Zen and the Art of Concurrency Control

An Exploration of TM Safety Property Space with Early
Release in Mind

Konrad Siek and Pawet T. Wojciechowski
Poznar University of Technology

{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

14 VII 2014

http://dsg.cs.put.poznan.pl

ARTNNOF

MOTORCYCGLE
MAINTENANCE

An Inguiry into Values

ROBERT M. PIRSIG

irce: wikipedia]

ARTNNOF

MOTORCYCGLE
MAINTENANCE

An Inguiry into Values

ROBERT M. PIRSIG

irce: wikipedia]

Quality is not absolutely applicable
—depends on the situation

; WNOF

MOTORCYCGLE
MAINTENANCE

An Inguiry into Values

ROBERT M. PIRSIG

[source: wikipedia]

Quality is not absolutely applicable
—depends on the situation

quality = TM safety
situation = high contention

N

High contention

T1 [r(z)0,w(z)1]

Ty [7(2)0,w(z)1 O [r(z)1, w(=z)2 |

Ts [r(z)0,w(@)1 O [r(2)l,w)2O [r(@)2,w(x)3]

Ty [r(@)0,w(@)1 9 [r(@),w@)29O [rz)2,wx)3 9O [r(z)3,w(x)4]

22

High contention

T1 [r(z)0,w(z)1]

Ty [7(2)0,w(z)1 O [r(z)1, w(=z)2 |

Ts [r(z)0,w(@)1 O [r(2)l,w)2O [r(@)2,w(x)3]

Ty [r(@)0,w(@)1 9 [r(@),w@)29O [rz)2,wx)3 9O [r(z)3,w(x)4]

Ty [r(z)0,w(z)1 |

Ty [r()1,w()2]

15 [r(@)2,w(z)3]

Ty [()3, w(z)d |

22

Early release

T1 [r(2)0, w(z)1, r(y)0, w(y)l |

T

[@)1, w(@)2, r(y)l, w(y)2]

22

Early release

T1 [r(x)0, w(z)1, r(y)0, w(y)l |

15

[>r(2)1, w(z)2,>1(y)1, w(y)2 |

22

Early release

Throy
100

ughput (%]
150

T1 [r(x)0, w(z)1, r(y)0, w(y)l |

T [>r(2)1, w(z)2,>r(y)1, w

20% read:

Throughput (%]

0

160 10 20 20

100 120

Throughput [%]
00 400 500

Nodes

22

Early release

Throughput [%]

100
i

T1 [r(x)0, w(z)1, r(y)0, w(y)l |
T [>r(2)1, w(z)2,>1(y)1, w(y)2 |

DHT 20% reads Bank 20% reads Vacation

o sva [o s o[uwm
= s < o / g4 aw
e/ar;,

20% read:

200
i
20

150
7
Throughput (%]
100 100 20
Throughput (%]
w50

300
i

0

|
%
E

100
i
100
!

M. Herlihy, V. Luchango, M. Moir, I. W. N. Scherer. Software Transactional Memory for Dynamic-sized
Data Structures. PODC'03.

H. E. Ramadan, I. Roy, M. Herlihy, E. Witchel. Committing conflicting transactions in an STM. PPoPP’09.

P. Felber, V. Gramoli, R. Guerraoui. Elastic Transactions. DISC'09.

A. Bieniusa, A. Middelkoop, P. Thiemann. Brief Announcement: Actions in the Twilight—Concurrent
Irrevocable Transactions and Inconsistency Repair. PODC'10.

K. Siek, P. T. Wojciechowski. Brief Announcement: Relaxing Opacity in Pessimistic Transactional
Memory. DISC'14. (TBR)

22

Which TM safety properties can be used for early release?

Early release

Transaction T; releases x early in H iff there is some prefix H' of
H, such that 7} is live in H' and there exists T} in H' such that
there is a non-local read operation op; in H'|T; reading v from z
and a preceding write operation op; in H'|T; writing z to v.

Example:

Ti [r(x)0, w(2)1, r(y)0, w(y)l |
T, [>r(2)1, w(z)2,>1(y)1, w(y)2 |

6/22

Serializability

History H is serializable iff there exists some linear extension
(sequential witness history) S such that S only contains legal
transactions.

7/22

Serializability

History H is serializable iff there exists some linear extension
(sequential witness history) S such that S only contains legal
transactions.

Example:
Tl[[r(z)0, w(z)1, r(y)0, w(y)l]]
T, [~Sr(z)l, w(z)2, >Sr(y)l, w(y)2 ﬂ

7/22

Serializability

History H is serializable iff there exists some linear extension
(sequential witness history) S such that S only contains legal
transactions.

