
Zen and the Art of Concurrency Control
An Exploration of TM Safety Property Space with Early

Release in Mind

Konrad Siek and Pawe l T. Wojciechowski

Poznań University of Technology

{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

14 VII 2014

http://dsg.cs.put.poznan.pl

1 / 22



[source: wikipedia]

Quality is not absolutely applicable

→depends on the situation

quality = TM safety
situation = high contention

2 / 22



[source: wikipedia]

Quality is not absolutely applicable

→depends on the situation

quality = TM safety
situation = high contention

2 / 22



[source: wikipedia]

Quality is not absolutely applicable

→depends on the situation

quality = TM safety
situation = high contention

2 / 22



High contention

T1

q
rpxq0, wpxq1

y

T2

q
rpxq0, wpxq1ý

q
rpxq1, wpxq2

y

T3

q
rpxq0, wpxq1ý

q
rpxq1, wpxq2ý

q
rpxq2, wpxq3

y

T4

q
rpxq0, wpxq1ý

q
rpxq1, wpxq2ý

q
rpxq2, wpxq3ý

q
rpxq3, wpxq4

y

T1

q
rpxq0, wpxq1

y

T2 ×
q
rpxq1, wpxq2

y

T3 ×
q
rpxq2, wpxq3

y

T4 ×
q
rpxq3, wpxq4

y

3 / 22



High contention

T1

q
rpxq0, wpxq1

y

T2

q
rpxq0, wpxq1ý

q
rpxq1, wpxq2

y

T3

q
rpxq0, wpxq1ý

q
rpxq1, wpxq2ý

q
rpxq2, wpxq3

y

T4

q
rpxq0, wpxq1ý

q
rpxq1, wpxq2ý

q
rpxq2, wpxq3ý

q
rpxq3, wpxq4

y

T1

q
rpxq0, wpxq1

y

T2 ×
q
rpxq1, wpxq2

y

T3 ×
q
rpxq2, wpxq3

y

T4 ×
q
rpxq3, wpxq4

y

3 / 22



Early release

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2 ×
q
rpxq1, wpxq2, rpyq1, wpyq2

y

2 4 6 8 10

50
10

0
15

0
20

0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsDHT
LSVA
BVA

2 4 6 8 10

10
0

12
0

14
0

16
0

18
0

20
0

22
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsBank
LSVA
BVA

2 4 6 8 10

10
0

20
0

30
0

40
0

50
0

60
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsVacation
LSVA
BVA

M. Herlihy, V. Luchango, M. Moir, I. W. N. Scherer. Software Transactional Memory for Dynamic-sized
Data Structures. PODC’03.

H. E. Ramadan, I. Roy, M. Herlihy, E. Witchel. Committing conflicting transactions in an STM. PPoPP’09.

P. Felber, V. Gramoli, R. Guerraoui. Elastic Transactions. DISC’09.

A. Bieniusa, A. Middelkoop, P. Thiemann. Brief Announcement: Actions in the Twilight—Concurrent
Irrevocable Transactions and Inconsistency Repair. PODC’10.

K. Siek, P. T. Wojciechowski. Brief Announcement: Relaxing Opacity in Pessimistic Transactional
Memory. DISC’14. (TBR)

4 / 22



Early release

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2

q
×rpxq1, wpxq2, ×rpyq1, wpyq2

y

2 4 6 8 10

50
10

0
15

0
20

0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsDHT
LSVA
BVA

2 4 6 8 10

10
0

12
0

14
0

16
0

18
0

20
0

22
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsBank
LSVA
BVA

2 4 6 8 10

10
0

20
0

30
0

40
0

50
0

60
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsVacation
LSVA
BVA

M. Herlihy, V. Luchango, M. Moir, I. W. N. Scherer. Software Transactional Memory for Dynamic-sized
Data Structures. PODC’03.

H. E. Ramadan, I. Roy, M. Herlihy, E. Witchel. Committing conflicting transactions in an STM. PPoPP’09.

P. Felber, V. Gramoli, R. Guerraoui. Elastic Transactions. DISC’09.

A. Bieniusa, A. Middelkoop, P. Thiemann. Brief Announcement: Actions in the Twilight—Concurrent
Irrevocable Transactions and Inconsistency Repair. PODC’10.

