Zen and the Art of Concurrency Control An Exploration of TM Safety Property Space with Early Release in Mind Konrad Siek and Paweł T. Wojciechowski Poznań University of Technology {konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl 14 VII 2014 http://dsg.cs.put.poznan.pl [source: wikipedia] [source: wikipedia] Quality is not absolutely applicable \rightarrow depends on the situation [source: wikipedia] Quality is not absolutely applicable \rightarrow depends on the situation quality = TM safety situation = high contention # High contention ``` \begin{array}{l} T_1 \left[\begin{array}{c} r(x)0,w(x)1 \end{array} \right] \\ T_2 \left[\begin{array}{c} r(x)0,w(x)1 \circlearrowleft \left[\begin{array}{c} r(x)1,w(x)2 \end{array} \right] \end{array} \right. \\ T_3 \left[\begin{array}{c} r(x)0,w(x)1 \circlearrowleft \left[\begin{array}{c} r(x)1,w(x)2 \circlearrowleft \left[\begin{array}{c} r(x)2,w(x)3 \end{array} \right] \end{array} \right. \\ T_4 \left[\begin{array}{c} r(x)0,w(x)1 \circlearrowleft \left[\begin{array}{c} r(x)1,w(x)2 \circlearrowleft \left[\begin{array}{c} r(x)2,w(x)3 \circlearrowleft \left[\begin{array}{c} r(x)3,w(x)4 \end{array} \right] \end{array} \right] \right. \end{array} \right. \end{array} ``` # High contention ``` T_1 [r(x)0, w(x)1] T_2 \ \llbracket \ r(x)0, w(x)1 \circlearrowleft \ \llbracket \ r(x)1, w(x)2 \ \rrbracket T_3 \parallel r(x)0, w(x)1 \circlearrowleft \parallel r(x)1, w(x)2 \circlearrowleft \parallel r(x)2, w(x)3 \parallel T_4 \quad \llbracket \ r(x)0, w(x)1 \circlearrowleft \llbracket \ r(x)1, w(x)2 \circlearrowleft \llbracket \ r(x)2, w(x)3 \circlearrowleft \llbracket \ r(x)3, w(x)4 \ \rrbracket T_1 [r(x)0, w(x)1] r(x)1, w(x)2 T_2 \mathbf{I} \ r(x)2, w(x)3 \ \mathbf{I} T_3 r(x)3, w(x)4 T_4 ``` ``` T_1 \begin{bmatrix} \mathbf{r}(x)0, \ \mathbf{w}(x)1, \ \mathbf{r}(y)0, \ \mathbf{w}(y)1 \end{bmatrix} T_2 \begin{bmatrix} \mathbf{r}(x)1, \ \mathbf{w}(x)2, \mathbf{r}(y)1, \ \mathbf{w}(y)2 \end{bmatrix} ``` $$T_1 \begin{bmatrix} \mathbf{r}(x)0, \ \mathbf{w}(x)1, \ \mathbf{r}(y)0, \ \mathbf{w}(y)1 \ \end{bmatrix}$$ $$T_2 \qquad \qquad \begin{bmatrix} \mathbf{r}(x)1, \ \mathbf{w}(x)2, \mathbf{r}(y)1, \ \mathbf{w}(y)2 \ \end{bmatrix}$$ - M. Herlihy, V. Luchango, M. Moir, I. W. N. Scherer. Software Transactional Memory for Dynamic-sized Data Structures. PODC'03. - H. E. Ramadan, I. Roy, M. Herlihy, E. Witchel. Committing conflicting transactions in an STM. PPoPP'09. - P. Felber, V. Gramoli, R. Guerraoui. Elastic Transactions. DISC'09. - A. Bieniusa, A. Middelkoop, P. Thiemann. Brief Announcement: Actions in the Twilight—Concurrent Irrevocable Transactions and Inconsistency Repair. PODC'10. - K. Siek, P. T. Wojciechowski. Brief Announcement: Relaxing Opacity in Pessimistic Transactional Memory. DISC'14. (TBR) Which TM safety properties can be used for early release? #### Definition Transaction T_i releases x early in H iff there is some prefix H' of H, such that T_i is live in H' and there exists T_j in H' such that there is a non-local read operation op_j in $H'|T_j$ reading v from x and a preceding write operation op_i in $H'|T_i$ writing x to v. ### Example: ``` T_1 \llbracket \mathbf{r}(x)0, \ \mathbf{w}(x)\mathbf{1}, \ \mathbf{r}(y)0, \ \mathbf{w}(y)\mathbf{1} \rrbracket T_2 \qquad \llbracket \mathbf{r}(x)\mathbf{1}, \ \mathbf{w}(x)\mathbf{2}, \mathbf{r}(y)\mathbf{1}, \ \mathbf{w}(y)\mathbf{2} \rrbracket ``` #### **Definition** History H is serializable iff there exists some linear extension (sequential witness history) \hat{S} such that \hat{S} only contains legal transactions. #### **Definition** History H is serializable