Example:

Tl[[r(z)0, w(z)1, r(y)0, w(y)l]]

T, [~Sr(z)l, w(z)2, >Sr(y)l, w(y)2 ﬂ
S =/(T1,Ty)

7/22

Serializability

History H is serializable iff there exists some linear extension
(sequential witness history) S such that S only contains legal
transactions.

Example:

Tl[[r(z)0, w(z)1, r(y)0, w(y)l]]

T, [[~r(z)l, w(z)2, >S>r(y)l, W(y)2]]
S =/(T1,Ty)

A serializable history can contain early release.

7/22

Opacity

Components of opacity:

m Serializability
m Real-time order

m Consistency

Opacity

Components of opacity:
m Serializability
m Real-time order

m Consistency

Non-local op,. in T; (i # 0) is consistent if there is a preceding
non-local write operation writing v to = in H |1}, (T} # 1;) where
T}, is committed or commit-pending.

8/22

Opacity

Components of opacity:
m Serializability
m Real-time order

m Consistency

Non-local op,. in T; (i # 0) is consistent if there is a preceding
non-local write operation writing v to = in H |1}, (T} # 1;) where
T}, is committed or commit-pending.

8/22

Opacity

Components of opacity:
m Serializability
m Real-time order

m Consistency

Non-local op,. in T; (i # 0) is consistent if there is a preceding
non-local write operation writing v to = in H |1}, (T} # 1;) where
T}, is committed or commit-pending.

Live transaction # committed or commit-pending.

8/22

Opacity

Components of opacity:
m Serializability
m Real-time order

m Consistency

Non-local op,. in T; (i # 0) is consistent if there is a preceding
non-local write operation writing v to = in H |1}, (T} # 1;) where
T}, is committed or commit-pending.

Live transaction # committed or commit-pending.

An opaque history cannot contain early release.

8/22

Elastic opacity

History H is elastic opaque iff there exists a cutting function f¢
that replaces each elastic transaction T; in H with its consistent
well-formed cut Cy, such that fo(H) is opaque.

9/22

Elastic opacity

History H is elastic opaque iff there exists a cutting function f¢
that replaces each elastic transaction T; in H with its consistent
well-formed cut Cy, such that fo(H) is opaque.

Example:
Ty [[I‘(y)O,W(l‘)l, I‘(l‘)l,I‘(y)O]]
T [>Sr()1] } H

9/22

Elastic opacity

History H is elastic opaque iff there exists a cutting function f¢
that replaces each elastic transaction T; in H with its consistent
well-formed cut Cy, such that fo(H) is opaque.

Example:
T [[r(y)0, w(z)1, r(z)1,r(y)0]]
T [>Sr()1] } H
11 [r(y)0, w(z)1]
Ty [>Sr()1] } fo(H)
Ty [[r(z)1,r(y)0]]

9/22

Elastic opacity

History H is elastic opaque iff there exists a cutting function f¢
that replaces each elastic transaction T; in H with its consistent
well-formed cut Cy, such that fo(H) is opaque.

Example:
T [[r(y)0, w(z)1, r(z)1,r(y)0]]
T [>Sr()1] } H
11 [r(y)0, w(z)1]
Ty [>Sr()1] } fo(H)
Ty [[r(z)1,r(y)0]]

An elastic opaque history can contain early release.

9/22

Elastic opacity

History H is elastic opaque iff there exists a cutting function f¢
that replaces each elastic transaction T; in H with its consistent
well-formed cut Cy, such that fo(H) is opaque.

Example:
T [[r(y)0, w(z)1, r(z)1,r(y)0]]
T [>Sr()1] } H
11 [r(y)0, w(z)1]
Ty [>Sr()1] } fo(H)
Ty [[r(z)1,r(y)0]]

An elastic opaque history can contain early release. However...

9/22

Elastic opacity

Well-formed cut:
m A subhistory cannot start with a write (unless it is the first
subhistory of a cut).
m If there are two writes in a transaction, they are within the
same subhistory.
m A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).

10/22

Elastic opacity

Well-formed cut:

m A subhistory cannot start with a write (unless it is the first
subhistory of a cut).

m If there are two writes in a transaction, they are within the
same subhistory.

m A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).

Ty [[r(y)0, w(z)1, r(x)1,r(y)0 ﬂ

T, [>Sr()1] } H

T [[r(y)0, w(z)1 ﬂ

T [[~r(zr)l ﬂ } fc(H)
Ty [[r(z)1,r(y)0]]

10/22

Elastic opacity

Well-formed cut:

m A subhistory cannot start with a write (unless it is the first
subhistory of a cut).

m If there are two writes in a transaction, they are within the
same subhistory.

m A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).