K. Siek, P. T. Wojciechowski. Brief Announcement: Relaxing Opacity in Pessimistic Transactional
Memory. DISC’14. (TBR)

4 / 22



Early release

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2

q
×rpxq1, wpxq2, ×rpyq1, wpyq2

y

2 4 6 8 10

50
10

0
15

0
20

0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsDHT
LSVA
BVA

2 4 6 8 10

10
0

12
0

14
0

16
0

18
0

20
0

22
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsBank
LSVA
BVA

2 4 6 8 10

10
0

20
0

30
0

40
0

50
0

60
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsVacation
LSVA
BVA

M. Herlihy, V. Luchango, M. Moir, I. W. N. Scherer. Software Transactional Memory for Dynamic-sized
Data Structures. PODC’03.

H. E. Ramadan, I. Roy, M. Herlihy, E. Witchel. Committing conflicting transactions in an STM. PPoPP’09.

P. Felber, V. Gramoli, R. Guerraoui. Elastic Transactions. DISC’09.

A. Bieniusa, A. Middelkoop, P. Thiemann. Brief Announcement: Actions in the Twilight—Concurrent
Irrevocable Transactions and Inconsistency Repair. PODC’10.

K. Siek, P. T. Wojciechowski. Brief Announcement: Relaxing Opacity in Pessimistic Transactional
Memory. DISC’14. (TBR)

4 / 22



Early release

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2

q
×rpxq1, wpxq2, ×rpyq1, wpyq2

y

2 4 6 8 10

50
10

0
15

0
20

0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsDHT
LSVA
BVA

2 4 6 8 10

10
0

12
0

14
0

16
0

18
0

20
0

22
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsBank
LSVA
BVA

2 4 6 8 10

10
0

20
0

30
0

40
0

50
0

60
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsVacation
LSVA
BVA

M. Herlihy, V. Luchango, M. Moir, I. W. N. Scherer. Software Transactional Memory for Dynamic-sized
Data Structures. PODC’03.

H. E. Ramadan, I. Roy, M. Herlihy, E. Witchel. Committing conflicting transactions in an STM. PPoPP’09.

P. Felber, V. Gramoli, R. Guerraoui. Elastic Transactions. DISC’09.

A. Bieniusa, A. Middelkoop, P. Thiemann. Brief Announcement: Actions in the Twilight—Concurrent
Irrevocable Transactions and Inconsistency Repair. PODC’10.

K. Siek, P. T. Wojciechowski. Brief Announcement: Relaxing Opacity in Pessimistic Transactional
Memory. DISC’14. (TBR)

4 / 22



Which TM safety properties can be used for early release?

5 / 22



Early release

Definition

Transaction Ti releases x early in H iff there is some prefix H 1 of
H, such that Ti is live in H 1 and there exists Tj in H 1 such that
there is a non-local read operation opj in H 1|Tj reading v from x
and a preceding write operation opi in H 1|Ti writing x to v.

Example:

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2

q
×rpxq1, wpxq2, ×rpyq1, wpyq2

y

6 / 22



Serializability

Definition

History H is serializable iff there exists some linear extension
(sequential witness history) Ŝ such that Ŝ only contains legal
transactions.

Example:

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2

q
×rpxq1, wpxq2, ×rpyq1, wpyq2

y

Ŝ � xT1, T2y

A serializable history can contain early release.

7 / 22



Serializability

Definition

History H is serializable iff there exists some linear extension
(sequential witness history) Ŝ such that Ŝ only contains legal
transactions.

Example:

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2

q
×rpxq1, wpxq2, ×rpyq1, wpyq2

y

Ŝ � xT1, T2y

A serializable history can contain early release.

7 / 22



Serializability

Definition

History H is serializable iff there exists some linear extension
(sequential witness history) Ŝ such that Ŝ only contains legal
transactions.