iff there exists some linear extension (sequential witness history) \hat{S} such that \hat{S} only contains legal transactions. #### Example: $$T_1 \begin{bmatrix} \mathbf{r}(x)0, \ \mathbf{w}(x)1, \ \mathbf{r}(y)0, \ \mathbf{w}(y)1 \end{bmatrix}$$ $$T_2 \begin{bmatrix} \mathbf{r}(x)1, \ \mathbf{w}(x)2, \mathbf{r}(y)1, \ \mathbf{w}(y)2 \end{bmatrix}$$ #### **Definition** History H is serializable iff there exists some linear extension (sequential witness history) \hat{S} such that \hat{S} only contains legal transactions. ### Example: $$T_1 \begin{bmatrix} \mathbf{r}(x)0, \ \mathbf{w}(x)1, \ \mathbf{r}(y)0, \ \mathbf{w}(y)1 \end{bmatrix}$$ $$T_2 \begin{bmatrix} \mathbf{r}(x)1, \ \mathbf{w}(x)2, \mathbf{r}(y)1, \ \mathbf{w}(y)2 \end{bmatrix}$$ $$\hat{S} = \langle T_1, T_2 \rangle$$ #### **Definition** History H is serializable iff there exists some linear extension (sequential witness history) \hat{S} such that \hat{S} only contains legal transactions. ### Example: $$T_1 \begin{bmatrix} \mathbf{r}(x)0, \ \mathbf{w}(x)1, \ \mathbf{r}(y)0, \ \mathbf{w}(y)1 \end{bmatrix}$$ $$T_2 \begin{bmatrix} \mathbf{r}(x)1, \ \mathbf{w}(x)2, \mathbf{r}(y)1, \ \mathbf{w}(y)2 \end{bmatrix}$$ $$\hat{S} = \langle T_1, T_2 \rangle$$ A serializable history can contain early release. ## Components of opacity: - Serializability - Real-time order - Consistency ## Components of opacity: - Serializability - Real-time order - Consistency #### **Definition** Non-local op_r in T_i ($i \neq 0$) is consistent if there is a preceding non-local write operation writing v to x in $H|T_k$ ($T_k \neq T_i$) where T_k is committed or commit-pending. ## Components of opacity: - Serializability - Real-time order - Consistency #### **Definition** Non-local op_r in T_i ($i \neq 0$) is consistent if there is a preceding non-local write operation writing v to x in $H|T_k$ ($T_k \neq T_i$) where T_k is **committed or commit-pending**. ## Components of opacity: - Serializability - Real-time order - Consistency #### **Definition** Non-local op_r in T_i ($i \neq 0$) is consistent if there is a preceding non-local write operation writing v to x in $H|T_k$ ($T_k \neq T_i$) where T_k is **committed or commit-pending**. Live transaction \neq committed or commit-pending. ## Components of opacity: - Serializability - Real-time order - Consistency #### **Definition** Non-local op_r in T_i ($i \neq 0$) is consistent if there is a preceding non-local write operation writing v to x in $H|T_k$ ($T_k \neq T_i$) where T_k is **committed or commit-pending**. Live transaction \neq committed or commit-pending. An opaque history cannot contain early release. #### **Definition** History H is elastic opaque iff there exists a cutting function f_C that replaces each elastic transaction T_i in H with its consistent well-formed cut C_t , such that $f_C(H)$ is opaque. #### **Definition** History H is elastic opaque iff there exists a cutting function f_C that replaces each elastic transaction T_i in H with its consistent well-formed cut C_t , such that $f_C(H)$ is opaque. ### Example: $$\begin{array}{c|c} T_1 & \llbracket \ \mathbf{r}(y)0, \mathbf{w}(x)1, & \mathbf{r}(x)1, \mathbf{r}(y)0 \ \rrbracket \\ T_2 & \llbracket \ \mathbf{r}(x)1 \ \rrbracket \end{array} \right\} H$$ #### **Definition** History H is elastic opaque iff there exists a cutting function f_C that replaces each elastic transaction T_i in H with its consistent well-formed cut C_t , such that $f_C(H)$ is opaque. ### Example: $$\begin{array}{c|c} T_1 & \mathbb{F}(y)0, \mathbf{w}(x)1, & \mathbf{r}(x)1, \mathbf{r}(y)0 & \mathbb{F}(x)1 \\ T_2 & \mathbb{F}(x)1 & \mathbb{F}(x)1 & \mathbb{F}(x)1 \\ \hline T_1' & \mathbb{F}(y)0, \mathbf{w}(x)1 & \mathbb{F}(x)1 & \mathbb{F}(x)1 \\ T_1'' & \mathbb{F}(x)1, \mathbf{r}(y)0 & \mathbb{F}(x)1 & \mathbb{F}(x)1, \mathbf{r}(y)1 & \mathbb{F}(x)1, \mathbf{r}(y)1 \\ \hline \end{array} \right\} H$$ #### **Definition** History H is elastic opaque iff there exists a cutting function f_C that replaces each elastic transaction T_i in H with its consistent well-formed cut C_t , such that $f_C(H)$ is opaque. ### Example: $$\begin{array}{c|c} T_1 & \mathbb{F}(y)0, \mathbf{w}(x)1, & \mathbf{r}(x)1, \mathbf{r}(y)0 & \mathbb{F}(x)1 \\ T_2 & \mathbb{F}(x)1 & \mathbb{F}(x)1 & \mathbb{F}(x)1 \\ \hline T_1' & \mathbb{F}(y)0, \mathbf{w}(x)1 & \mathbb{F}(x)1 & \mathbb{F}(x)1 \\ T_1'' & \mathbb{F}(x)1, \mathbf{r}(y)0 & \mathbb{F}(x)1 & \mathbb{F}(x)1, \mathbf{r}(y)1 & \mathbb{F}(x)1 \\ \hline \end{array} \right\} H$$ An elastic opaque history can contain early release. #### **Definition** History H is elastic opaque iff there exists a cutting function f_C that replaces each elastic transaction T_i in H with its consistent well-formed cut C_t , such that $f_C(H)$ is opaque. ### Example: $$\begin{array}{c|c} T_1 & \mathbb{F}(y)0, \mathbf{w}(x)1, & \mathbf{r}(x)1, \mathbf{r}(y)0 & \mathbb{F}(x)1 \\ T_2 & \mathbb{F}(x)1 & \mathbb{F}(x)1 & \mathbb{F}(x)1 \\ \hline T_1' & \mathbb{F}(y)0, \mathbf{w}(x)1 & \mathbb{F}(x)1 & \mathbb{F}(x)1 \\ T_1'' & \mathbb{F}(x)1, \mathbf{r}(y)0 & \mathbb{F}(x)1 & \mathbb{F}(x)1, \mathbf{r}(y)1 & \mathbb{F}(x)1 \\ \hline \end{array} \right\} H$$ An elastic opaque history can contain early release. However... #### Well-formed cut: - A subhistory cannot start with a write (unless it is the first subhistory of a cut). - If there are two writes in a transaction, they are within the same subhistory. - A subhistory cannot be shorter than two operations (unless the transaction contains only one operation). #### Well-formed cut: - A subhistory cannot start with a write (unless it is the first subhistory of a cut). - If there are two writes in a transaction, they are within the same subhistory. - A subhistory cannot be shorter than two operations (unless the transaction contains only one operation). $$\begin{array}{c|c} T_1 & \llbracket \ \mathbf{r}(y)0, \mathbf{w}(x)1, & \mathbf{r}(x)1, \mathbf{r}(y)0 \ \rrbracket \\ T_2 & \llbracket \ \mathbf{r}(x)1 \ \rrbracket \end{array} \right\} H$$ $$\begin{array}{c|c} T_1' & \llbracket \ \mathbf{r}(y)0, \mathbf{w}(x)1 \ \rrbracket \\ T_2 & \llbracket \ \mathbf{r}(x)1 \ \rrbracket \end{array} \right\} f_C(H)$$ $$T_1'' & \llbracket \ \mathbf{r}(x)1, \mathbf{r}(y)0 \ \rrbracket$$ #### Well-formed cut: - A subhistory cannot start with a write (unless it is the first subhistory of a cut). - If there are two writes in a transaction, they are within the same subhistory. - A subhistory cannot be shorter than two operations (unless the transaction contains only one operation). $$\begin{array}{c|c} T_1 & \mathbb{F}(y)0, \mathbf{w}(x)1, & \mathbf{r}(x)\mathbf{1} \\ T_2 & \mathbb{F}(x)\mathbf{1} \end{array} \right\} H$$ $$T_1' & \mathbb{F}(y)0, \mathbf{w}(x)\mathbf{1} \\ T_2 & \mathbb{F}(x)\mathbf{1} \\ T_1'' & \mathbb{F}(x)\mathbf{1} \end{array} \right\} f_C(H)$$ ## **Definition (TMS1—Valid Response)** For operation op to return in some subhistory $H|T_i$, there must exist some set of transactions S that follow real-time order and justify the legality of op, and for any $T_j \in S$ it is true that, - \blacksquare if T_j precedes T_i in real-time order then T_j is committed, or - \blacksquare T_i is committed or commit-pending otherwise. ## **Definition (TMS1—Valid