.commit()

def balance:

transaction.start()

print account.getBalance()

transaction.commit()

def transfer:

transaction.start()

account1.withdraw(sum)

account2.deposit(sum)

transaction.commit()

def audit:

transaction.start()

for a in accounts:

sum += a.getBalance()

value = bank.getCapital()

bank.setCapital(sum)

print "Accumulated capital", sum - value

transaction.commit()

weaken consistency Ñ improve efficiency

8 / 23



Eventually Consistent Extension

x
y
z

x
y
z

x
y
z

T1

a
b
c

a
b
c

a
b
c

T2

9 / 23



Eventually Consistent Extension

x
y
z

x
y
z

x
y
z

T1

a
b
c

a
b
c

a
b
c

T2

x1
y1 a1

b1

10 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

11 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

11 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

11 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

11 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

11 / 23



Transaction Modes

Transaction T1

T1

q
rpxqvc, wpxquc

y

Consitent mode

T c
1

q
rpxqvc, wpxquc

y

Eventually consistent mode

T ec
1

“

rpxqvec, wpxquec

‰

Execute consistent and inconsistent modes simultaneously

12 / 23



Transaction Modes

Transaction T1

T1

q
rpxqvc, wpxquc

y

Consitent mode

T c
1

q
rpxqvc, wpxquc

y

Eventually consistent mode

T ec
1

“

rpxqvec, wpxquec

‰

Execute consistent and inconsistent modes simultaneously

12 / 23



Transaction Modes

Transaction T1

T1

q
rpxqvc, wpxquc

y

Consitent mode

T c
1

q
rpxqvc, wpxquc

y

Eventually consistent mode

T ec
1

“

rpxqvec, wpxquec

‰

Execute consistent and inconsistent modes simultaneously

12 / 23



Transaction Modes

Transaction T1

T1

q
rpxqvc, wpxquc

y

Consitent mode

T c
1

q
rpxqvc, wpxquc

y

Eventually consistent mode

T ec
1

“

rpxqvec, wpxquec

‰

Execute consistent and inconsistent modes simultaneously

12 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

13 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

13 / 23



Variable Modification Versions

tx “ 1, y “ 1u T1

q
rpxq1, wpxq2, rpyq1, wpyq2

y

| T2

q
Œrpxq2, wpxq3

y
tx “ 3, y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu, t

2
x,

2
yu, t

3
x,

3
yu, t

4
x,

3
yu, t

3
x,

2
yu, t

˚
x,

1
yu

14 / 23



Variable Modification Versions

t
0
x “ 1,

0
y “ 1u T ec

1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu, t

2
x,

2
yu, t

3
x,

3
yu, t

4
x,

3
yu, t

3
x,

2
yu, t

˚
x,

1
yu

14 / 23



Variable Modification Versions

t
0
x “ 1,

0
y “ 1u T ec

1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu, t

2
x,

2
yu, t

3
x,

3
yu, t

4
x,

3
yu, t

3
x,

2
yu, t

˚
x,

1
yu

14 / 23



Variable Modification Versions

t
0
x “ 1,

0
y “ 1u T ec

1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu

, t
2
x,

2
yu, t

3
x,

3
yu, t

4
x,

3
yu, t

3
x,

2
yu, t

˚
x,

1
yu

14 / 23



Variable Modification Versions

t
0
x “ 1,

0
y “ 1u T ec

1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu, t

2
x,

2
yu

, t
3
x,

3
yu, t

4
x,

3
yu, t

3
x,

2
yu, t

˚
x,

1
yu

14 / 23



Variable Modification Versions

t
0
x “ 1,

0
y “ 1u T ec

1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu, t

2
x,

2
yu, t

3
x,

3
yu, t

4
x,

3
yu

, t
3
x,

2
yu, t

˚
x,

1
yu

14 / 23



Variable Modification Versions

t
0
x “ 1,

0
y “ 1u T ec

1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu, t

2
x,

2
yu, t

3
x,

3
yu, t

4
x,

3
yu, t

3
x,

2
yu

, t
˚
x,

1
yu

14 / 23



Variable Modification Versions

t
0
x “ 1,

0
y “ 1u T ec

1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

Snapshot Read Consitency

T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y

| T2

q
Œrp

1
xq2, wp

2
xq3

y

| T3

q
Œrp

2
xq3, wp

3
xq4, rp

2
yq3, wp

3
yq4

y

| T4

q
Œrp

3
xq4, wp

4
xq5

y

t
1
x,

2
yu, t

2
x,

2
yu, t

3
x,

3
yu, t

4
x,

3
yu, t

3
x,

2
yu, t

˚
x,

1
yu

14 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

15 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

15 / 23



Consistent Snapshot in Practice

Transactions:

