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Optimistic Approach

Run simultaneously in case there are no conflicts

In case of conflicts, rollback and retry
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The Problem of Irrevocable Operations

Irrevocable operations Ti

“

..., ir, ...
‰

do not operate on shared data

visible effects on the system

effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, I/O operations
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The Problem of Irrevocable Operations

Some workarounds

forbid irrevocable operations

buffer irrevocable operations and execute them on commit

run irrevocable transactions one-at-a-time

multiple versions of objects



Pessimistic Approach

Defer execution to prevent conflicts
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No rollbacks/aborts, irrevocable operations are not re-run
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Rollbacks

Rollback is still needed for

expressiveness

efficiency (i.e. limiting network traffic)

necessary for fault tolerance



Supremum Versioning Algorithm

Transactions know which objects they use and how many times (suprema)

start:

lock all used objects
assign object’s next version to transaction
release locks

access x:

wait until x is released by transaction with the previous version of x
access x
if last use of x: release x

commit:

release all objects



SVA Characteristics

Early release on last use

tx “ 1, y “ 1u T1

“

rpxq1, wpxq2, rpyq1, wpyq2
‰

Œ

| T2

“

rpxq2, wpxq3
‰

tx “ 3, y “ 2u

No aborts, no issues with irrevocable operations



SVA + Rollback

start:

lock all used objects
assign object’s next version to transaction
release locks

access x:

wait until x is released by transaction with the previous version of x
if first use of x: make copy of x
access x
if last use of x: release x

commit:

wait until transaction with the previous version of x commits
if previous transaction rolls back: also roll back
release all objects

rollback:

wait until transaction with the previous version of x commits
restore all objects from copies and release them



SVA+R Characteristics

Cascading rollback

tx “ 1, y “ 1u T1
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| T2
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rpxq2, wpxq3 ý . . .

Cascading rollback with irrevocable operations
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Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:

There are two or more transactions that access some object x

The first of those transactions releases x early

Some younger transaction accesses x

The first transaction aborts

Transactions containing irrevocable operations cannot access
objects that were released early (by transactions which may abort)

T1
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Œ

| T2
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Properties

Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

Real-time order from version order
Legality from exclusive access to committed objects

... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.

Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions
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Transactional Memory for Distributed Systems

Irrevocable operations and Pessimistic TMs

Incorporating Rollback into Pessimistic Distributed TM

Safety and Progress
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