Response)** For operation op to return in some subhistory $H|T_i$, there must exist some set of transactions S that follow real-time order and justify the legality of op, and for any $T_j \in S$ it is true that, - \blacksquare if T_j precedes T_i in real-time order then T_j is **committed**, or - T_i is **committed or commit-pending** otherwise. ## **Definition (TMS1—Valid Response)** For operation op to return in some subhistory $H|T_i$, there must exist some set of transactions S that follow real-time order and justify the legality of op, and for any $T_j \in S$ it is true that, - \blacksquare if T_j precedes T_i in real-time order then T_j is **committed**, or - T_i is **committed or commit-pending** otherwise. Live transaction \neq committed or commit-pending. ## **Definition (TMS1—Valid Response)** For operation op to return in some subhistory $H|T_i$, there must exist some set of transactions S that follow real-time order and justify the legality of op, and for any $T_j \in S$ it is true that, - \blacksquare if T_j precedes T_i in real-time order then T_j is **committed**, or - T_i is **committed or commit-pending** otherwise. Live transaction \neq committed or commit-pending. A TMS1 history cannot contain early release. ## **Definition (TMS1—Valid Response)** For operation op to return in some subhistory $H|T_i$, there must exist some set of transactions S that follow real-time order and justify the legality of op, and for any $T_i \in S$ it is true that, - \blacksquare if T_j precedes T_i in real-time order then T_j is **committed**, or - T_i is **committed or commit-pending** otherwise. Live transaction \neq committed or commit-pending. A TMS1 history cannot contain early release. A TMS2 history cannot contain early release (TMS2 \subset TMS1). # Virtual world consitency #### **Definition** History H is VWC iff all committed transactions are strict serializable, and for all aborted transactions there exists a linear extension of its causal past that is legal. # Virtual world consitency #### **Definition** History H is VWC iff all committed transactions are **strict serializable**, and for all aborted transactions there exists a linear extension of its causal past that is legal. #### **Definition** History H is VWC iff all committed transactions are **strict serializable**, and for all aborted transactions there exists a linear extension of its causal past that is legal. #### Example: $$T_i \ [\![\ \mathbf{r}(x)0, \mathbf{w}(x)1, \mathbf{r}(y)0 \]\!]$$ $$T_j \ [\![\ \mathbf{r}(x)1 \]\!]$$ #### **Definition** History H is VWC iff all committed transactions are **strict serializable**, and for all aborted transactions there exists a linear extension of its causal past that is legal. #### Example: $$T_i \ [\![\mathbf{r}(x)0, \mathbf{w}(x)1, \mathbf{r}(y)0 \]\!]$$ $T_j \ [\![\mathbf{r}(x)1 \]\!]$ $$\hat{S} = \langle T_1, T_2 \rangle$$ #### **Definition** History H is VWC iff all committed transactions are **strict serializable**, and for all aborted transactions there exists a linear extension of its causal past that is legal. #### Example: $$T_i \ [\![\mathbf{r}(x)0, \mathbf{w}(x)1, \mathbf{r}(y)0 \]\!]$$ $T_j \ [\![\mathbf{r}(x)1, \mathbf{r}(y)1 \]\!]$ $$\hat{S} = \langle T_1, T_2 \rangle$$ A VWC history can contain early release. If T_i releases early in H, then T_i cannot abort. If T_i releases early in H, then T_i cannot abort. $$T_i \ [\![\ \mathbf{r}(x)0, \mathbf{w}(x)1, \mathbf{r}(y)0 \ \circlearrowleft \ T_j \ [\![\ \searrow \mathbf{r}(x)1 \]\!]$$ If T_i releases early in H, then T_i cannot abort. $$T_i \ [\![\mathbf{r}(x)0, \mathbf{w}(x)1, \mathbf{r}(y)0 \ \circlearrowleft \ T_j \ [\![\ \mathbf{r}(x)1 \]\!]