Example:

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2

q
×rpxq1, wpxq2, ×rpyq1, wpyq2

y

Ŝ � xT1, T2y

A serializable history can contain early release.

7 / 22



Serializability

Definition

History H is serializable iff there exists some linear extension
(sequential witness history) Ŝ such that Ŝ only contains legal
transactions.

Example:

T1

q
rpxq0, wpxq1, rpyq0, wpyq1

y

T2

q
×rpxq1, wpxq2, ×rpyq1, wpyq2

y

Ŝ � xT1, T2y

A serializable history can contain early release.

7 / 22



Opacity

Components of opacity:

Serializability

Real-time order

Consistency

Definition

Non-local opr in Ti (i � 0) is consistent if there is a preceding
non-local write operation writing v to x in H|Tk (Tk � Ti) where
Tk is

Live transaction � committed or commit-pending.

An opaque history cannot contain early release.

8 / 22



Opacity

Components of opacity:

Serializability

Real-time order

Consistency

Definition

Non-local opr in Ti (i � 0) is consistent if there is a preceding
non-local write operation writing v to x in H|Tk (Tk � Ti) where
Tk is committed or commit-pending.

Live transaction � committed or commit-pending.

An opaque history cannot contain early release.

8 / 22



Opacity

Components of opacity:

Serializability

Real-time order

Consistency

Definition

Non-local opr in Ti (i � 0) is consistent if there is a preceding
non-local write operation writing v to x in H|Tk (Tk � Ti) where
Tk is committed or commit-pending.

Live transaction � committed or commit-pending.

An opaque history cannot contain early release.

8 / 22



Opacity

Components of opacity:

Serializability

Real-time order

Consistency

Definition

Non-local opr in Ti (i � 0) is consistent if there is a preceding
non-local write operation writing v to x in H|Tk (Tk � Ti) where
Tk is committed or commit-pending.

Live transaction � committed or commit-pending.

An opaque history cannot contain early release.

8 / 22



Opacity

Components of opacity:

Serializability

Real-time order

Consistency

Definition

Non-local opr in Ti (i � 0) is consistent if there is a preceding
non-local write operation writing v to x in H|Tk (Tk � Ti) where
Tk is committed or commit-pending.

Live transaction � committed or commit-pending.

An opaque history cannot contain early release.

8 / 22



Elastic opacity

Definition

History H is elastic opaque iff there exists a cutting function fC
that replaces each elastic transaction Ti in H with its consistent
well-formed cut Ct, such that fCpHq is opaque.

Example:

T1

q
rpyq0,wpxq1, rpxq1, rpyq0

y

T2

q
×rpxq1

y H

T 1

1

q
rpyq0,wpxq1

y

T2

q
×rpxq1

y

T 2

1

q
rpxq1, rpyq0

y
fCpHq

An elastic opaque history can contain early release. However...

9 / 22



Elastic opacity

Definition

History H is elastic opaque iff there exists a cutting function fC
that replaces each elastic transaction Ti in H with its consistent
well-formed cut Ct, such that fCpHq is opaque.

Example:

T1

q
rpyq0,wpxq1, rpxq1, rpyq0

y

T2

q
×rpxq1

y H

T 1

1

q
rpyq0,wpxq1

y

T2

q
×rpxq1

y

T 2

1

q
rpxq1, rpyq0

y
fCpHq

An elastic opaque history can contain early release. However...

9 / 22



Elastic opacity

Definition

History H is elastic opaque iff there exists a cutting function fC
that replaces each elastic transaction Ti in H with its consistent
well-formed cut Ct, such that fCpHq is opaque.

Example:

T1

q
rpyq0,wpxq1, rpxq1, rpyq0

y

T2

q
×rpxq1

y H

T 1

1

q
rpyq0,wpxq1

y

T2

q
×rpxq1

y

T 2

1

q
rpxq1, rpyq0

y
fCpHq

An elastic opaque history can contain early release. However...

9 / 22



Elastic opacity

Definition

History H is elastic opaque iff there exists a cutting function fC
that replaces each elastic transaction Ti in H with its consistent
well-formed cut Ct, such that fCpHq is opaque.