T [[r(y)0, w(z)1, r(x)1]]
T, [>Sr()1] } H

11 [r(y)0, w(z)1 |
T [>Sr@@)1] } fo(H)
Ty [r(x)1]

10/22

TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

11/22

TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

11/22

TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

Live transaction # committed or commit-pending.

11/22

TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

Live transaction # committed or commit-pending.

A TMSL1 history cannot contain early release.

11/22

TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

Live transaction # committed or commit-pending.
A TMSL1 history cannot contain early release.

A TMS2 history cannot contain early release (TMS2 < TMS1).

11/22

Virtual world consitency

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

12/22

Virtual world consitency

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

12/22

Virtual world consitency

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

T; [[r(z)0, w(z)1,r(y)0]]
T; [[~r(zr)l]]

12/22

Virtual world consitency

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:
T; [[r(z)0, w(z)1,r(y)0]]
T; [>Sr(2)1]

S ={T1,Ty)

12/22

Virtual world consitency

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

T; [[r(z)0, w(z)1,r(y)0]]

T; [>Sr(2)1]
S = <T].7 T2>

A VWC history can contain early release.

12/22

Virtual world consitency

If T; releases early in H, then T} cannot abort.

13 /22

Virtual world consitency

If T; releases early in H, then T} cannot abort.

T; [r(x)0,w(2)1,r(y)0 ©
T; [>Sr(=)1]

13 /22

Virtual world consitency

If T; releases early in H, then T} cannot abort.

T; [r(x)0,w(2)1,r(y)0 ©
T; [>Sr(=)1]

m If T; eventually commits, then the sequential witness history
S = {T;,Tj) is illegal.

13 /22

Virtual world consitency

If T; releases early in H, then T} cannot abort.

T; [r(x)0,w(2)1,r(y)0 ©
T; [>r(=)1 ©

m If T; eventually commits, then the sequential witness history
S = {T;,Tj) is illegal.

13 /22

Virtual world consitency

If T; releases early in H, then T} cannot abort.

T; [r(x)0,w(2)1,r(y)0 ©
T; [>r(=)1 ©

m If T; eventually commits, then the sequential witness history
S = {T;,Tj) is illegal.

m If T eventually aborts, its causal past C(Tj) = (1;,T})
contains two aborted transactions, so it is illegal.

13 /22

m Serializability

m supports early release
m very basic

14 /22

m Serializability

m supports early release
m very basic

m Opacity—no early release
m TMS1 & TMS2—no early release

14 /22

m Serializability

m supports early release
m very basic

m Opacity—no early release
m TMS1 & TMS2—no early release

m Virtual world consistency

m supports early release
m transactions cannot abort

14 /22

Serializability
m supports early release
m very basic
Opacity—no early release

TMS1 & TMS2—no early release
Virtual world consistency

m supports early release
m transactions cannot abort

Elastic opacity

m supports early release
® unintuitive cutting rules

14 /22

Database properties

m Recoverability
m Avoiding Cascading Aborts
m Strictness

m Rigorousness

15 /22

Database properties

m Recoverability

History H is recoverable iff for any T;,7T; € H s.t. T} reads
from T;, T; commits in H before T;.

m Avoiding Cascading Aborts
m Strictness

m Rigorousness

15 /22

Database properties

m Recoverability v/

History H is recoverable iff for any T;,7T; € H s.t. T} reads
from T;, T; commits in H before T;.

m Avoiding Cascading Aborts
m Strictness

m Rigorousness

15 /22

Database properties

m Recoverability v/

History H is recoverable iff for any 7;,T; € H s.t. T; reads
from T;, T; commits in H before Tj.

Avoiding Cascading Aborts

History H Avoids Cascading Aborts iff for any T;,T; € H s.t.
T} reads from Tj, T; commits before the read.

Strictness

Rigorousness

15 /22

Database properties

m Recoverability v/

History H is recoverable iff for any 7;,T; € H s.t. T; reads
from T;, T; commits in H before Tj.

Avoiding Cascading Aborts =

History H Avoids Cascading Aborts iff for any T;,T; € H s.t.
T} reads from Tj, T; commits before the read.

Strictness

Rigorousness

15 /22

Database properties

Recoverability v/

History H is recoverable iff for any T;,7; € H s.t. T} reads
from T;, T; commits in H before Tj.

Avoiding Cascading Aborts =

History H Avoids Cascading Aborts iff for any 1,7 € H s.t.
T} reads from T;, T; commits before the read.

m Strictness
History H is strict iff for any T3, T; € H and given any
operation op; = r(x)v or w(z)v' in H|T;, and any operation
op; = w(x)v in H|Tj, if op; follows op,, then T; commits or
aborts before op,.