$$ ■ If T_j eventually commits, then the sequential witness history $\hat{S} = \langle T_i, T_j \rangle$ is illegal. If T_i releases early in H, then T_i cannot abort. $$T_i \ [\![\mathbf{r}(x)0, \mathbf{w}(x)1, \mathbf{r}(y)0 \ \circlearrowleft \ T_j \ [\![\mathbf{r}(x)1 \ \circlearrowleft \]\!]$$ ■ If T_j eventually commits, then the sequential witness history $\hat{S} = \langle T_i, T_j \rangle$ is illegal. If T_i releases early in H, then T_i cannot abort. $$T_i \ [\ \mathbf{r}(x)0, \mathbf{w}(x)1, \mathbf{r}(y)0 \ \circlearrowleft$$ $T_j \ [\ \mathbf{r}(x)1 \ \circlearrowleft]$ - If T_j eventually commits, then the sequential witness history $\hat{S} = \langle T_i, T_i \rangle$ is illegal. - If T_j eventually aborts, its causal past $C(T_j) = \langle T_i, T_j \rangle$ contains two aborted transactions, so it is illegal. - Serializability - supports early release - very basic - Serializability - supports early release - very basic - Opacity—no early release - TMS1 & TMS2—no early release - Serializability - supports early release - very basic - Opacity—no early release - TMS1 & TMS2—no early release - Virtual world consistency - supports early release - transactions cannot abort - Serializability - supports early release - very basic - Opacity—no early release - TMS1 & TMS2—no early release - Virtual world consistency - supports early release - transactions cannot abort - Elastic opacity - supports early release - unintuitive cutting rules - Recoverability - Avoiding Cascading Aborts - Strictness - Rigorousness ■ Recoverability History H is recoverable iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits in H before T_j . - Avoiding Cascading Aborts - Strictness - Rigorousness ■ Recoverability ✓ History H is recoverable iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits in H before T_j . - Avoiding Cascading Aborts - Strictness - Rigorousness - Recoverability ✓ - History H is recoverable iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits in H before T_j . - Avoiding Cascading Aborts - History H Avoids Cascading Aborts iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits before the read. - Strictness - Rigorousness - Recoverability ✓ - History H is recoverable iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits in H before T_j . - Avoiding Cascading Aborts ≈ - History H Avoids Cascading Aborts iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits before the read. - Strictness - Rigorousness ■ Recoverability ✓ History H is recoverable iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits in H before T_j . ■ Avoiding Cascading Aborts ≈ History H Avoids Cascading Aborts iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits before the read. Strictness History H is strict iff for any $T_i, T_j \in H$ and given any operation $op_i = \mathbf{r}(x)v$ or $\mathbf{w}(x)v'$ in $H|T_i$, and any operation $op_j = \mathbf{w}(x)v$ in $H|T_j$, if op_i follows op_j , then T_j commits or aborts before op_i . ■ Rigorousness ■ Recoverability ✓ History H is recoverable iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits in H before T_j . ■ Avoiding Cascading Aborts ≈ History H Avoids Cascading Aborts iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits before the read. ■ Strictness X History H is strict iff for any $T_i, T_j \in H$ and given any operation $op_i = \mathbf{r}(x)v$ or $\mathbf{w}(x)v'$ in $H|T_i$, and any operation $op_j = \mathbf{w}(x)v$ in $H|T_j$, if op_i follows op_j , then T_j commits or aborts before op_i . Rigorousness ■ Recoverability ✓ History H is recoverable iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits in H before T_j . ■ Avoiding Cascading Aborts \approx History H Avoids Cascading Aborts iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits before the read. ■ Strictness X History H is strict iff for any $T_i, T_j \in H$ and given any operation $op_i = \mathbf{r}(x)v$ or $\mathbf{w}(x)v'$ in $H|T_i$, and any operation $op_j = \mathbf{w}(x)v$ in $H|T_j$, if op_i follows op_j , then T_j commits or aborts before op_i . ■ Rigorousness History H is rigorous if it is strict and for any $T_i, T_j \in H$ such that T_j writes to variable x, i.e., $op_j = \mathrm{w}(x)v \in H|T_j$ after T_i reads x, then T_i commits or aborts before op_j . ■ Recoverability ✓ History H is recoverable iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits in H before T_i . ■ Avoiding Cascading Aborts ≈ History H Avoids Cascading Aborts iff for any $T_i, T_j \in H$ s.t. T_j reads from T_i, T_i commits before the read. ■ Strictness X History H is strict iff for any $T_i, T_j \in H$ and given any operation $op_i = \mathbf{r}(x)v$ or $\mathbf{w}(x)v'$ in $H|T_i$, and any operation $op_j = \mathbf{w}(x)v$ in $H|T_j$, if op_i follows op_j , then T_j commits or aborts before op_i . ■ Rigorousness X History H is rigorous if it is strict and for any $T_i, T_j \in H$ such that T_j writes to variable x, i.e., $op_j = \mathrm{w}(x)v \in H|T_j$ after T_i reads x, then T_i commits or aborts before op_j . serializability #### Last-use ### **Definition (Commit-pending-equivalence)** A live transaction T_i in H is commit-pending-equivalent with respect to x iff it is finished executing all of its operations on x. #### Last-use ### **Definition (Commit-pending-equivalence)** A live transaction T_i in H is commit-pending-equivalent with respect to x iff it is finished executing all of its operations on x. ``` atomic{ int v = read(x); if (v < 0) write(x,-v); // commit-pending--equivalent wrt x int u = read(y); write(y, u + 1); // commit-pending--equivalent wrt y }</pre> ``` #### Last-use ### **Definition (Commit-pending-equivalence)** A live transaction T_i in H is commit-pending-equivalent with respect to x iff it is finished executing all of its operations on x. ``` atomic{ int v = read(x); if (v < 0) write(x,-v); // commit-pending--equivalent wrt x int u = read(y); write(y, u + 1); // commit-pending--equivalent wrt y }</pre> ``` ### Definition (Early release after last use) Transaction T_i releases x after last use in H iff T_i releases x early in H and T_i is commit-pending equivalent wrt x. ### Last-use consistency #### **Definition** - Let \mathbb{T}_{er}^H be a subset of all transactions in history H that release some variable early. - Let \mathbb{T}^H_{lu} be a subset of all transactions in history H that release some variable early only after last-use. History H satisfies last-use consistency if $\mathbb{T}^H_{lu}=\mathbb{T}^H_{er}.$ ### Inconsistent views ### Last-use consistency precludes overwriting: $$T_i \ \left[\begin{array}{cc} \mathbf{w}(x)0, & \mathbf{w}(x)1 \end{array} \right]$$ $$T_j \quad \left[\begin{array}{cc} \mathbf{w}(x)0 & \mathbf{w}(x)2 \end{array} \right]$$ ### Inconsistent views ### Last-use consistency precludes overwriting: #### Allowed inconsistent view: ### Conclusions - Current safety properties not enough for TM with early release - Spectrum of database consistency properties - Last-use consistency ### Conclusions - Current safety properties not enough for TM with early release - Spectrum of database consistency properties - Last-use consistency - Future work: last-use opacity ?