Example:

T1

q
rpyq0,wpxq1, rpxq1, rpyq0

y

T2

q
×rpxq1

y H

T 1

1

q
rpyq0,wpxq1

y

T2

q
×rpxq1

y

T 2

1

q
rpxq1, rpyq0

y
fCpHq

An elastic opaque history can contain early release.

However...

9 / 22



Elastic opacity

Definition

History H is elastic opaque iff there exists a cutting function fC
that replaces each elastic transaction Ti in H with its consistent
well-formed cut Ct, such that fCpHq is opaque.

Example:

T1

q
rpyq0,wpxq1, rpxq1, rpyq0

y

T2

q
×rpxq1

y H

T 1

1

q
rpyq0,wpxq1

y

T2

q
×rpxq1

y

T 2

1

q
rpxq1, rpyq0

y
fCpHq

An elastic opaque history can contain early release. However...

9 / 22



Elastic opacity

Well-formed cut:

A subhistory cannot start with a write (unless it is the first
subhistory of a cut).

If there are two writes in a transaction, they are within the
same subhistory.

A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).

T1

q
rpyq0,wpxq1, rpxq1, rpyq0

y

T2

q
×rpxq1

y H

T 1

1

q
rpyq0,wpxq1

y

T2

q
×rpxq1

y

T 2

1

q
rpxq1, rpyq0

y
fCpHq

10 / 22



Elastic opacity

Well-formed cut:

A subhistory cannot start with a write (unless it is the first
subhistory of a cut).

If there are two writes in a transaction, they are within the
same subhistory.

A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).

T1

q
rpyq0,wpxq1, rpxq1, rpyq0

y

T2

q
×rpxq1

y H

T 1

1

q
rpyq0,wpxq1

y

T2

q
×rpxq1

y

T 2

1

q
rpxq1, rpyq0

y
fCpHq

10 / 22



Elastic opacity

Well-formed cut:

A subhistory cannot start with a write (unless it is the first
subhistory of a cut).

If there are two writes in a transaction, they are within the
same subhistory.

A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).

T1

q
rpyq0,wpxq1, rpxq1

y

T2

q
×rpxq1

y H

T 1

1

q
rpyq0,wpxq1

y

T2

q
×rpxq1

y

T 2

1

q
rpxq1

y
fCpHq

10 / 22



TMS1 & TMS2

Definition (TMS1—Valid Response)

For operation op to return in some subhistory H|Ti, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any Tj P S it is true that,

if Tj precedes Ti in real-time order then Tj is committed, or

Tj is committed or commit-pending otherwise.

Live transaction � committed or commit-pending.

A TMS1 history cannot contain early release.

A TMS2 history cannot contain early release (TMS2 � TMS1).

11 / 22



TMS1 & TMS2

Definition (TMS1—Valid Response)

For operation op to return in some subhistory H|Ti, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any Tj P S it is true that,

if Tj precedes Ti in real-time order then Tj is committed, or

Tj is committed or commit-pending otherwise.

Live transaction � committed or commit-pending.

A TMS1 history cannot contain early release.

A TMS2 history cannot contain early release (TMS2 � TMS1).

11 / 22



TMS1 & TMS2

Definition (TMS1—Valid Response)

For operation op to return in some subhistory H|Ti, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any Tj P S it is true that,

if Tj precedes Ti in real-time order then Tj is committed, or

Tj is committed or commit-pending otherwise.

Live transaction � committed or commit-pending.

A TMS1 history cannot contain early release.

A TMS2 history cannot contain early release (TMS2 � TMS1).

11 / 22



TMS1 & TMS2

Definition (TMS1—Valid Response)

For operation op to return in some subhistory H|Ti, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any Tj P S it is true that,

if Tj precedes Ti in real-time order then Tj is committed, or

Tj is committed or commit-pending otherwise.

Live transaction � committed or commit-pending.

A TMS1 history cannot contain early release.

A TMS2 history cannot contain early release (TMS2 � TMS1).

