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[source: wikipedia]

Quality is not absolutely applicable

→depends on the situation

quality = TM safety
situation = high contention
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High contention
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Early release
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Which TM safety properties can be used for early release?
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Early release

Definition

Transaction Ti releases x early in H iff there is some prefix H 1 of
H, such that Ti is live in H 1 and there exists Tj in H 1 such that
there is a non-local read operation opj in H 1|Tj reading v from x
and a preceding write operation opi in H 1|Ti writing x to v.

Example:
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Serializability

Definition

History H is serializable iff there exists some linear extension
(sequential witness history) Ŝ such that Ŝ only contains legal
transactions.

Example:
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Opacity

Components of opacity:

Serializability

Real-time order

Consistency

Definition

Non-local opr in Ti (i � 0) is consistent if there is a preceding
non-local write operation writing v to x in H|Tk (Tk � Ti) where
Tk is

Live transaction � committed or commit-pending.

An opaque history cannot contain early release.
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Elastic opacity

Definition

History H is elastic opaque iff there exists a cutting function fC
that replaces each elastic transaction Ti in H with its consistent
well-formed cut Ct, such that fCpHq is opaque.
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Elastic opacity

Well-formed cut:

A subhistory cannot start with a write (unless it is the first
subhistory of a cut).

If there are two writes in a transaction, they are within the
same subhistory.

A subhistory cannot be shorter than two operations (unless
the transaction contains only one operation).
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TMS1 & TMS2

Definition (TMS1—Valid Response)

For operation op to return in some subhistory H|Ti, there must
exist some set of transactions S that follow real-time order and
justify the legality of op, and for any Tj P S it is true that,

if Tj precedes Ti in real-time order then Tj is committed, or

Tj is committed or commit-pending otherwise.

Live transaction � committed or commit-pending.

A TMS1 history cannot contain early release.

A TMS2 history cannot contain early release (TMS2 � TMS1).
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Virtual world consitency

Definition

History H is VWC iff all committed transactions are strict
serializable, and for all aborted transactions there exists a linear
extension of its causal past that is legal.

Example:

Ti

q
rpxq0,wpxq1, rpyq0

y

Tj

q
×rpxq1

y

Ŝ � xT1, T2y

A VWC history can contain early release.
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Virtual world consitency

If Ti releases early in H, then Ti cannot abort.

If Tj eventually commits, then the sequential witness history
Ŝ � xTi, Tjy is illegal.

If Tj eventually aborts, its causal past CpTjq � xTi, Tjy
contains two aborted transactions, so it is illegal.
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Serializability

supports early release
very basic

Opacity—no early release

TMS1 & TMS2—no early release

Virtual world consistency

supports early release
transactions cannot abort

Elastic opacity

supports early release
unintuitive cutting rules
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Database properties

Recoverability

Avoiding Cascading Aborts

Strictness

Rigorousness
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Last-use

Definition (Commit-pending–equivalence)

A live transaction Ti in H is commit-pending–equivalent with
respect to x iff it is finished executing all of its operations on x.

atomic{

int v = read(x);

if (v < 0)

write(x,-v); // commit-pending--equivalent wrt x

int u = read(y);

write(y, u + 1); // commit-pending--equivalent wrt y

}

Definition (Early release after last use)

Transaction Ti releases x after last use in H iff Ti releases x early
in H and Ti is commit-pending equivalent wrt x.
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Last-use consistency

Definition

Let TH
er be a subset of all transactions in history H that

release some variable early.

Let TH
lu be a subset of all transactions in history H that

release some variable early only after last-use.

History H satisfies last-use consistency if TH
lu � TH

er.
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Inconsistent views

Last-use consistency precludes overwriting:

Ti

q
wpxq0, wpxq1

y

Tj

q
×rpxq0 × ý T 1

j

q
rpxq1,wpxq2

y

Allowed inconsistent view:

Ti

q
wpxq0, wpxq1 ý

Tj

q
×rpxq0 × ý T 1

j

q
rpxq1,wpxq2

y
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Conclusions

Current safety properties not enough for TM with early release

Spectrum of database consistency properties

Last-use consistency

Future work: last-use opacity
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