
Towards a Fully-Articulated Pessimistic
Distributed Transactional Memory

Brief Announcement

Konrad Siek and Pawe l T. Wojciechowski

Poznań University of Technology
{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

23 VII 2013

http://dsg.cs.put.poznan.pl



Optimistic Approach

Run simultaneously in case there are no conflicts

In case of conflicts, rollback and retry

tx “ 1u T1

“

rpxq1, wpxq2
‰

| T2

“

rpxq1, wpxq2 ý . . . T 1
2

“

rpxq2, wpxq3
‰

tx “ 3u



Distributed TM

x

y

z
T1 x,z

T2 x,y

Distributed Transactions



The Problem of Irrevocable Operations

Irrevocable operations Ti

“

..., ir, ...
‰

do not operate on shared data

visible effects on the system

effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, I/O operations

tx “ 1u T1

“

rpxq1, wpxq2
‰

| T2

“

rpxq1, ir, wpxq2 ý . . . T 1
2

“

rpxq2, ir, wpxq3
‰

tx “ 3u



The Problem of Irrevocable Operations

Irrevocable operations Ti

“

..., ir, ...
‰

do not operate on shared data

visible effects on the system

effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, I/O operations

tx “ 1u T1

“

rpxq1, wpxq2
‰

| T2

“

rpxq1, ir, wpxq2 ý . . . T 1
2

“

rpxq2, ir, wpxq3
‰

tx “ 3u



The Problem of Irrevocable Operations

Some workarounds

forbid irrevocable operations

buffer irrevocable operations and execute them on commit

run irrevocable transactions one-at-a-time

multiple versions of objects



Pessimistic Approach

Defer execution to prevent conflicts

tx “ 1u T1

“

rpxq1, wpxq2
‰

Œ

| T2

“

rpxq2, wpxq3
‰

tx “ 3u

No rollbacks/aborts, irrevocable operations are not re-run

tx “ 1u T1

“

rpxq1, wpxq2
‰

Œ

| T2

“

rpxq2, ir, wpxq3
‰

tx “ 3u



Pessimistic Approach

Defer execution to prevent conflicts

tx “ 1u T1

“

rpxq1, wpxq2
‰

Œ

| T2

“

rpxq2, wpxq3
‰

tx “ 3u

No rollbacks/aborts, irrevocable operations are not re-run

tx “ 1u T1

“

rpxq1, wpxq2
‰

Œ

| T2

“

rpxq2, ir, wpxq3
‰

tx “ 3u



Rollbacks

Rollback is still needed for

expressiveness

efficiency (i.e. limiting network traffic)

necessary for fault tolerance



Supremum Versioning Algorithm

Transactions know which objects they use and how many times (suprema)

start:

lock all used objects
assign object’s next version to transaction
release locks

access x:

wait until x is released by transaction with the previous version of x
access x
if last use of x: release x

commit:

release all objects



SVA Characteristics

Early release on last use

tx “ 1, y “ 1u T1

“

rpxq1, wpxq2, rpyq1, wpyq2
‰

Œ

| T2

“

rpxq2, wpxq3
‰

tx “ 3, y “ 2u

No aborts, no issues with irrevocable operations



SVA + Rollback

start:

lock all used objects
assign object’s next version to transaction
release locks

access x:

wait until x is released by transaction with the previous version of x
if first use of x: make copy of x
access x
if last use of x: release x

commit:

wait until transaction with the previous version of x commits
if previous transaction rolls back: also roll back
release all objects

rollback:

wait until transaction with the previous version of x commits
restore all objects from copies and release them



SVA+R Characteristics

Cascading rollback

tx “ 1, y “ 1u T1

“

rpxq1, wpxq2, rpyq1, wpyq2, abort
Œ Œ

| T2

“

rpxq2, wpxq3 ý . . .

Cascading rollback with irrevocable operations

tx “ 1, y “ 1u T1

“

rpxq1, wpxq2, rpyq1, wpyq2, abort
Œ Œ

| T2

“

rpxq2, ir, wpxq3 ý . . .



SVA+R Characteristics

Cascading rollback

tx “ 1, y “ 1u T1

“

rpxq1, wpxq2, rpyq1, wpyq2, abort
Œ Œ

| T2

“

rpxq2, wpxq3 ý . . .

Cascading rollback with irrevocable operations

tx “ 1, y “ 1u T1

“

rpxq1, wpxq2, rpyq1, wpyq2, abort
Œ Œ

| T2

“

rpxq2, ir, wpxq3 ý . . .



Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:

There are two or more transactions that access some object x

The first of those transactions releases x early

Some younger transaction accesses x

The first transaction aborts

Transactions containing irrevocable operations cannot access
objects that were released early (by transactions which may abort)

T1

“

rpxq1, wpxq2, rpyq1, wpyq2, abort
Œ

| T2

“

rpxq2, ir, wpxq2 s



Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:

There are two or more transactions that access some object x

The first of those transactions releases x early

Some younger transaction accesses x

The first transaction aborts

Transactions containing irrevocable operations cannot access
objects that were released early (by transactions which may abort)

T1

“

rpxq1, wpxq2, rpyq1, wpyq2, abort
Œ

| T2

“

rpxq2, ir, wpxq2 s



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects

... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects
... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects
... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects
... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions



Conclusions

Transactional Memory for Distributed Systems

Irrevocable operations and Pessimistic TMs

Incorporating Rollback into Pessimistic Distributed TM

Safety and Progress



Conclusions

Transactional Memory for Distributed Systems

Irrevocable operations and Pessimistic TMs

Incorporating Rollback into Pessimistic Distributed TM

Safety and Progress



Conclusions

Transactional Memory for Distributed Systems

Irrevocable operations and Pessimistic TMs

Incorporating Rollback into Pessimistic Distributed TM

Safety and Progress



Conclusions

Transactional Memory for Distributed Systems

Irrevocable operations and Pessimistic TMs

Incorporating Rollback into Pessimistic Distributed TM

Safety and Progress



Related Papers:

Konrad Siek, Pawe l T. Wojciechowski. Brief Announcement:
Towards a Fully-Articulated Pessimistic Distributed
Transactional Memory. In Proceedings of SPAA 2013: the
25th ACM Symposium on Parallelism in Algorithms and
Architectures. July 2013.

Pawe l T. Wojciechowski, Olivier Rütti and André Schiper.
SAMOA: A Framework for a Synchronisation-Augmented
Microprotocol Approach. In the Proceedings of IPDPS 2004:
the 18th IEEE Parallel and Distributed Processing
Symposium. April 2004.



?


	Transactional Memory
	Supremum Versioning Algorithm