11 / 22



TMS1 & TMS2

Definition (TMS1—Valid Response)

For operation op to return in some subhistory H|Ti, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any Tj P S it is true that,

if Tj precedes Ti in real-time order then Tj is committed, or

Tj is committed or commit-pending otherwise.

Live transaction � committed or commit-pending.

A TMS1 history cannot contain early release.

A TMS2 history cannot contain early release (TMS2 � TMS1).

11 / 22



Virtual world consitency

Definition

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

Ti

q
rpxq0,wpxq1, rpyq0

y

Tj

q
×rpxq1

y

Ŝ � xT1, T2y

A VWC history can contain early release.

12 / 22



Virtual world consitency

Definition

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

Ti

q
rpxq0,wpxq1, rpyq0

y

Tj

q
×rpxq1

y

Ŝ � xT1, T2y

A VWC history can contain early release.

12 / 22



Virtual world consitency

Definition

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

Ti

q
rpxq0,wpxq1, rpyq0

y

Tj

q
×rpxq1

y

Ŝ � xT1, T2y

A VWC history can contain early release.

12 / 22



Virtual world consitency

Definition

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

Ti

q
rpxq0,wpxq1, rpyq0

y

Tj

q
×rpxq1

y

Ŝ � xT1, T2y

A VWC history can contain early release.

12 / 22



Virtual world consitency

Definition

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

Ti

q
rpxq0,wpxq1, rpyq0

y

Tj

q
×rpxq1

y

Ŝ � xT1, T2y

A VWC history can contain early release.

12 / 22



Virtual world consitency

If Ti releases early in H, then Ti cannot abort.

If Tj eventually commits, then the sequential witness history
Ŝ � xTi, Tjy is illegal.

If Tj eventually aborts, its causal past CpTjq � xTi, Tjy
contains two aborted transactions, so it is illegal.

13 / 22



Virtual world consitency

If Ti releases early in H, then Ti cannot abort.

Ti

q
rpxq0,wpxq1, rpyq0 ý

Tj

q
×rpxq1

y

If Tj eventually commits, then the sequential witness history
Ŝ � xTi, Tjy is illegal.

If Tj eventually aborts, its causal past CpTjq � xTi, Tjy
contains two aborted transactions, so it is illegal.

13 / 22



Virtual world consitency

If Ti releases early in H, then Ti cannot abort.

Ti

q
rpxq0,wpxq1, rpyq0 ý

Tj

q
×rpxq1

y

If Tj eventually commits, then the sequential witness history
Ŝ � xTi, Tjy is illegal.

If Tj eventually aborts, its causal past CpTjq � xTi, Tjy
contains two aborted transactions, so it is illegal.

13 / 22



Virtual world consitency

If Ti releases early in H, then Ti cannot abort.

Ti

q
rpxq0,wpxq1, rpyq0 ý

Tj

q
×rpxq1 ý

If Tj eventually commits, then the sequential witness history
Ŝ � xTi, Tjy is illegal.

If Tj eventually aborts, its causal past CpTjq � xTi, Tjy
contains two aborted transactions, so it is illegal.

13 / 22



Virtual world consitency

If Ti releases early in H, then Ti cannot abort.

Ti

q
rpxq0,wpxq1, rpyq0 ý

Tj

q
×rpxq1 ý

If Tj eventually commits, then the sequential witness history
Ŝ � xTi, Tjy is illegal.

If Tj eventually aborts, its causal past CpTjq � xTi, Tjy
contains two aborted transactions, so it is illegal.

13 / 22



Serializability

supports early release
very basic

Opacity—no early release

TMS1 & TMS2—no early release

Virtual world consistency

supports early release
transactions cannot abort

Elastic opacity

supports early release
unintuitive cutting rules

14 / 22



Serializability

supports early release
very basic

Opacity—no early release

TMS1 & TMS2—no early release

Virtual world consistency

supports early release
transactions cannot abort

Elastic opacity

supports early release
unintuitive cutting rules

14 / 22



Serializability

supports early release
very basic

Opacity—no early release

TMS1 & TMS2—no early release

Virtual world consistency

supports early release
transactions cannot abort

Elastic opacity

supports early release
unintuitive cutting rules

14 / 22



Serializability

supports early release
very basic

Opacity—no early release

TMS1 & TMS2—no early release

Virtual world consistency

supports early release
transactions cannot abort

Elastic opacity

supports early release
unintuitive cutting rules

14 / 22



Database properties

Recoverability

Avoiding Cascading Aborts

Strictness

Rigorousness

15 / 22



Database properties

Recoverability

History H is recoverable iff for any Ti, Tj P H s.t. Tj reads
from Ti, Ti commits in H before Tj .

