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Quality is not absolutely applicable
—depends on the situation

quality = TM safety
situation = high contention
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High contention
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Which TM safety properties can be used for early release?



Early release

Transaction T; releases x early in H iff there is some prefix H' of
H, such that 7} is live in H' and there exists T} in H' such that
there is a non-local read operation op; in H'|T; reading v from z
and a preceding write operation op; in H'|T; writing z to v.

Example:

Ti [ r(x)0, w(2)1, r(y)0, w(y)l |
T, [ >r(2)1, w(z)2,>1(y)1, w(y)2 |
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Serializability

History H is serializable iff there exists some linear extension
(sequential witness history) S such that S only contains legal
transactions.
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History H is serializable iff there exists some linear extension
(sequential witness history) S such that S only contains legal
transactions.

Example:

Tl[[ r(z)0, w(z)1, r(y)0, w(y)l ]]

T, [[ ~r(z)l, w(z)2, >S>r(y)l, W(y)2]]
S =/(T1,Ty)

A serializable history can contain early release.
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Opacity

Components of opacity:
m Serializability
m Real-time order

m Consistency

Non-local op,. in T; (i # 0) is consistent if there is a preceding
non-local write operation writing v to = in H |1}, (T} # 1;) where
T}, is committed or commit-pending.

Live transaction # committed or commit-pending.

An opaque history cannot contain early release.

8/22



Elastic opacity

History H is elastic opaque iff there exists a cutting function f¢
that replaces each elastic transaction T; in H with its consistent
well-formed cut Cy, such that fo(H) is opaque.
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History H is elastic opaque iff there exists a cutting function f¢
that replaces each elastic transaction T; in H with its consistent
well-formed cut Cy, such that fo(H) is opaque.

Example:
T [[ r(y)0, w(z)1, r(z)1,r(y)0 ]]
T [ >Sr()1] } H
11 [ r(y)0, w(z)1 ]
Ty [ >Sr()1] } fo(H)
Ty [[ r(z)1,r(y)0 ]]

An elastic opaque history can contain early release. However...
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Elastic opacity

Well-formed cut:
m A subhistory cannot start with a write (unless it is the first
subhistory of a cut).
m If there are two writes in a transaction, they are within the
same subhistory.
m A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).
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Well-formed cut:

m A subhistory cannot start with a write (unless it is the first
subhistory of a cut).

m If there are two writes in a transaction, they are within the
same subhistory.

m A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).

Ty [[ r(y)0, w(z)1, r(x)1,r(y)0 ﬂ

T, [ >Sr()1] } H
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Elastic opacity

Well-formed cut:

m A subhistory cannot start with a write (unless it is the first
subhistory of a cut).

m If there are two writes in a transaction, they are within the
same subhistory.

m A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).

T [[ r(y)0, w(z)1, r(x)1 ]]
T, [ >Sr()1] } H

11 [ r(y)0, w(z)1 |
T [ >Sr@@)1] } fo(H)
Ty [ r(x)1]
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TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

11/22



TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

11/22



TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

Live transaction # committed or commit-pending.

11/22



TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

Live transaction # committed or commit-pending.

A TMSL1 history cannot contain early release.

11/22



TMS1 & TMS2

For operation op to return in some subhistory H|T;, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any T; € S it is true that,

m if T} precedes T; in real-time order then T} is committed, or

m T} is committed or commit-pending otherwise.

Live transaction # committed or commit-pending.
A TMSL1 history cannot contain early release.

A TMS2 history cannot contain early release (TMS2 < TMS1).
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Virtual world consitency

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.
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Virtual world consitency

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

T; [[ r(z)0, w(z)1,r(y)0 ]]

T; [ >Sr(2)1]
S = <T].7 T2>

A VWC history can contain early release.
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Virtual world consitency

If T; releases early in H, then T} cannot abort.

T; [ r(x)0,w(2)1,r(y)0 ©
T; [ >r(=)1 ©

m If T; eventually commits, then the sequential witness history
S = {T;,Tj) is illegal.

m If T eventually aborts, its causal past C(Tj) = (1;,T})
contains two aborted transactions, so it is illegal.

13 /22



m Serializability

m supports early release
m very basic

14 /22



m Serializability

m supports early release
m very basic

m Opacity—no early release
m TMS1 & TMS2—no early release

14 /22



m Serializability

m supports early release
m very basic

m Opacity—no early release
m TMS1 & TMS2—no early release

m Virtual world consistency

m supports early release
m transactions cannot abort

14 /22



Serializability
m supports early release
m very basic
Opacity—no early release

TMS1 & TMS2—no early release
Virtual world consistency

m supports early release
m transactions cannot abort

Elastic opacity

m supports early release
® unintuitive cutting rules

14 /22
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16 /22



Last-use

A live transaction T; in H is commit-pending—equivalent with
respect to z iff it is finished executing all of its operations on .
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Last-use

A live transaction T; in H is commit-pending—equivalent with
respect to z iff it is finished executing all of its operations on .

atomicq{
int v = read(x);
if (v < 0)

write(x,-v); // commit-pending--equivalent wrt z
int u = read(y);
write(y, u + 1); // commit-pending--equivalent wrt y

}
Transaction T releases = after last use in H iff T; releases x early
in H and T; is commit-pending equivalent wrt x.
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Last-use consistency

m Let T be a subset of all transactions in history H that
release some variable early.

m Let Tﬁ be a subset of all transactions in history H that
release some variable early only after last-use.

History H satisfies last-use consistency if T = TZ.

18 /22



Inconsistent views

Last-use consistency precludes overwriting:
T; [[W(J:)O, w(z)l ]]
T; [ >r@)0 >9 T} [ r(z)1,w(z)2 ]
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Inconsistent views

Last-use consistency precludes overwriting:

T [w (x)1]

T [[\r )0 SO T [ r(z)l, w(z)2 |
Allowed inconsistent view:

T; [ w(=)0, w(z)l (o)
Ty [ >Sr(@)0 > Tj[ r(z)1,w(z)2 ]

19 /22



Serializability+ spectrum

serializability + recoverability serializability + ACA

serializability serializability + recoverability

+ last-use consistency
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