Rigorousness

15 /22

Database properties

Recoverability v/

History H is recoverable iff for any T;,7; € H s.t. T} reads
from T;, T; commits in H before Tj.

Avoiding Cascading Aborts =

History H Avoids Cascading Aborts iff for any 1,7 € H s.t.
T} reads from T;, T; commits before the read.

m Strictness X
History H is strict iff for any T3, T; € H and given any
operation op; = r(z)v or w(z)v' in H|T;, and any operation
op; = w(x)v in H|Tj, if op; follows op,, then T; commits or
aborts before op,.

Rigorousness

15 /22

Database properties

m Recoverability v/
History H is recoverable iff for any T;,7T; € H s.t. T} reads
from T;, T; commits in H before T}.

m Avoiding Cascading Aborts ~
History H Avoids Cascading Aborts iff for any T;,T; € H s.t.
T} reads from T;, T; commits before the read.

m Strictness X
History H is strict iff for any 13, T; € H and given any
operation op; = r(z)v or w(z)v' in H|T;, and any operation
op; = w(x)v in H|Tj, if op; follows op;, then T; commits or
aborts before op;,.

m Rigorousness
History H is rigorous if it is strict and for any T;,7T; € H such
that T; writes to variable z, i.e., op; = w(x)v € H|T} after T;
reads x, then T; commits or aborts before op;.

15 /22

Database properties

m Recoverability v/
History H is recoverable iff for any T;,7T; € H s.t. T} reads
from T;, T; commits in H before T}.

m Avoiding Cascading Aborts ~
History H Avoids Cascading Aborts iff for any T;,T; € H s.t.
T} reads from T;, T; commits before the read.

m Strictness X
History H is strict iff for any 13, T; € H and given any
operation op; = r(z)v or w(z)v' in H|T;, and any operation
op; = w(x)v in H|Tj, if op; follows op;, then T; commits or
aborts before op;,.

m Rigorousness X
History H is rigorous if it is strict and for any T;,7T; € H such
that T; writes to variable z, i.e., op; = w(x)v € H|T} after T;
reads x, then T; commits or aborts before op;.

15 /22

Serializability+ spectrum

Serializability+ spectrum

\
serializability

Serializability+ spectrum

serializability + ACA

serializability

Serializability+ spectrum

serializability + recoverability serializability + ACA

serializability

Serializability+ spectrum

serializability + recoverability serializability + ACA

serializability ?

16 /22

Last-use

A live transaction T; in H is commit-pending—equivalent with
respect to z iff it is finished executing all of its operations on .

17/22

Last-use

A live transaction T; in H is commit-pending—equivalent with
respect to z iff it is finished executing all of its operations on .

atomicq{
int v = read(x);
if (v < 0)

write(x,-v); // commit-pending--equivalent wrt z
int u = read(y);
write(y, u + 1); // commit-pending--equivalent wrt y

17/22

Last-use

A live transaction T; in H is commit-pending—equivalent with
respect to z iff it is finished executing all of its operations on .

atomicq{
int v = read(x);
if (v < 0)

write(x,-v); // commit-pending--equivalent wrt z
int u = read(y);
write(y, u + 1); // commit-pending--equivalent wrt y

}
Transaction T releases = after last use in H iff T; releases x early
in H and T; is commit-pending equivalent wrt x.

17/22

Last-use consistency

m Let T be a subset of all transactions in history H that
release some variable early.

m Let Tﬁ be a subset of all transactions in history H that
release some variable early only after last-use.

History H satisfies last-use consistency if T = TZ.

18 /22

Inconsistent views

Last-use consistency precludes overwriting:
T; [[W(J:)O, w(z)l]]
T; [>r@)0 >9 T} [r(z)1,w(z)2]

19 /22

Inconsistent views

Last-use consistency precludes overwriting:

T [w (x)1]

T [[\r)0 SO T [r(z)l, w(z)2 |
Allowed inconsistent view:

T; [w(=)0, w(z)l (o)
Ty [>Sr(@)0 > Tj[r(z)1,w(z)2]

19 /22

Serializability+ spectrum

serializability + recoverability serializability + ACA

serializability serializability + recoverability

+ last-use consistency

Conclusions

m Current safety properties not enough for TM with early release
m Spectrum of database consistency properties

m Last-use consistency

Conclusions

m Current safety properties not enough for TM with early release
m Spectrum of database consistency properties

m Last-use consistency
[

Future work: last-use opacity

N
N

	Early release
	TM safety properties
	Database properties
	Last-use consistency
	End