Avoiding Cascading Aborts

Strictness

Rigorousness

15 / 22



Database properties

Recoverability X
History H is recoverable iff for any Ti, Tj P H s.t. Tj reads
from Ti, Ti commits in H before Tj .

Avoiding Cascading Aborts

Strictness

Rigorousness

15 / 22



Database properties

Recoverability X
History H is recoverable iff for any Ti, Tj P H s.t. Tj reads
from Ti, Ti commits in H before Tj .

Avoiding Cascading Aborts

History H Avoids Cascading Aborts iff for any Ti, Tj P H s.t.
Tj reads from Ti, Ti commits before the read.

Strictness

Rigorousness

15 / 22



Database properties

Recoverability X
History H is recoverable iff for any Ti, Tj P H s.t. Tj reads
from Ti, Ti commits in H before Tj .

Avoiding Cascading Aborts �

History H Avoids Cascading Aborts iff for any Ti, Tj P H s.t.
Tj reads from Ti, Ti commits before the read.

Strictness

Rigorousness

15 / 22



Database properties

Recoverability X
History H is recoverable iff for any Ti, Tj P H s.t. Tj reads
from Ti, Ti commits in H before Tj .

Avoiding Cascading Aborts �

History H Avoids Cascading Aborts iff for any Ti, Tj P H s.t.
Tj reads from Ti, Ti commits before the read.

Strictness

History H is strict iff for any Ti, Tj P H and given any
operation opi � rpxqv or wpxqv1 in H|Ti, and any operation
opj � wpxqv in H|Tj , if opi follows opj , then Tj commits or
aborts before opi.

Rigorousness

15 / 22



Database properties

Recoverability X
History H is recoverable iff for any Ti, Tj P H s.t. Tj reads
from Ti, Ti commits in H before Tj .

Avoiding Cascading Aborts �

History H Avoids Cascading Aborts iff for any Ti, Tj P H s.t.
Tj reads from Ti, Ti commits before the read.

Strictness 7

History H is strict iff for any Ti, Tj P H and given any
operation opi � rpxqv or wpxqv1 in H|Ti, and any operation
opj � wpxqv in H|Tj , if opi follows opj , then Tj commits or
aborts before opi.

Rigorousness

15 / 22



Database properties

Recoverability X
History H is recoverable iff for any Ti, Tj P H s.t. Tj reads
from Ti, Ti commits in H before Tj .

Avoiding Cascading Aborts �

History H Avoids Cascading Aborts iff for any Ti, Tj P H s.t.
Tj reads from Ti, Ti commits before the read.

Strictness 7

History H is strict iff for any Ti, Tj P H and given any
operation opi � rpxqv or wpxqv1 in H|Ti, and any operation
opj � wpxqv in H|Tj , if opi follows opj , then Tj commits or
aborts before opi.

Rigorousness

History H is rigorous if it is strict and for any Ti, Tj P H such
that Tj writes to variable x, i.e., opj � wpxqv P H|Tj after Ti

reads x, then Ti commits or aborts before opj .

15 / 22



Database properties

Recoverability X
History H is recoverable iff for any Ti, Tj P H s.t. Tj reads
from Ti, Ti commits in H before Tj .

Avoiding Cascading Aborts �

History H Avoids Cascading Aborts iff for any Ti, Tj P H s.t.
Tj reads from Ti, Ti commits before the read.