record the latest committed version of variable

record the latest released version of variable (early release)

when releasing a variable early: record variables that were not
released early

16 / 23



Consistent Snapshot in Practice

Transactions:

record the latest committed version of variable

record the latest released version of variable (early release)

when releasing a variable early: record variables that were not
released early

16 / 23



Consistent Snapshot in Practice

Transactions:

record the latest committed version of variable

record the latest released version of variable (early release)

when releasing a variable early: record variables that were not
released early

16 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

17 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

17 / 23



Write Bufferring

t
0
x “ 1,

0
y “ 1u T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2, wp

2
yq3

y
t
1
x “ 2,

2
y “ 3u

Consistent mode either:

applies the bufferred writes (if consistency condition allows)

re-executes from scratch

18 / 23



Write Bufferring

t
0
x “ 1,

0
y “ 1u T1

“

rp
0
xq1, wpxq2, rp

0
yq1, wpyq2, wpyq3

‰

t
0
x “ 1,

0
y “ 1u

tx “ 2, y “ 3u

Consistent mode either:

applies the bufferred writes (if consistency condition allows)

re-executes from scratch

18 / 23



Write Bufferring

t
0
x “ 1,

0
y “ 1u T1

“

rp
0
xq1, wpxq2, rp

0
yq1, wpyq2, wpyq3

‰

t
0
x “ 1,

0
y “ 1u

tx “ 2, y “ 3u

Consistent mode either:

applies the bufferred writes

(if consistency condition allows)

re-executes from scratch

18 / 23



Write Bufferring

t
0
x “ 1,

0
y “ 1u T1

“

rp
0
xq1, wpxq2, rp

0
yq1, wpyq2, wpyq3

‰

t
0
x “ 1,

0
y “ 1u

tx “ 2, y “ 3u

Consistent mode either:

applies the bufferred writes (if consistency condition allows)

re-executes from scratch

18 / 23



Write Bufferring

t
0
x “ 1,

0
y “ 1u T1

“

rp
0
xq1, wpxq2, rp

0
yq1, wpyq2, wpyq3

‰

t
0
x “ 1,

0
y “ 1u

tx “ 2, y “ 3u

Consistent mode either:

applies the bufferred writes (if consistency condition allows)

re-executes from scratch

18 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

19 / 23



What we require from weak transactions

do not wait for variables

do not block other transactions

internal consistency

do not disturb consistent transactions

converge

19 / 23



Eventually Consistent SVA

t
0
x “ 1,

0
y “ 1u T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T c
2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

| T ec
2

“

rp
0
xq1, wpxq2

‰

20 / 23



Eventually Consistent SVA

t
0
x “ 1,

0
y “ 1u T1

q
rp

0
xq1, wp

1
xq2, rp

0
yq1, wp

1
yq2

y

| T c
2

q
Œrp

1
xq2, wp

2
xq3

y
t
2
x “ 3,

1
y “ 2u

| T ec
2

“

rp
0
xq1, wpxq2

‰

Œ

| T3

q
rp

2
xq3, wp

3
xq4

y

20 / 23



Summary

eventual consistency extension for pessimistic distributed TM

minimal extra cost

eventually consistent transactions read consistent snapshots

strongly consistent transactions are unaffected

21 / 23



Related Papers:

Konrad Siek, Pawe l T. Wojciechowski. Brief Announcement:
Towards a Fully-Articulated Pessimistic Distributed
Transactional Memory. In Proceedings of SPAA 2013: the
25th ACM Symposium on Parallelism in Algorithms and
Architectures. July 2013.

Pawe l T. Wojciechowski, Olivier Rütti and André Schiper.
SAMOA: A Framework for a Synchronisation-Augmented
Microprotocol Approach. In the Proceedings of IPDPS 2004:
the 18th IEEE Parallel and Distributed Processing
Symposium. April 2004.

22 / 23



?

23 / 23


	Transactional Memory
	Supremum Versioning Algorithm
	SVA + Eventual Consistency

