Rollbacks in Pessimistic Distributed Transactional
Memory

Pawet T. Wojciechowski and Konrad Siek

Poznan University of Technology
{pawel.t.wojciechowski,konrad.siek } @cs.put.edu.pl

14 VI 2013

0

http://dsg.cs.put.poznan.pl

Software Transactional Memory

def thread:
lock_a.acquire() def thread:
lock_b.acquire() transaction.start()
a=> a=">
lock_a.release() b=b+1
b=b+1 transaction.commit ()

lock_b.release()

Advantages:
m ease of use on top

m efficient concurrency control under the hood

Transaction Abstraction

Transaction:
T; [opl, opa, ..., opn]
where op = { r(z)v, w(x)v, ... }

and x is some shared object

Commitment:
{fz=1} T [wx)?2] {z=2}

Rollback:
{z =1} T;[w(®)2, abort {z=1}

{z=1} T, [w®)2, retry — T/ [w(®)2] {z=2}

Distributed TM

Distributed Transactions

Optimistic Approach

Run simultaneously in case there are no conflicts
{fx=1} Ti[r@@)lw@)?2] | To[r)?2wx)3] {z=3}

In case of conflicts, rollback and retry

{z=1} T1[r(@)lwx)?]
| T [r(@)lLw@)29...T5 | r(@)2,w®)3]| {z=3}

Conflict: two or more transactions access x and at least one of
them writes to x.

The Problem of Irrevocable Operations

Irrevocable operations E[ey AT o]
m do not operate on shared data
m visible effects on the system

m effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, 1/O operations

The Problem of Irrevocable Operations

Irrevocable operations E[ey AT o]
m do not operate on shared data
m visible effects on the system

m effect cannot be withdrawn (barring compensation)

Examples: network messages, system calls, 1/O operations

{z=1}T1 [r(z)l,w(=)2 |
| Ty [r(2)1,ir,w(@)2 O ... T4 [r(z)2,ir,w(z)3 | {z =3}

The Problem of Irrevocable Operations

Some workarounds
m forbid irrevocable operations
m buffer irrevocable operations and execute them on commit
m run irrevocable transactions one-at-a-time

m multiple versions of objects

Pessimistic Approach

Defer execution to prevent conflicts
{z=1} T1[r(@)lwx)?2]

| T» | r(z)2,w(x)3 | {z=3}

Pessimistic Approach

Defer execution to prevent conflicts
{z=1} T1[r(@)lwx)?2]

| T» | r(z)2,w(x)3 | {z=3}
No rollbacks/aborts, irrevocable operations are not re-run
{z=1} T [r(z)lwx)?]

| Ty [r(x)2,ir, w(x)3] {x =3}

Rollbacks

Rollback is still needed for
m expressiveness

m efficiency (i.e. limiting network traffic)

Rollbacks

Rollback is still needed for
m expressiveness

m efficiency (i.e. limiting network traffic)

m necessary for fault tolerance

Supremum Versioning Algorithm

Transactions know which objects they use and how many times (suprema)
start:

lock all used objects
assign object’s next version to transaction
release locks

access z:
wait until z is released by transaction with the previous version of z
access x
if last use of x: release x

commit:

release all objects

SVA Characteristics

Early release on last use

{fr=1y=1} Tv| T(aj)l,71;(.717)2{‘T(y)1,w(y)2]
| Ty | r(z)2,w(z)3 | {z=3,y=2}

No aborts, no issues with irrevocable operations

SVA 4+ Rollback

start:

lock all used objects
assign object’s next version to transaction
release locks

access T

wait until z is released by transaction with the previous version of x
if first use of x: make copy of =

access x

if last use of x: release x

commit:

wait until transaction with the previous version of x commits
if previous transaction rolls back: also roll back
release all objects

rollback:

wait until transaction with the previous version of x commits
restore all objects from copies and release them

SVA-+R Characteristics

Cascading rollback
{z=1y=1}T1 [r(@)l,wx)2,r(y)l,w(y)2, abort
N N

| T» | r(z)2,w(z)3 &

SVA-+R Characteristics

Cascading rollback
{r =1,y =1} Ty [r(x)1,w(2)2,7(y)1, w(y)2, abort

N N
| T» | r(z)2,w(z)3 Ol

Cascading rollback with irrevocable operations
{z=1y=1}T [r(=),wx)2,r(y)1,wly)2, abort
N\ N

| T» | r(z)2,ir,w(z)3 ...

Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:
m There are two or more transactions that access some object x
m The first of those transactions releases x early
m Some younger transaction accesses x
[

The first transaction aborts

Fixing Cascading Rollback in SVA+R

Cascading rollback conditions in SVA:
m There are two or more transactions that access some object x
m The first of those transactions releases x early
m Some younger transaction accesses x
[

The first transaction aborts

Transactions containing irrevocable operations cannot access
objects that were released early (by transactions which may abort)

Ty [r(2)1, w(z)2,7(y)1, w(y)2, abort
N
| T» | r(x)2,ir,w(z)2]

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

m ... or uncommitted objects equivalent to committed objects

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

m ... or uncommitted objects equivalent to committed objects

m Strong Progressiveness (Liveness)
When two transactions conflict on some object, one of them
will not be forced to abort.
m Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Properties

m Opacity (Safety)

There is some equivalent sequential history that preserves
the real-time order of the transactional history and every
transaction in the transactional history is legal in the
sequential history.

m Real-time order from version order

m Legality from exclusive access to committed objects

m ... or uncommitted objects equivalent to committed objects

Strong Progressiveness (Liveness)

When two transactions conflict on some object, one of them
will not be forced to abort.

m Impossibile for all transactions to roll back due to cascading
rollback conditions and version order

Deadlock-freedom

Probably not Livelock-freedom

Probably susceptible to Parasitic Transactions

Conclusions

m Transactional Memory for Distributed Systems

Conclusions

m Transactional Memory for Distributed Systems
m Irrevocable operations and Pessimistic TMs

Conclusions

m Transactional Memory for Distributed Systems
m Irrevocable operations and Pessimistic TMs

m Incorporating Rollback into Pessimistic Distributed TM

Conclusions

Transactional Memory for Distributed Systems
Irrevocable operations and Pessimistic TMs
Incorporating Rollback into Pessimistic Distributed TM
Safety and Progress

Related Papers:

Konrad Siek, Pawet T. Wojciechowski. Brief Announcement:
Towards a Fully-Articulated Pessimistic Distributed
Transactional Memory. In Proceedings of SPAA 2013: the
25th ACM Symposium on Parallelism in Algorithms and
Architectures. July 2013.

Pawet T. Wojciechowski, Olivier Riitti and André Schiper.
SAMOA: A Framework for a Synchronisation-Augmented
Microprotocol Approach. In the Proceedings of IPDPS 2004:
the 18th IEEE Parallel and Distributed Processing
Symposium. April 2004.

	Transactional Memory
	Supremum Versioning Algorithm