Strictness 7

History H is strict iff for any Ti, Tj P H and given any
operation opi � rpxqv or wpxqv1 in H|Ti, and any operation
opj � wpxqv in H|Tj , if opi follows opj , then Tj commits or
aborts before opi.

Rigorousness 7

History H is rigorous if it is strict and for any Ti, Tj P H such
that Tj writes to variable x, i.e., opj � wpxqv P H|Tj after Ti

reads x, then Ti commits or aborts before opj .

15 / 22



Serializability+ spectrum

serializability

serializability + ACAserializability + recoverability

?

16 / 22



Serializability+ spectrum

serializability

serializability + ACAserializability + recoverability

?

16 / 22



Serializability+ spectrum

serializability

serializability + ACA

serializability + recoverability

?

16 / 22



Serializability+ spectrum

serializability

serializability + ACAserializability + recoverability

?

16 / 22



Serializability+ spectrum

serializability

serializability + ACAserializability + recoverability

?

16 / 22



Last-use

Definition (Commit-pending–equivalence)

A live transaction Ti in H is commit-pending–equivalent with
respect to x iff it is finished executing all of its operations on x.

atomic{

int v = read(x);

if (v < 0)

write(x,-v); // commit-pending--equivalent wrt x

int u = read(y);

write(y, u + 1); // commit-pending--equivalent wrt y

}

Definition (Early release after last use)

Transaction Ti releases x after last use in H iff Ti releases x early
in H and Ti is commit-pending equivalent wrt x.

17 / 22



Last-use

Definition (Commit-pending–equivalence)

A live transaction Ti in H is commit-pending–equivalent with
respect to x iff it is finished executing all of its operations on x.

atomic{

int v = read(x);

if (v < 0)

write(x,-v); // commit-pending--equivalent wrt x

int u = read(y);

write(y, u + 1); // commit-pending--equivalent wrt y

}

Definition (Early release after last use)

Transaction Ti releases x after last use in H iff Ti releases x early
in H and Ti is commit-pending equivalent wrt x.

17 / 22



Last-use

Definition (Commit-pending–equivalence)

A live transaction Ti in H is commit-pending–equivalent with
respect to x iff it is finished executing all of its operations on x.

atomic{

int v = read(x);

if (v < 0)

write(x,-v); // commit-pending--equivalent wrt x

int u = read(y);

write(y, u + 1); // commit-pending--equivalent wrt y

}

Definition (Early release after last use)

Transaction Ti releases x after last use in H iff Ti releases x early
in H and Ti is commit-pending equivalent wrt x.

17 / 22



Last-use consistency

Definition

Let TH
er be a subset of all transactions in history H that

release some variable early.

Let TH
lu be a subset of all transactions in history H that

release some variable early only after last-use.

History H satisfies last-use consistency if TH
lu � TH

er.

18 / 22



Inconsistent views

Last-use consistency precludes overwriting:

Ti

q
wpxq0, wpxq1

y

Tj

q
×rpxq0 × ý T 1

j

q
rpxq1,wpxq2

y

Allowed inconsistent view:

Ti

q
wpxq0, wpxq1 ý

Tj

q
×rpxq0 × ý T 1

j

q
rpxq1,wpxq2

y

19 / 22



Inconsistent views

Last-use consistency precludes overwriting:

Ti

q
wpxq0, wpxq1

y

Tj

q
×rpxq0 × ý T 1

j

q
rpxq1,wpxq2

y

Allowed inconsistent view:

Ti

q
wpxq0, wpxq1 ý

Tj

q
×rpxq0 × ý T 1

j

q
rpxq1,wpxq2

y

19 / 22



Serializability+ spectrum

serializability

serializability + ACAserializability + recoverability

serializability + recoverability

+ last-use consistency

20 / 22



Conclusions

Current safety properties not enough for TM with early release

Spectrum of database consistency properties

Last-use consistency

Future work: last-use opacity

21 / 22



Conclusions

Current safety properties not enough for TM with early release

Spectrum of database consistency properties

Last-use consistency

Future work: last-use opacity

21 / 22



?

22 / 22


	Early release
	TM safety properties
	Database properties
	Last-use consistency
	End

